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We present the analysis of all KEDR data on the determination of J/ψ and ψ(2S) masses. The data 
comprise six scans of J/ψ and seven scans of ψ(2S) which were performed at the VEPP-4M e+e−
collider in 2002–2008. The beam energy was determined using the resonance depolarization method. 
The detector and accelerator conditions during scans were very different that increases the reliability 
of the averaged results. The analysis accounts for partial correlations of systematic uncertainties on the 
masses. The following mass values were obtained:

M J/ψ = 3096.900 ± 0.002 ± 0.006 MeV, Mψ(2S) = 3686.099 ± 0.004 ± 0.009 MeV.

These results supersede our previous measurements published in 2003 and 2012.
© 2015 Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The mass of a particle is its most fundamental characteris-
tic which should be known with the best possible accuracy. The 
masses of the very narrow J/ψ and ψ(2S) mesons are applied to 
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the calibration of energy scales of accelerators and detectors oper-
ating in the charmonium region, thus their precision is among the 
factors determining the accuracy of results on masses of the other 
charmonium states and of the τ -lepton. Some recent examples of 
such applications are the precision measurement of the τ -lepton 
mass at BEPC-II [1], the high precision measurement of the masses 
of the D0 and K S mesons [2] and the determination of the binding 
energy of X(3872) [3] using the data collected by CLEO-c.
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The first precision measurement of J/ψ and ψ(2S) masses was 
performed with the OLYA detector at the VEPP-4 e+e− collider 
in 1980 [4] employing the resonance depolarization method [5,
6] invented five years earlier. The accuracy of about 100 keV was 
achieved. Using the ψ(2S) mass value obtained by OLYA for the 
calibration of the Fermilab Antiproton Accumulator ring’s orbit 
length, the E760 experiment has reached the accuracy of about 
40 keV on the J/ψ mass [7]. It was possible because of a non-
linear relation between the orbit length and the invariant mass of 
the antiproton of the beam and the proton of the internal gas jet 
target.

The improvement of the energy measurement technique at the 
upgraded VEPP-4M e+e− collider and thorough analysis of system-
atic uncertainties allowed for the further increase of the accuracy 
on masses of the narrow ψ states. The accuracy achieved in the 
KEDR experiment [8] was about 12 and 27 keV for J/ψ and ψ(2S), 
respectively. Later, when the liquid krypton calorimeter was in-
stalled in the KEDR detector and three additional scans of the 
ψ(2S) region were performed, the ψ(2S) mass accuracy was im-
proved to 17 keV [9].

Besides the J/ψ and ψ(2S) measurements mentioned above, 
the current Review of Particle Physics [10] contains the recent 
result of the LHCb Collaboration on ψ(2S) mass which has the 
accuracy of about 110 keV [11]. The current world average values 
M J/ψ = 3096.916 ± 0.011 and Mψ(2S) = 3686.108+0.011

−0.014 MeV are 
dominated by results of Refs. [8] and [9].

In this paper we present the analysis of six scans of J/ψ
and seven scans of ψ(2S) performed at the VEPP-4M collider un-
der different detector and accelerator conditions. In all scans the 
beam energy was determined using the resonance depolarization 
method.

The resonance masses were determined by fitting the inclusive 
hadronic cross sections as a function of the e+e− center-of-mass 
(c.m.) energy.

2. VEPP-4M collider and KEDR detector

The VEPP-4M e+e− collider [12] consists of the booster ring 
VEPP-3 with energy up to 2000 MeV and the main ring oper-
ating in the beam energy range from 1 GeV to 5.5 GeV. The 
peak luminosity in the 2 × 2 bunches operation mode is about 
2 × 1030 cm−2 s−1 in the ψ region. The electron and positron 
beams rotate in VEPP-4M in the same ring which facilitates high 
precision determination of collision energy as discussed below in 
Section 6.

