
Theoretical Computer Science 594 (2015) 151–179

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Qualitative analysis of gene regulatory networks by temporal
logic

Sohei Ito a,∗, Takuma Ichinose, Masaya Shimakawa b, Naoko Izumi c,
Shigeki Hagihara b, Naoki Yonezaki d

a National Fisheries University, 2-7-1 Nagata-Honmachi, Shimonoseki, Yamaguchi 759-6595, Japan
b Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
c Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan
d The Open University of Japan, 2-11 Wakaba, Mihama-ku, Chiba City, Chiba 261-8586, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 November 2014
Received in revised form 20 May 2015
Accepted 5 June 2015
Available online 11 June 2015
Communicated by P. Aziz Abdulla

Keywords:
Systems biology
Gene regulatory networks
Temporal logic
Reactive system verification

In this article we propose a novel formalism to model and analyse gene regulatory
networks using a well-established formal verification technique. We model the possible
behaviours of networks by logical formulae in linear temporal logic (LTL). By checking
the satisfiability of LTL, it is possible to check whether some or all behaviours satisfy a
given biological property, which is difficult in quantitative analyses such as the ordinary
differential equation approach. Owing to the complexity of LTL satisfiability checking,
analysis of large networks is generally intractable in this method. To mitigate this
computational difficulty, we developed two methods. One is a modular checking method
where we divide a network into subnetworks, check them individually, and then integrate
them. The other is an approximate analysis method in which we specify behaviours
in simpler formulae which compress or expand the possible behaviours of networks.
In the approximate method, we focused on network motifs and presented approximate
specifications for them. We confirmed by experiments that both methods improved the
analysis of large networks.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

One of the difficulties in analysing biological systems is the incompleteness of quantitative biological information, which
hinders the mathematical analysis based on traditional thermodynamics models. In this respect, qualitative methods based
on formal verification techniques have gathered good attention and several methods have been proposed with several dif-
ferent formalisms [14,17,9,8,42].

In this article, we present a new constraint-based method for modelling and analysing gene regulatory networks (or
simply gene networks). This method is based on the paradigm of verification of reactive system specifications [35,49,24].
Reactive system specification stipulates how the system should or can behave over time. There are several properties of
reactive system specifications to be verified such as satisfiability, strong satisfiability and realisability [37,1,35].

* Corresponding author at: Department of Fisheries Distribution and Management, National Fisheries University, 2-7-1 Nagata-Honmachi, Shimonoseki,
Yamaguchi 759-6595, Japan.

E-mail address: ito@fish-u.ac.jp (S. Ito).
http://dx.doi.org/10.1016/j.tcs.2015.06.017
0304-3975/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://core.ac.uk/display/81928554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2015.06.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ito@fish-u.ac.jp
http://dx.doi.org/10.1016/j.tcs.2015.06.017
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.06.017&domain=pdf

152 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
We found that dynamic behaviours of gene networks can also be qualitatively characterised similarly to the case of
reactive systems, under the suitable abstraction. In our method, behaviours are abstracted to transition systems. A state
in a transition system represents a configuration (state of affair) of a gene network at a certain time point, such as the
expression levels of each gene and whether each gene is expressed or not. A state can be seen as a set of such facts that
are true at a certain time point. Thus a transition system represents how the state of a gene network changes over time. In
other words, a transition system represents a dynamic behaviour of a gene network. A fact of a state can be mathematically
represented as a proposition. Then the problem of modelling possible behaviours of a gene network is reduced to give
a suitable specification using these propositions. The possible behaviours of a gene network are transition systems which
satisfy the specification. We show that such specification can be systematically obtained from a gene network using linear
temporal logic (LTL) [16]. This corresponds to give a constraint that the ‘correct’ behaviour of a gene network should satisfy.
Expected biological properties such as reachability, stability, oscillation or any other temporal properties about the timing
of gene expressions are also described in LTL. The problem of analysing a property of a gene network is reduced to check
the satisfiability of these formulae. Our first contribution is this conceptual framework of modelling behaviours of gene
regulatory networks as LTL formulae and analyse biological properties by LTL-satisfiability checking.

