An ELIC-GLIC Chimera Reveals Distinct Pathways of Activation in the Cys-Loop Family of Receptors

Nicolaus Schmandt, David T. Lodowski, Vivien Yee, Sudha Chakrapani. Case Western Reserve University, Cleveland, OH, USA.

The Cys-loop family of pentameric ligand-gated ion channels is expressed throughout the human brain and is a target for a wide number of therapeutics including local and general anesthetics, alcohols, and neurosteroids. Recently, high-resolution structures of several members of the family have become available, but allosteric mechanisms governing gating and modulation remain unclear. Prokaryotic homologues (ELIC and GLIC) have the same overall structure as the family of ion channels, and are highly amenable to structural studies in a native environment. We investigated the conformational dynamics of ligand-binding and channel gating in GLIC and ELIC by electron paramagnetic spectroscopy (EPR) and found that the two channels exhibit distinct activation mechanisms. To further understand how the two events are coupled, we engineered a functional chimera that included the extracellular domain of ELIC and the transmembrane domain of GLIC. By using a combination of electrophysiology, EPR spectroscopy, and X-ray crystallography, we show the molecular details of coupling between the ligand-binding domain and the channel gate.

Conformational Dynamics in the GABAA Receptor

Philip C. Biggin, Cassandra M. Theusch, Cynthia Czajkowski. Neuroscience, University of Wisconsin - Madison, Madison, WI, USA.

GABA_A receptors (GABAR) couple GABA binding to opening of a chloride-conducting channel. The GABA binding site is at β/α-subunit interfaces. In a recent GABAR crystal structure, the β5-β5' loop reaches across the interface, and juts into the neighboring subunit forming a back lid over the GABA binding site. This extended β5-β5' loop conformation is not in prokaryotic channels, the acetylcholine-binding protein, or the nicotinic acetylcholine receptor. We used disulfide trapping to probe β5'-β5" loop position and dynamics in α₂β₂δ₂GABARs. We engineered pairs of cysteines at the β/α GABA-binding site interface: zM111C (β5'-β5" loop) with βS104C (β-strand 5) and aM113C (β5'-β5" loop) with βD95C (binding Region A). We expressed single and double mutant α₂β₂γδ₂GABARs in Xenopus oocytes. Initially, we tested for disulfide-bonds by measuring effects of DTT and hydrogen peroxide on GABA-mediated currents from α₁M111CβS104Cγδ₂ and aM113Cβ₁S104CγD95Cδ₂ receptors. They had no effects. Methanethiosulfonate reagents modified the single cysteine mutants but not the double mutants, indicating the cysteine pairs were linked by disulfides. Single-mutant α₁B8S104Cγδ₂ receptors had reduced GABA efficacy and potency, which were rescued in double-mutant α₁M111Cβ₁S104CγD95Cδ₂ receptors, suggesting the cysteines interface. These results indicate the β-subunit β5'-β5" loop extends across the intersubunit interface, near β-strand 5 of the β-subunit. Disulfide linking these two regions had no effect on GABA currents, indicating their relative positions do not change during GABA activation and supporting the idea of a concerted GABA-driven motion in the inner β-sheets of the α- and β-subunits. Linking cysteines in aligned positions at the benzodiazepine-binding α₁γ12 interface (α₁S106C and γ₁γ12C) had similar effects. In contrast, tethering α₁M113C (β5'-β5" loop) to δ₅D95C near Region A of the GABA binding site right-shifted GABA concentration-responses, suggesting this crosslink impairs motions in the site required for GABA action.

Conformational Dynamics in the GABA_A Receptor

Rilei Yu, Philip C. Biggin. Biochemistry, Oxford University, Oxford, United Kingdom.

GABA_A receptors are members of the cys-loop family of ligand-gated ion channels and are pentameric ion channels that are closed in the absence of ligand, but upon ligand-binding, open to allow anions to pass through a central pore. The sustained application of agonist however leads to the receptor entering a desensitized state whereby the agonist is still bound but the channel is closed. In order for the channel to fully respond to agonist again, agonist must diffuse away and the receptor return from the desensitized state to the resting state. The recent crystal structure of the human β3 GABA_A receptor was proposed to be locked in a desensitized state due in part to the presence of agonist in the crystallization conditions and the apparent closed diameter of the pore [1]. Key questions still remain about how these receptors move between the different conformational states. Here we use MD simulations to explore potential mechanisms of conformation change. Removal of the benzamidine from the binding site should favour a transition from the desensitized state towards the resting state. In the simulation, removal of agonist reveals that the pore lining TM2 helices are able to change conformational and adopt orientations that may be more consistent with a resting rather than desensitized state of the channel. In this work, we discuss the apparent coupling between the binding site, the β2β linker and the TM2-TM3 loop during these changes and the implications for how cys-loop receptors in general cycle through distinct conformational states. We also discuss the behavior of a key tyrosine (299) proposed to play a role in stabilizing the desensitized state.

References:

Monitoring the Work of a Single Subunit in Homotetrameric CNG2A Channels

Klaus Bennンドt, Nisa Wongsamitkul, Vasilica Nache, Thomas Eick, Sabine Hummert, Eckhard Schulz, Ralf Schmauder, Jana Schirmeyer, Thomas Zimmer. 1Institute of Physiology II, Friedrich-Schiller-University, Jena, Germany, 2Faculty of Electrical Engineering, University of Applied Sciences, Saalekalden, Germany.

Cyclic nucleotide-gated (CNG) channels mediate signal transduction in photoreceptors and olfactory cells. Wild-type olfactory CNG channels are composed of three types of subunits, CNGA2, CNGA4, and CNGB1B. Out of these only CNGA2 subunits can form functional homotetrameric channels when expressed in heterologous systems. Homotetrameric CNGA2 channels are very useful for studying elementary biophysical processes. However, even for homotetrameric channels the transmission of the ligand binding to the pore opening is still a mystery. Undoubtedly clear is only that the activation of the channels is not generated by independently operating but by interacting subunits. We are interested in how a single subunit embedded in a channel binds a ligand and evokes channel activation, i.e. for the whole channel we intend to kinetically dissect the molecular gating mechanism induced by the first ligand binding step. We constructed tetrameric concatamers of CNGA2 channels with various numbers of wild-type and mutated binding domains of high and extremely low affinity. Ligand binding was measured by confocal patch-clamp fluorometry (frame rate up to 277 images per second) using a fluorescent cGMP analogue. Our results show that a single subunit operates a channel only at 23-fold higher ligand concentrations than a tetrameric channel composed of four cooperating subunits. Nevertheless, the single subunit opens the channel pore to the full conductance level. Moreover, we show that Markovian models with a discrete number of states surprisingly fail to describe the action of the only wild-type subunit. Instead, a model consisting of three separate but intimate coupled processes proved to be adequate for describing channel activation, containing a rapid ligand binding close to the diffusion limit, a continuous conformational diffusion upon gating consisting of two components, and a rapid and discrete pore action.