The KEDR detector [13] (Fig. 1) comprises the vertex detector 
(VD), drift chamber (DC), time-of-flight (TOF) system of scintilla-
tion counters, particle identification system based on the aerogel 
Cherenkov counters, EM calorimeter (liquid krypton in the barrel 
part and CsI crystals in the endcaps), superconducting magnet sys-
tem and muon system inside the magnet yoke. The superconduct-
ing solenoid provides a longitudinal magnetic field of up to 0.7 T. 
The detector is equipped with a scattered electron tagging sys-
tem for two-photon studies. The on-line luminosity measurement 
is provided by two independent single bremsstrahlung monitors.

3. Theoretical e+e− cross section in vicinity of a narrow 
resonance

According to Ref. [14] the cross section of the single photon 
annihilation of an e+e− pair to a specific state can be written as

σ(s) =
∫

dx
σ0((1 − x)s)

2
F(s, x), (1)
|1 − �((1 − x)s)|
Fig. 1. The KEDR detector. 1 – Vacuum chamber, 2 – Vertex detector, 3 – Drift 
chamber, 4 – Threshold aerogel counters, 5 – TOF-counters, 6 – Liquid kryp-
ton calorimeter, 7 – Superconducting solenoid, 8 – Magnet yoke, 9 – Muon tubes, 
10 – CsI calorimeter, 11 – Compensating superconducting coils.

where s = W 2 is the square of the c.m. energy of the pair, � is 
the full polarization operator which includes the contribution of 
all 1−− resonances and σ0 is the Born cross section of the process. 
The radiative correction kernel F(s, x) describes the probability to 
lose the fraction x of s by initial state radiation.

The Born cross section and the polarization operator contain 
the so-called bare resonance parameters. In the soft photon ap-
proximation introducing the dressed (physical) resonance param-
eters M , � and �ee (the mass, the full width and the electron 
width) one can obtain the analytical expression for the contribu-
tion of a narrow resonance in the inclusive hadronic cross section:

σ hadr
n.r. (W ) = 12π

W 2 (1 + δsf)

[
�ee�̃h

�M
Im f (W )

− 2α

√
R �ee�̃h

3W
λRe

f ∗(W )

1 − �0

]
, (2)

where α is the fine structure constant and R is the ratio σ(e+e−→
hadrons/σ (e+e− → μ+μ−) outside the resonance region. The 
truncated polarization operator �0 does not include a contribu-
tion of the resonance itself [15]. The λ parameter characterizes the 
strength of the interference effect in the inclusive hadronic cross 
section. Due to the resonance–continuum interference the effec-
tive hadronic width �̃h can differ from the true hadronic partial 
width �h.

The correction δsf follows from the structure function approach 
of Ref. [14]:

δsf = 3
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me is the electron mass and the function f is defined as

f (W ) = πβ

sinπβ

(
W 2

M2 − W 2 − iM�

)1−β

. (5)

The transition from Eq. (1) to Eq. (2), the difference between 
the bare and dressed resonance parameters and the resonance–
continuum interference are considered in Ref. [9]. In particular, the 
following expression for λ has been obtained:

λ =
√

RBee

Bh
+

√
1

Bh

∑
m

√
bmB(s)

m 〈cosφm〉
 . (6)

The summation is performed over all exclusive hadronic modes. 
Here 〈cosφm〉
 is the cosine of the relative phase of the strong 
and electromagnetic amplitudes for the mode m averaged over the 
phase space of the products, bm = Rm/R is the branching fraction 
of the corresponding continuum process, Bee is the decay proba-
bility to an e+e− pair, Bh is the total decay probability to hadrons 
and B(s)

m = �
(s)
m /�, where �(s) is the contribution of the strong in-

teraction to the partial width for the mode m.
In this work we assumed that the relative phases of the strong 

and electromagnetic amplitudes in different decay modes are not 
correlated, thus the second term of Eq. (6) can be neglected com-
pared to the first one, which is about 0.39 and 0.13 for J/ψ and 
ψ(2S), respectively. The experimental verification of this assump-
tion is discussed below in Section 8.