The complexity of LTL-satisfiability checking is PSPACE-complete [44], and known algorithms have exponential time
complexity with respect to the length of an input formula. The length of a formula specifying possible behaviours of a
network is proportional to the size of the network in our method. Therefore, some methods are strongly desirable which
eases this computational cost. As such methods, we develop two methods – a modular method and an approximate method.
These are the second and the third contributions in this article.

In modular analysis method, a network is divided into several subnetworks. Since each specification of subnetworks is
much smaller than that of the entire network, computation of the possible behaviours of each subnetwork is much faster.
Furthermore, we can abstract local propositions (only used in the subnetwork) from each subnetwork behaviours. Then we
integrate the possible behaviours of the subnetworks to obtain the behaviours of the entire network.

In approximate analysis method, we specify the set of possible behaviours of (sub)networks without using some local
propositions. Such specifications are simpler than the original specifications but are generally not equivalent, that is to
say, they are approximate specifications of networks. There are two kinds of approximation. One is under-approximation in
which possible behaviours are compressed, and the other is over-approximation in which possible behaviours are expanded.
They can be used instead of the original specifications to check network properties, that is, if the approximate specifications
are satisfiable/unsatisfiable then so are the original ones. As a result, the correctness of approximate analysis is theoretically
guaranteed.

It is not trivial to find approximate specifications for any networks. Therefore we consider some ‘templates’ of gene
networks and give approximate specifications for them. As templates of gene networks, we can use network motifs [3],
since they are network patterns that occur in many gene regulatory networks. The motifs we study in this article are
negative auto-regulation, coherent type 1 feed-forward loops, incoherent type 1 feed-forward loops, single-input modules
and multi-output feed-forward loops.

This article is organised as follows. Section 2 introduces the logical structure which describes abstract behaviours of gene
regulatory networks. In Section 3, we show how networks are qualitatively modelled and analysed by the LTL satisfiability
checking. Then we demonstrate our method by analysing a network of circadian clock and a network for mucus production
in Pseudomonas aeruginosa. In Section 4, we introduce the modular analysis method and prove the correctness of it. We
demonstrate our modular method using example networks and discuss the results. In Section 5, we present the approxi-
mate analysis method and introduce approximate specifications for network motifs. We discuss experimental results of the
approximate method. Furthermore, the experimental result of the combination of the modular method and the approximate
method is reported. In Section 6, we compare our method to other qualitative analysis methods of biological systems. The
final section offers some conclusions and discusses future directions.

This article is a revised and extended version of our conference papers: [29,28,27]. We revised the modelling method,
presented the formal proofs of our methods and added new experiments.

2. Logical conceptualisation of network behaviours

A gene is a certain segment of DNA which encodes proteins. Proteins play essential roles in living organisms. Suitable
concentration of each protein must be maintained for each cell to function properly. Proteins are known to exist a certain
period of time and are eventually degraded. To maintain suitable concentration, proteins are produced through the process of
gene expression. In the process of gene expression, genes are transcribed into messenger RNAs (mRNAs) by RNA polymerase.
Then the mRNAs are transferred to ribosomes. Finally the ribosomes translate the mRNAs to proteins according to genetic
code. Gene expression is regulated by proteins called transcription factors. Transcription factors bind to promoter regions of
genes which are located on upstream regions of the genes and promote or block the recruitment of RNA polymerase (Fig. 1).
Thus transcription factors regulate gene expression by changing the rate of transcription. There are two types of regulation
– activation and inhibition. Activation means that the transcription factor increases the rate of gene expression. Inhibition
is the opposite of activation – it decreases the rate of gene expression. Since transcription factors are proteins, they are
also coded by some genes. Thus if a gene whose product is a transcription factor of another gene is expressed, that gene
regulates another gene. Some transcription factors work with other transcription factors or proteins called co-regulators to

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 153
Fig. 1. Gene is a segment of DNA which encodes proteins. A promoter of a gene is an upstream region of the gene. Transcription factor binds to the
promoter and regulates gene expression.

Fig. 2. An example of a gene network. Nodes x, y and z represent genes and edges represent regulation relation among them. Plus-edges represent activation
relationship and minus-edges represent inhibition relationship.

Fig. 3. Gene u activates v and inhibits w .

Fig. 4. Regulation effect.

Fig. 5. An example network.

regulate gene expression. Such regulation relations among genes are graphically represented as gene regulatory networks (or
gene networks). An example of a gene network is given in Fig. 2.

In gene regulation, a regulator is often inefficient below a threshold concentration, and its effect rapidly increases above
this threshold [47]. The sigmoid nature of gene regulation is shown in Fig. 4, where gene u activates v and inhibits w
(Fig. 3). Each axis represents the concentration of products for each gene.

Some important landmark concentration values for u are 1) the basal level,1 2) the level uv at which u begins to affect
v , and 3) the level uw at which u begins to affect w . In this case, whether genes are active or not can be specified by the
expression levels of their regulator genes. If the concentration of u exceeds uv then v is active (ON), and if the concentration
of u exceeds uw then w is not active (OFF). We exploit this switching view of genes to capture behaviours in transition
systems.

We now illustrate how we capture behaviours of gene regulatory networks as transition systems using a simple example
network (Fig. 5) in which gene x activates gene y and gene y activates gene z.

Let the threshold of x for y be xy and that of y for z be yz. We consider the behaviour depicted in Fig. 6 and try
to express it as a transition system. In this behaviour, x begins to be expressed at time t0; that is, the concentration of
its products begins to increase. At time t1, the concentration of the products of x exceeds xy, which is the threshold for
the activation of y. Thus y begins to be expressed at t1. At time t2, x stops being expressed and the concentration of its
products begins to decrease. At time t3, the concentration of products of x falls below xy and y stops being expressed; that

1 A gene is not expressed or expressed at very low rate.

154 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
Fig. 6. Change of concentrations over time.

Fig. 7. State transition system corresponding to Fig. 6.

is, the concentration of y begins to decrease. After a while, x begins to be expressed again at time t4 and y begins to be
expressed at t5. In this case, y crosses the activation threshold for z at time t6 and z begins to be expressed. At t7, x stops
being expressed and begins to decrease. At t8, x falls below xy and y stops being expressed. At t9, y falls below yz and z
stops being expressed, after which x, y and z stay at their basal levels.

We introduce some logical propositions to obtain a symbolic representation of behaviours of this network. Based
on the above observation, we introduce propositions that represent whether genes are active or not (ON or OFF) and
whether concentrations of products of genes exceed their threshold values. In this network, we introduce the propositions
onx, ony, onz, xy and yz . The meaning of each proposition is:

• onx, ony, onz: whether gene x, y and z is active.
• xy : whether the concentration of the products of x exceeds the threshold xy.
• yz: whether the concentration of the products of y exceeds the threshold yz.

Notation. Threshold values appear in roman and propositions corresponding to the thresholds in italics.
Using these propositions, we discretise the above behaviour to the sequence of states (called transition system) shown in

Fig. 7, where s0, . . . , s10 are states, edges represent state transitions that abstract the temporal evolution of the system, and
the propositions below each state mean that they are true in that state.

State s0 represents the interval [0, t0), state s1 represents the interval [t0, t1), . . . and state s10 represents [t9, ∞).
A single state transition can represent any length of time, since the actual duration of the transition (in real time) is

immaterial2 in this abstraction. Therefore, the difference between t2 − t0 and t7 − t4, the durations of the input signal to x
in Fig. 6, are not captured directly in the transition system of Fig. 7. Only the order of events is important.

In this abstraction, the real values of thresholds are also irrelevant. Propositions such as xy merely represent the fact
that the concentration of x is above the level at which x activates y.

In our abstraction, we think that behaviours are identical if they have the same transition system. Such logical abstraction
preserves essential qualitative features of the dynamics such as oscillation, steady states, multistationarity, and reachability
for such states [18,19,32]. However, we cannot reason about quantitative properties, such as rate of production/degradation
of products, real values of concentrations, real-time durations, stability of oscillation and so on.