4. Observable e+e− cross section

The cross section observed experimentally in the vicinity of a 
narrow resonance can be parameterized as follows:

σ obs
n.r. (W ) = ε

∫
σn.r.(W ′) G(W , W ′)dW ′ + σ obs

cont · (W ref/W )2 .

(7)

Here ε is the detection efficiency, which can be considered con-
stant and σ obs

cont is the observed continuum cross section in some 
reference point W ref.

The theoretical cross section σn.r. is folded with the distribution 
over the total collision energy which is assumed to be a quasi-
Gaussian with an energy spread σW:

G(W , W ′) = g(W − W ′)√
2πσW

exp

(
− (W − W ′)2

2σ 2
W

)
. (8)

The preexponential factor is due to accelerator effects, which are 
discussed in the next section. In the first approximation

g(�) = 1 + a � + b �2

1 + b σ 2
W

. (9)

At the same level of accuracy Eq. (8) can be written as

G(W , W ′) = 1√
2πσW

1 + c (W − W ′)2

1 + c σ 2
W

× exp

(
− (W + �W − W ′)2

2σ 2
W

)
, (10)

with some parameter c and the energy shift

�W = −aσ 2
W. (11)
For a given energy scan this shift was constant, thus we did not 
take it into account in the scan analysis, but corrected the resulting 
mass value.

To determine the resonance mass we fitted the cross sec-
tion measured in the energy scan using expressions (7) and (10)
with four free parameters: the resonance mass M , the energy 
spread σW, the detection efficiency ε and the continuum cross 
section in the reference point σ obs

cont. The c parameter was fixed 
at zero for the mass determination and released to find the sys-
tematic mass uncertainty due to the symmetric distortion of the 
energy distribution. All other parameters required for the compu-
tation were taken from the PDG tables [16].

5. Mean collision energy for e+e− beams

At the given collider energy E the mean invariant mass aver-
aged over the colliding particle momenta can be written as fol-
lows:

〈W 〉p ≈ 〈E+ + E−〉 − 1

2
(θ2

x + θ2
y )E − σ 2

E

2E
− (〈E+〉 − 〈E−〉)2

4E
,

(12)

where θx, θy determine the radial and vertical angular spread, re-
spectively, and σE is the energy spread inside the beams. The last 
term is due to the difference of the coherent energy loss in two 
arcs. For the VEPP-4M conditions in the ψ-energy region the cor-
rection is about 0.2 keV, thus we assume W = E+ + E− for each 
collision.

In this assumption for beams with the Gaussian spreads in the 
presence of the electrostatically induced vertical dispersion ηy and 
the beam impact parameter �y, the differential luminosity can be 
written as

dL(E, W )

dW
= fRN+N−

4πσx(W /2)σy(W /2)
· 1√

2π σW

× exp

⎧⎨
⎩−1

2

(
W − 2E

σW
− σWηy�y

2Eσ 2
y

)2

− �2
y

4σ 2
y

⎫⎬
⎭,

(13)

where fR is a revolution frequency, N+ and N− are the bunch 
populations. The transverse beam sizes in the interaction point σx, 
σy effectively depend on the sum E+ + E− due to the collider β-
and dispersion function chromaticity. For the a parameter of Eq. (9)
one has

a ≈ 1

2

β ′
y

βy
+ 1

2

β ′
x

βx

σ 2
x,β

σ 2
x,β + σ 2

x,s
+ η′

η

σ 2
x,s

σ 2
x,β + σ 2

x,s
. (14)

Here η is the dispersion function in the interaction point which 
is nonzero at VEPP-4M. Because of this there are two contribu-
tions to the radial beam size, the betatron contribution σx,β and 
the synchrotron one, which is related to the beam energy spread 
σx,s = ησE. There exists an accelerator technique to measure the 
first derivatives of the β-functions β ′

x and β ′
y, at VEPP-4M its rel-

ative accuracy is about 25%. The derivative of the dispersion func-
tion can be obtained from the accelerator simulation, the expected 
accuracy is 50%. There are no methods for a determination of the 
second derivatives, therefore the value of the b parameter of Eq. (9)
and the c parameter of Eq. (10) cannot be predicted. The impact 
of the β-function chromaticity on the mass values in our experi-
ments varies from −4 to −1.5 keV for J/ψ and from 3 to 5 keV 
for ψ(2S). The effect of the dispersion function chromaticity of 
about −2 keV was not accounted for in Ref. [8].



V.V. Anashin et al. / Physics Letters B 749 (2015) 50–56 53
Eq. (13) shows that the collision energy averaged over parti-
cles of the beams differs from the sum of the beam energies by 
�W = ηy�y/(2Eσ 2

y ) σW. According to the accelerator simulation 
of VEPP-4M, |ηy| ≈ 800 μm. The electrostatically induced vertical 
dispersion is due to the beam separation in the additional (para-
sitic) interaction points (I.P.). The residual orbit perturbations re-
lated to this separation result in the beam misalignment in the 
experimental I.P. characterized by �y. It can be controlled using 
the voltage on the electrostatic separation plates located near the 
interaction point. The small misalignment causes the relative re-
duction of the luminosity by �2

y/(2σ 2
y ), thus the uncertainty in 

the mean collision energy is determined by the accuracy of the 
luminosity tuning. The vertical beam size of VEPP-4M σy ≈ 7μm, 
therefore for the tuning accuracy of about 2% the uncertainty on 
the collision energy does not exceed 10 keV. In the resonance mass 
uncertainty it is suppressed by a factor of 1/

√
N where N > 100

is the number of the tunings during the energy scan. In 2002 the 
tunings were performed manually after the collider filling. Since 
2004 the a permanently running automatic procedure has been 
implemented.

6. Beam energy determination

The resonance depolarization method employs the relation be-
tween the spin precession frequency around the vertical guiding 
field of the storage ring � and the Larmor revolution frequency ω:

� = ω
(
1 + γ · μ′/μ0

)
, (15)

where γ is the Lorentz factor of the particle and μ′/μ0 is the 
ratio of the anomalous and normal parts of its magnetic moment. 
For the electron this ratio is known with the relative accuracy of 
2.3 × 10−10 [16]. The beam revolution frequency can be controlled 
and measured with the accuracy better than 10−8.

The precession frequency can be determined by applying the 
external electromagnetic field of the slowly varying frequency �D
to the polarized beam in the storage ring. At the moment when 
�D satisfies the condition

� ± �D = ω · n (16)

with any integer n, the resonance depolarization occurs. Observing 
it with the polarimeter one determines �D and thus �, γ and the 
beam energy.

In the energy region of J/ψ and ψ(2S), the VEPP-3 booster 
serves as a source of the polarized beam for VEPP-4M. At this en-
ergy the spontaneous polarization time due to Sokolov–Ternov [17]
effect in VEPP-4M is too large. The description of the VEPP-4M 
polarimeter which employed the intra-beam scattering (Touschek) 
effect can be found in Ref. [18]

The systematic uncertainty of the single energy calibration is 
limited mainly by the spin resonance width [6]. It can be de-
termined using two calibrations with the opposite direction of 
the depolarizer frequency scan. In our experiments the resonance 
width does not exceed 2 keV. Another source of the uncertainty 
is vertical closed orbit distortions. Eq. (15) is exact in the case 
of the plane orbit in absence of the radial and longitudinal mag-
netic fields. The typical vertical orbit RMS at VEPP-4M was about 
1 mm, the corresponding uncertainty in the energy determination 
was 1 keV or less [19]. The longitudinal field of the KEDR detec-
tor was compensated with high accuracy so that the uncertainty 
on the beam energy due to it is less than 1 keV [20].

The data acquisition scenario for all scans under discussion was 
similar to that described in Ref. [8]. According to it, the calibration 
of the beam energy was performed twice at each point on the 
peak region before and after the data taking. Only the energy of 
the electron beam was determined, thus the difference between 
the electron and positron energies �E± was of great importance.