2 This property is called speed independence [39].

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 155
3. Qualitative analysis of gene regulatory networks in LTL

In this section, we show how to model and analyse behaviours of gene regulatory networks using LTL, based on the
conceptualisation of gene network and its behaviours introduced in the previous section.

3.1. Linear temporal logic

First we introduce Linear Temporal Logic (LTL) as our modelling language. LTL is a suitable language for describing
temporal evolution of systems and is used in software/hardware system verifications [12]. In LTL we can specify various
temporal properties on linear time structures like Fig. 7. In what follows, we present a formal definition of LTL.

First we introduce the time structure of LTL. If A is a finite set, Aω denotes the set of all infinite sequences on A. The
i-th element of σ ∈ Aω is denoted by σ [i].

Definition 1. Let AP be a set of atomic propositions. A time structure on AP is a sequence σ ∈ P(AP)ω where P(AP) is the
powerset of AP.

We next define the syntax of LTL formulae.

Definition 2. Let AP be a set of atomic propositions. Proposition p ∈ AP is a formula of LTL. If φ and ψ are formulae, then
¬φ, φ ∧ ψ and φUψ are also formulae of LTL.

The formal semantics are given below.

Definition 3. Let σ be a time structure and φ be a formula of LTL. We write σ |� φ for ‘φ is true in σ ’. The satisfaction
relation |� is defined inductively as follows.

σ |� p iff p ∈ σ [0] for p ∈ AP
σ |� ¬φ iff σ �|� φ

σ |� φ ∧ ψ iff σ |� φ and σ |� ψ

σ |� φUψ iff (∃i ≥ 0)(σ i |� ψ and ∀ j(0 ≤ j < i)σ j |� φ)

where σ i = σ [i]σ [i + 1] . . ., the i-th suffix of σ .

We introduce the following abbreviations: ⊥ ≡ p ∧¬p for some p ∈ AP, � ≡ ¬⊥, φ ∨ψ ≡ ¬(¬φ ∧¬ψ), φ → ψ ≡ ¬φ ∨ψ ,
φ ↔ ψ ≡ (φ → ψ) ∧ (ψ → φ), Fφ ≡ �Uφ, Gφ ≡ ¬F¬φ, and φW ψ ≡ (φUψ) ∨ Gφ, where φ and ψ are LTL formulae.

Intuitively, Fφ means ‘φ holds at some future time’, Gφ means ‘φ holds globally’ and φUψ means ‘φ continues to hold
until ψ holds’. φW ψ is the ‘weak until’ operator in that ψ may not hold, in that case φ must always hold.

Finally we introduce the notion of satisfiability.

Definition 4. An LTL formula φ is satisfiable if there exists a time structure σ such that σ |� φ. We say that σ is a model of
φ if σ |� φ.

3.2. Analysis of gene regulatory networks by satisfiability checking in LTL

As we can see in Section 2, a behaviour of a gene regulatory network can be seen as a time structure on atomic
propositions. Let AP be the set of atomic propositions for describing states of a given network. Formally, a behaviour of a
given network is an element of P(AP)ω . However, not all of the sequences in P(AP)ω are possible behaviours of a given
network. For example, in the network of Fig. 5, y cannot be ON before x becomes ON if y totally depends on x. Thus,
possible behaviours of a network corresponds to a subset of P(AP)ω .

We are interested in analysing whether a given network behaves as expected or not. To answer this, we need to char-
acterise possible behaviours of a network. In quantitative analysis, behaviours are usually described as ordinary differential
equations. We, however, characterise the possible behaviours of a network in LTL based on the logical conceptualisation of
network behaviours. A formula which characterises possible behaviours of a network is considered as a constraint which
the possible behaviours of a network should satisfy. Suppose formula φ is the behaviour description of a given network,
then the set of models of φ, {σ | σ |� φ}, are the possible behaviours of the network.