The energy obtained with the single beam resonant depolariza-
tion cannot be immediately applied to the data acquisition runs. 
During the data acquisition the beams must be electrostatically 
separated at all parasitic interaction points to increase the lumi-
nosity. In the case when the separation is turned on during the 
calibration (below we will refer to it as “calibration of type 1”), 
the correction to the additional vertical orbit distortion must be 
applied. This correction can be calculated accurately enough and is 
less than 1 keV, however, the electrostatic separation provokes the 
energy difference between the electron and positron beams. The 
controllable source of the difference is the skew sextupole NTS0 
installed in the parasitic I.P. opposite to the experimental one. The 
total collision energy was corrected for its contribution (typically 
±1.5 keV) but there are also a few uncontrollable sources of �E± . 
Worrying about this, the “calibration of type 0” was suggested. In 
this case the separation is turned off during the resonant depo-
larization. Assuming that �E± depends on the magnitude of the 
beam separation linearly and neglecting the difference in the orbit 
radius, one has

Eon− = Eoff − �E±/2, Eon+ = Eoff + �E±/2,

Eoff = (Eon− + Eon+ )/2,

thus the energy of the single beam with the separation off equals 
the mean energy of two beams with the separation on.

However, at the few keV level of accuracy, the difference in the 
orbit radius at the fixed revolution frequency fR is not negligible. 
The correction required can be calculated with

�E

E
= 1

α

�R

R
≈ − 1

α

�L
P

(17)

where �R is the change in the mean orbit radius, �L is the orbit 
variation due to the separation at the condition that the radius 
does not change, P = c/ fR is the ring circumference and α is the 
momentum compaction factor of about 0.016. The maximal value 
of the correction is 7.4 ± 2.5 keV in the case of three parasitic 
interaction points. Some details of the calculations can be found in 
Ref. [21].

In two energy scans we used the “type 1” calibration, in the 
other “type 0” was employed. Recently the progress of the VEPP-
4M polarimeter allowed us to verify the correction calculations 
experimentally with the accuracy of about 30% (2.5 keV at most). 
Similarly to the energy shift discussed in Section 4, the corrections 
which did not vary during the scan were applied to the resulting 
mass value.

Whatever type of calibrations were used, we had to interpolate 
their results to determine the energy during the data acquisition 
runs. This interpolation was done using the NMR measurement of 
the guiding field, the ring temperature and other accelerator pa-
rameters as described in Ref. [8]. During the early experiments the 
main magnets of VEPP-4M were cooled with the surrounding air, 
later water cooling was implemented. This decreased energy vari-
ations, but made them less predictable due to faster temperature 
variations. For both cooling methods the energy interpolation accu-
racy of about 6–8 keV was reached. The uncertainty of the energy 
extrapolation can be considered as quasi-statistical. Similarly to 
the uncertainty related to the beam misalignment, its contribution 
to the resonance mass uncertainty is suppressed proportionally to 
1/

√
N , but in this case N > 100 is the number of the collider fill-

ings during the energy scan.
The value of energy obtained using the resonance depolariza-

tion corresponds to the average over the beam revolution time. 
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Table 1
Main characteristics of the data sets analyzed (the number of scans in the set, the integrated luminosity, the number of hadronic events selected, the machine energy spread, 
the separation state during the calibrations, the number of parasitic I.P.s, the skew sextupole state and the longitudinal magnetic field in KEDR).

Resonance Year Nscan L (nb) Nhadr (103) σW (MeV) Separation NpIP NTS0 Field (T)

J/ψ 2002 4 50 16.5 0.90–0.66 off 1 0
2005 1 205 109.0 0.68 on 3 on 0.65
2008 1 486 615.0 0.71 off 3 0.60

ψ(2S) 2002 3 76 8.5 1.33 off 1 0
2004 2 118 30.0 1.06 on 3 on 0.60
2006 1 269 67.5 0.99 off, on 3 on 0.60
2007 1 532 125.5 1.00 off 3 0.60
For a symmetric machine it corresponds to the energy in the in-
teraction point despite the energy losses during the revolution. It 
is true, however, only when the potential energy of the beam par-
ticle can be neglected.