Now the problem of checking whether the behaviours of a given network satisfy a biological property is formulated in
terms of LTL. We specify the given biological property as an LTL formula ψ . The first type of analysis is to check whether
there is a behaviour of the network which satisfies a given biological property ψ . This problem is reduced to checking the
satisfiability of the formula φ ∧ ψ , since

156 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
∃σ .σ |� φ and σ |� ψ

⇔ ∃σ .σ |� φ ∧ ψ.

This means that there exists a sequence σ which is a possible behaviour of the network (i.e. satisfies φ) and satisfies the
biological property ψ . The second type of analysis is to check whether all possible behaviours of the network satisfy a given
biological property ψ . This problem is reduced to checking the unsatisfiability of φ ∧ ¬ψ , since

∀σ .σ |� φ implies σ |� ψ

⇔ ∀σ .σ |� φ → ψ

⇔ ∀σ .σ |� ¬φ ∨ ψ

⇔ ∀σ .σ �|� φ ∧ ¬ψ.

This means if a sequence σ is possible in the network, then it necessarily satisfies the given biological property ψ .
The scheme for qualitative analysis of behaviours of a given network is summed up as follows:

1. Specify a formula φ that characterises possible behaviours of the network.
2. Specify a formula ψ that represents a biological property of interest.
3. Check the satisfiability of φ ∧ ψ or unsatisfiability of φ ∧ ¬ψ .

Then we have the questions: how do we specify such behaviour specifications φ and what are properties ψ? We answer
these questions in the subsequent sections.

3.3. Specification of behaviours in LTL

We show how we specify a characterisation of the possible behaviours of a given network in LTL. As in Section 2, we
use the following propositions to specify it:

• onu for each gene u in a given network. We interpret onu as ‘gene u is active’.
• uv for each regulation from u to v in a given network. We interpret uv as ‘gene u is expressed beyond the threshold to

activate/inhibit v ’.

Additionally, we may introduce other propositions for each landmark concentration value of gene u that is not a threshold
for any other genes (say, ulow , uhigh and so on), or may introduce several thresholds for the same regulation (e.g. the lower
threshold and the higher one).

The idea of specifying possible behaviours of a network is based on the following qualitative principle:

• Genes are ON when their activators are expressed over some threshold.
• Genes are OFF when their inhibitors are expressed over some threshold.
• If genes are ON, the concentrations of their products increase.
• If genes are OFF, the concentrations of their products decrease.

Thus we specify the above principles in LTL using the propositions introduced earlier. The switching conditions for gene u
can be specified by its regulators (say, x, y, . . .) using propositions (xu, yu, . . .) corresponding to their threshold values. The
concentration increase or decrease for gene u can be specified by its threshold values that u has. For this, the total order of
threshold values must be fixed.

Now we show how to specify the above principles in LTL.

Conditions for gene activation and inhibition First we consider the simple case in which a gene is regulated by a single
gene. For example, let gene v be regulated only by u. If the effect of u on v is positive, then v is turned ON when the
concentration of u exceeds the threshold uv. We have two choices to describe this phenomenon in LTL. One is

G(uv → onv)

and the other is

G(uv ↔ onv).

The former allows onv to be true when uv is not, but the latter does not. The former specification takes hidden activators or
external regulation for v into account. In this case we do not consider hidden negative regulation to v since if we consider
it, the relationship ‘gene u activates v ’ is lost. The choice of which one we use depends on the system, the situation or the
assumption.

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 157
Fig. 8. Gene u, v activates x and gene w inhibits x.

On the other hand, if the effect of u on v is negative, this case is described as:

G(uv → ¬onv)

Similarly we can choose G(uv ↔ ¬onv) for the same reason.
Now we consider a gene that is regulated by multiple genes. In general, the multivariate regulation functions of organ-

isms are unknown [3]. Thus we only describe the trivial facts. For example, we assume that genes u and v activate x, and
gene w inhibits x (Fig. 8). Then we have the following facts:

• If u and v exceed ux and vx respectively, and w does not exceed wx, then x is ON. This is described as follows:

G((ux ∧ vx ∧ ¬wx) → onx).

• If u and v do not exceed ux and vx respectively, and w exceeds wx, then x is OFF. This is described as follows:

G((¬ux ∧ ¬vx ∧ wx) → ¬onx).

Note that if we take contrapositive of the second formula, we have

G(onx → (ux ∨ vx ∨ ¬wx)).

Thus when gene x is ON, it is possible that both gene u and v are not effective. This means we do not exclude the possibility
of hidden positive regulation to gene x. If we are to exclude it, we add the clause

G(onx → (ux ∨ vx)).

For the same reason if we exclude the possibility of hidden negative regulation to gene x, we add the clause

G(¬onx → wx).

If we know more information about the multivariate regulation function of gene x, we can reflect such facts in LTL
specification. For example, if we know that the positive effect of u and v on x is disjunctive, we have

G(((ux ∨ vx) ∧ ¬wx) → onx)

for the condition of when gene x is ON. Or, if we know that the negative regulation effect of w is dominant and overpowers
other positive effects, we have

G(wx → ¬onx)

for the condition of when gene x is OFF.
We can introduce multiple expression levels for a single regulation relation. For example, in the relation ‘gene w inhibits

gene x’ in Fig. 8, we may introduce two expression levels: w0
x and w1

x (w0
x < w1

x). These two levels of gene w represent the
difference of power of inhibition to gene x. The level w0

x is a low expression level above which gene x is OFF if both gene u
and v are not effective. The level w1

x is high expression level of gene w above which the negative effect of w overpowers
both gene u and v . This can be described as follows:

G((¬ux ∧ ¬vx ∧ w0
x) → ¬onx),

G(w1
x → ¬onx).

Of course we can introduce more expression levels for gene w to finely capture the multiple regulation.
In gene regulation, some genes regulate not genes but the regulation effect itself. For example some gene’s product

intercepts another gene’s product, which causes the inhibition of the latter gene’s regulation effect. Let us consider a case
where x inhibits y and z inhibits the regulation effect of x on y. In this case y is turned OFF when x affects y but z does
not affect the regulation. To describe this, we introduce a threshold zx above which z inhibits the effect of x (Fig. 9). We
can describe this as follows:

G((xy ∧ ¬zx) → ¬ony).

In this case, zx may not be a fixed value but should rather be considered as a function that takes the concentration of x and
returns the threshold of z. The proposition zx simply says that z influences the regulation effect of x and the real value of
the concentration of z does not matter.

158 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
Fig. 9. Gene x inhibits y. Gene z inhibits the effect of x on y.

Total order of threshold values Before introducing the description of concentration changes of gene products, we need to
specify the fixed total order of threshold values. Since the concentration changes are described as ‘if a gene is ON, the
concentration level will reach at the next level’. To specify this, we need to articulate what is the ‘next’ level in LTL. Assume
that u regulates x1, x2, . . . , xm and the threshold values for them are in this ascending order. This order relation can be
described in LTL as follows:

∧

1≤i<m

G(uxi+1 → uxi).

For example, G(ux2 → ux1) means that if the current expression level is beyond the threshold ux2 , it is also beyond
ux1 since ux1 is lower than ux2 . Note that the propositions ux1 and ux2 are interpreted as gene u is expressed beyond the
threshold ux1 and ux2 , respectively.

Concentration changes when genes are ON If gene u is ON the concentration of its product increases over time. To specify
this principle in LTL, we have two kinds of specification – a strong one and a weak one – depending on the strictness of
increase. In the strong specification, if a gene is indefinitely ON (i.e. it never becomes OFF), the expression level strictly
increases (i.e. reaches to the next level). In the weak specification, although a gene is indefinitely ON, the expression level
can increase or keep its current level.

In what follows, we assume that gene u regulates genes x1, x2, . . . , xm and the threshold values for them are in this
ascending order.

First we introduce the strong specification:

G(onu → F (¬onu ∨ ux1)), (1)

G((onu ∧ ux1) → (ux1 U (¬onu ∨ ux2))), (2)

G((onu ∧ ux2) → (ux2 U (¬onu ∨ ux3))), (3)

...