The effective energy of the electron is Ekinetic + U/2, where the 
potential energy U is due to its Coulomb interaction with all other 
electrons of the beam. For the flat beam with the logarithmic ac-
curacy

U = e2N√
π σz

ln
D

σx
, (18)

where N is the bunch population, σz is the longitudinal bunch size 
and D is the beam pipe diameter (in the beam rest frame the inter-
action of particles at longer distances is screened out). The kinetic 
and potential energies in the I.P. differ from those in the ring be-
cause of the difference in the beam and beam pipe sizes, but the 
total energy conserves during the revolution, therefore

Ekinetic,I.P. + U I.P./2 = Ekinetic,ring + U ring/2. (19)

Here energy losses during the revolution are ignored but it does 
not change the final results.

The resonant depolarization gives E ≈ Ekinetic,ring, thus for the 
colliding e+e− pair we have

Wkinetic,I.P. = 2E + U ring − U I.P., (20)

W total,I.P. = 2E + U ring + U I.P.. (21)

In Ref. [8] it was assumed that at the moment of the annihilation 
the total energy of the e+e− pair transforms to the product mass, 
thus the correction δW = U I.P. + U ring ≈ 2 keV was applied. How-
ever, some part of the potential energy 2U I.P. can be radiated after 
the fast process of the resonance formation, therefore the value of 
the correction lies between −(U I.P. −U ring) and U I.P. +U ring. In this 
analysis we did not apply the correction for the beam potential in-
creasing the systematic uncertainties on the resonance masses.

7. Data analysis

The data sets employed in the analysis and their characteristics 
essential for the mass determination are presented in Table 1.

The data collected in 2002 were not completely reanalyzed, 
just the mass values published in Ref. [8] were corrected and 
reweighted. The corrections were necessary to account for the dis-
persion function chromaticity effect mentioned in Section 5 (−2
and −3 keV for J/ψ and ψ(2S), respectively), to withdraw the 
correction for the beam potential as discussed in the previous sec-
tion (about −2 keV both for J/ψ and ψ(2S)) and, last but not 
least, to fix the technical mistake in accounting for the interfer-
ence effect made in 2002. Namely, the square root was missing 
in the calculations of the interference parameters according to the 
first term of Eq. (6). Because of this the J/ψ mass was overes-
timated by 7 keV, while for ψ(2S) the overestimation reached 
16 keV (about 0.6 of the quoted error in both cases).
All other data were completely reprocessed. The luminosity was 
determined using Bhabha events with the scattering angle exceed-
ing 15 degrees. The selection criteria for the hadronic and Bhabha 
events were similar to those described in Ref. [9]. During the 
ψ(2S) scans performed in 2004 the liquid krypton calorimeter cov-
ering the angular range 37◦ < θ < 143◦ was employed only in the 
trigger. The Bhabha events were selected using the CsI endcaps. 
The events containing at least three charged tracks were treated 
as the hadronic events provided that the sphericity parameter ex-
ceeded the value of 0.05. In all later scans the liquid krypton 
calorimeter was in full operation which allowed to increase the 
detection efficiency for hadronic events accepting events with two 
acollinear tracks and at least one photon.

The luminosity obtained using the process e+e− → e+e− was 
corrected for the resonance contribution using the table values of 
the electron width and the detection efficiency determined from 
Monte Carlo simulation. Such a correction is required to exclude 
the resonance mass shift due to the difference of the interference 
effects in the hadronic and e+e− channels. The maximal correction 
was about 15% for J/ψ and did not exceed 2% for ψ(2S). The 
corresponding uncertainty on the J/ψ mass is about 1 keV.

The hadronic cross sections measured in the scans were fit-
ted using the maximum likelihood method (the two ψ(2S) scans 
performed in 2004 under the same detector and accelerator condi-
tions were fitted together). The measured hadronic cross sections 
for J/ψ and ψ(2S) scans and the results of the fits are presented 
in Fig. 2. The parameters of the fit are described in Section 4. The 
only fit parameter essential for this work is the resonance mass.