G((onu ∧ uxm−1) → (uxm−1 U (¬onu ∨ uxm))), (4)

G((onu ∧ uxm) → (uxm W ¬onu)). (5)

To see what the above formula says, suppose that u is ON and its concentration is between ux2 and ux3 . Recall that the
proposition uxi means the concentration of u exceeds the threshold uxi . Thus the left-hand sides of (1)–(3) in the above
formula hold. From the specification on the total order of thresholds, if ux2 is true then ux1 is also true. Accordingly, (1)–(3)
may be summed up as that concentration of u is not less than ux2 until u is turned OFF, otherwise it eventually exceeds
ux3 . Behaviours that satisfy this constraint have a starting concentration of u between ux2 and ux3 , and in some future
the concentration of u exceeds ux3 but until that time it remains above ux2 (Fig. 10(a)). The exception is that u is turned
OFF before reaching ux3 , so that u does not exceed ux3 (Fig. 10(b)). Behaviours in which u falls below ux2 while being ON
are excluded. Moreover, u is not allowed to remain between ux2 and ux3 indefinitely although it is ON. We consider such
behaviours to be incorrect in the strong specification. If the concentration of u is basal, only (1) applies. If u is above uxm ,
which is the greatest threshold, then all clauses apply but are absorbed into (5). As a consequence, the above formula says
that the expression level of u does not decrease as long as u is ON and must increase (unless the expression level of u is
greater than uxm) if u is always ON.

Next we introduce the weak specification:

G(onu → F (¬onu ∨ ux1)),

G((onu ∧ ux1) → (ux1 W ¬onu)),

G((onu ∧ ux2) → (ux2 W ¬onu)),

...

G((onu ∧ uxm) → (uxm W ¬onu)).

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 159
Fig. 10. Typical behaviours when gene u is ON. (a) The expression level eventually increases. (b) Gene u becomes OFF before its level reaches ux3 .

The difference compared with the strong specification is that behaviours in which u keeps its concentration even if it
is always ON are allowed; that is, the concentration does not have to increase strictly. This represents a situation where
generation and degradation are in equilibrium.

Concentration changes when genes are OFF This is symmetric to the case when genes are ON. We again assume that gene u
regulates x1, x2, . . . , xm and the threshold values are in this ascending order. We also have both a strong specification and a
weak one.

The strong specification is as follows:

G(¬onu → F (onu ∨ ¬uxm)),

G((¬onu ∧ ¬uxm) → (¬uxm U (onu ∨ ¬uxm−1))),

G((¬onu ∧ ¬uxm−1) → (¬uxm−1 U (onu ∨ ¬uxm−2))),

...

G((¬onu ∧ ¬ux2) → (¬ux2 U (onu ∨ ¬ux1))),

G((¬onu ∧ ¬ux1) → (¬ux1 W onu)).

The weak specification is as follows:

G(¬onu → F (onu ∨ ¬uxm)),

G((¬onu ∧ ¬uxm) → (¬uxm W onu)),

G((¬onu ∧ ¬uxm−1) → (¬uxm−1 W onu)),

...

G((¬onu ∧ ¬ux1) → (¬ux1 W onu)).

In the strong specification, it is not possible that u keeps its concentration when it is always OFF but is possible in the
weak specification.

We make a comment on our interpretation of ‘increasing’ and ‘decreasing’ of gene expression levels. Let us consider a
behaviour such that gene x is expressed between a threshold x1 and x2 and gene x is ON, then finally gene x reaches x2.
Such behaviour is represented as a time structure . . . {onx, x1}{onx, x1, x2} The natural interpretation of this behaviour
is that gene x is expressed during the transition from the state {onx, x1} to {onx, x1, x2}. Another interpretation seems to
be possible: a gene x once goes down (remaining over x1) before reaching x2 (Fig. 11(a)). We, however, choose the first
natural interpretation. The latter behaviour is represented as a different behaviour as shown in Fig. 11(b). Note that the
discrete behaviour in Fig. 11(b) does not violate the behaviour principles described so far. As a result, the sentence ‘gene x
is increasing (ON)’ is interpreted as its first derivative is positive. Similarly, ‘gene x is decreasing (OFF)’ is interpreted as its
first derivative is negative.