The mass values obtained for the data sets relative to the re-
sults published in 2003 (3096.917 and 3686.111 MeV for J/ψ and 
ψ(2S), respectively) are presented in Table 2. The corrections to 
the mass due to the sum of accelerator-related effects considered 
in Section 4 and Section 6 are also shown to illustrate the differ-
ence of conditions significant for the mass measurements. They are 
already included in the quoted mass values.

8. Systematic uncertainties

The main systematic uncertainties on the J/ψ and ψ(2S)

masses and the estimates of their correlations are presented in 
Table 3 and Table 4, respectively. The correlation of errors is a 
difficult issue. In most cases we assumed that the correlated part 
corresponds to the minimal uncertainty in scans for a given uncer-
tainty source. This leads to the most conservative estimates of the 
total uncertainty.

The energy spread variations are expected due to its possible 
dependence on the beam current. Evidence for such dependence 
was observed in 2002 but became much weaker later. The en-
ergy calibration accuracy and the energy interpolation for the data 
acquisition runs are discussed above in Section 6 together with 
the corrections due to the beam separation in parasitic interaction 
points. The energy difference of the electron and positron beams 
was studied using the simultaneous depolarization of e+ and e−
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Fig. 2. The measured hadronic cross section not corrected for the detection ef-
ficiency as a function of the c.m. energy for J/ψ scans (top) and ψ(2S) scans 
(bottom). The lines present the results of the fits.

Table 2
The mass values for the data sets relative to the results published in 2003 with 
their statistical uncertainties and the total corrections applied to the masses due to 
the accelerator-related effects.

Resonance Year M–M2003 (keV) �M (keV)

J/ψ 2002 −10.4 ± 10.0 −8.9 ± 1.9
2005 −14.4 ± 3.1 −0.2 ± 2.1
2008 −20.3 ± 2.7 −9.8 ± 2.3

ψ(2S) 2002 −20.4 ± 25. −2.0 ± 3.2
2004 −0.5 ± 9.7 −0.5 ± 2.2
2006 −11.0 ± 5.9 −3.0 ± 1.7
2007 −15.9 ± 4.7 −7.1 ± 3.1

beams in the dedicated experiments. The asymmetric and sym-
metric distortions of the energy distribution correspond to the a
and b parameters of the preexponential factor (9). The uncertainty 
due to the beam potential was evaluated as described in Sec-
tion 6 using the mean values of the bunch currents. We estimated 
the contribution of the detection efficiency instability using a few 
alternative methods of event selection. A possible effect of the 
residual machine background was checked by relaxing the event 
selection criteria. The uncertainties appeared because the luminos-
ity measurement instability was found comparing the mass values 
obtained using the luminosities from the two independent parts of 
the calorimeter. The correlated uncertainty mainly came from the 
correction for the resonance contribution to e+e− → e+e− .

The essential uncertainties on the masses are related to the as-
sumptions about the values of the interference parameter λ made 
in Section 3. To verify them we performed the joint fits of the two 
scans of J/ψ and the four scans of ψ(2S) with floating λ. The fits 
resulted in

λ J/ψ = 0.45 ± 0.07 ± 0.04, λψ(2S) = 0.17 ± 0.05 ± 0.05

at the expected values of 0.39 and 0.13, respectively. The joint fits 
were not employed for the mass determination since the evalua-
tion of systematic uncertainties became more difficult in this case. 
The alternative values of λ were used to obtain the mass values 
for each data set. The average values of the mass variations were 
considered as uncertainty estimates.

9. Weighting of results on masses

To perform averaging of the results on J/ψ and ψ(2S) masses 
accounting for the partial correlation of systematic uncertainties 
we employed the procedure used in Ref. [9] for the leptonic width 
determination. The formal weighting prescription for the mass M
is presented below:

〈M〉 =
∑

wi · Mi,

σ 2
stat =

∑
w2

i · σ 2
stat,i,

σ 2
syst =

∑
w2

i · (σ 2
syst,i − σ 2

syst,0) + σ 2
syst,0,

wi = 1/(σ 2
stat,i + σ 2

syst,i − σ 2
syst,0), (22)

where σsyst,0 denotes a common part of systematic uncertainties.
The weighting procedure gave the following results:

M J/ψ − M J/ψ
2003 = −16.7 ± 2.1 ± 6.4 keV, P (χ2) = 0.59,

Mψ(2S) − Mψ(2S)

2003 = −11.7 ± 3.5 ± 9.4 keV, P (χ2) = 0.68.

The χ2 values are calculated taking into account the statistical 
uncertainties and the uncorrelated parts of the systematic ones. 
Table 3
Systematic uncertainties on the J/ψ mass (keV).

Uncertainty source 2002 2005 2008 Common

Energy spread variation 3.0 1.8 1.8 1.8
Energy calibration accuracy 1.6 1.9 1.9 1.6
Energy assignment to DAQ runs 3.7 3.5 3.5 2.5
Beam separation in parasitic I.P.sa 0.9 1.7 1.7 0.9
Beam misalignment in the I.P. 1.8 1.5 1.5 1.5
e+-, e−-energy difference 1.2 1.3a 1.2 1.2
Symmetric distortion of the energy distribution 1.5 1.3 2.1 1.3
Asymmetric distortion of the energy distributiona 2.1 1.9 1.9 1.9
Beam potential 1.9 1.9 1.9 1.9
Detection efficiency instability 2.3 1.7 1.8 < 0.1
Residual machine background 1.0 0.7 0.7 < 0.1
Luminosity measurements 2.2 1.7 1.7 1.1
Interference in the hadronic channel 2.7 2.7 2.7 2.7

Sum in quadrature ≈ 7.7 ≈ 7.0 ≈ 7.2 ≈ 5.8

a Correction uncertainty.
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Table 4
Systematic uncertainties in the ψ(2S) mass (keV).

Uncertainty source 2002 2004 2006 2007 Common

Energy spread variation 2.0 1.5 1.5 1.5 1.5
Energy calibration accuracy 1.9 2.3 2.3 2.3 1.9
Energy assignment to DAQ runs 3.9 3.9 3.8 2.4 1.5
Beam separation in parasitic I.P.sa 0.5 1.2 1.7 1.7 0.5
Beam misalignment in the I.P. 5.1 3.3 3.3 3.3 2.5
e+-, e−-energy difference 1.6 2.1a 2.1 1.6 1.6
Symmetric distortion of the energy distribution 1.8 1.6 1.6 1.6 1.6
Asymmetric distortion of the energy distributiona 2.1 1.9 1.9 1.9 1.9
Beam potential 2.0 2.2 2.2 2.2 2.0
Detection efficiency instability 2.1 1.6 1.6 1.6 < 0.1
Residual machine background 1.0 0.9 0.9 0.9 < 0.1
Luminosity measurements 3.0 2.1 2.1 1.5 0.7
Interference in the hadronic channel 4.1 4.1 4.1 4.1 4.1

Sum in quadrature ≈ 9.7 ≈ 8.7 ≈ 8.6 ≈ 8.4 ≈ 7.0

a Correction uncertainty.
The mass values obtained using different data sets are in good 
agreement. The exclusion of the data sets of 2002 which were not 
completely reanalyzed in this work shifts the mass values by −0.6
and +0.3 keV for J/ψ and ψ(2S), respectively.

10. Summary

The analysis of KEDR data comprising six high precision scans 
of the J/ψ region and seven high precision scans of ψ(2S) re-
sulted in:

M J/ψ = 3096.900 ± 0.002 ± 0.006 MeV,

Mψ(2S) = 3686.099 ± 0.004 ± 0.009 MeV.

These results should supersede our previous measurements pub-
lished in 2003 ( J/ψ and ψ(2S)) [8] and in 2012 (ψ(2S)) [9].
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