What about stuttering, i.e. the same state occurs successively many times? For example, in the discrete behaviour of
Fig. 11(b), we may have the same state as s1 10 times between s0 and s1. Such behaviour is possible and does not violate
the behaviour principles since our LTL does not use next-time operator ‘X’ and is stutter-invariant [36].

160 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
Fig. 11. (a) A wrong interpretation of a behaviour in which gene x is increasing but goes down a little while before reaches a threshold x2. (b) A correct
discretisation of the behaviour.

Fig. 12. Synthetic circadian clock. The transcription product of gene a inhibits gene b, gene b similarly inhibits gene c and finally gene c inhibits gene a.
This network produces periodic expression pattern of each gene.

The behavioural specification for a given network is the conjunction of all clauses which are derived according to the
behaviour principles introduced this section. Note that all clauses is enclosed in ‘G ’ operator. Since Gϕ ∧ Gψ ↔ G(ϕ ∧ ψ) is
an axiom of LTL, we can bind up all clauses in one ‘G ’ operator.

3.4. Biological properties in LTL

Many biologically interesting properties can be described in temporal logic [10,4,17]. For example, the property ‘the
system eventually reaches a state in which gene x is active but gene y is not active’ is a type of reachability described as
F (onx ∧¬ony). The property ‘the concentration of x is always above the threshold xy’ is a type of stability described as Gxy .
Oscillation, where ‘some property φ is alternately true and false indefinitely’, is described as GFφ ∧ GF¬φ. Conditional prop-
erties can also be specified. For example, ‘if gene x is always OFF then the property φ holds’ is described as (G¬onx) → φ.
Furthermore, we can use any combination of the above.

We do not need to confine ourselves to the above templates. We can use full LTL to specify properties of interest.

3.5. Example analysis 1

To see how an actual gene network is analysed in our framework, we demonstrate our method by the synthetic circadian
clock [15] depicted in Fig. 12.

We introduce the set of propositions {ona , onb , onc , ab , bc , ca}. Using these propositions, the behaviour specification of
this network is given as follows.

G(ab ↔ ¬onb) ∧
G(bc ↔ ¬onc) ∧
G(ca ↔ ¬ona) ∧
G(ona → F (ab ∨ ¬ona)) ∧
G(ona ∧ ab → (ab W ¬ona)) ∧
G(¬ona → F (¬ab ∨ ona)) ∧
G(¬ona ∧ ¬ab → (¬ab W ona)) ∧
· · ·

In this specification, we assume that each gene can be expressed autonomously if the inhibitor is not effective.
For this network let us check the property ‘each gene oscillates’, which is written in LTL as:

GFona ∧ GF¬ona ∧

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 161
Fig. 13. The network of mucus production in P. aeruginosa, where x positively regulates mucus production, represented as z, and y inhibits x, which x
positively regulates.

GFonb ∧ GF¬onb ∧
GFonc ∧ GF¬onc.

The analysis is performed by checking the satisfiability of the conjunction of the above formula. There are several tools
for checking satisfiability of LTL (see [40]). We used T3-builder [5] to check LTL satisfiability and had the answer ‘Yes’. This
means that the network can produce the behaviour in which all genes oscillates.

Then we have a question. Can all genes be always OFF? Let us check the property:

G(¬ona ∧ ¬onb ∧ ¬onc).

Then the result was ‘No’. This means it is impossible that all genes are indefinitely OFF (i.e. it never becomes ON).

3.6. Example analysis 2

Another example is the analysis of the mucus production system in the bacteria Pseudomonas aeruginosa. P. aeruginosa
produces a heavy mucus (alginate) in the lungs of cystic fibrosis patients, causing respiration deficiency and being the major
cause of mortality [21]. Bacteria isolated from the lungs of such patients can form stable mucus colonies, with a majority
of these bacteria presenting a mutation. Hence it is natural to think that the mutation is the cause of the transition to the
mucoid state. However, we show that wild-type bacteria have multistationarity where one stable state regularly produces
mucus while the other does not; that is to say, the change from the non-mucoid state to the mucoid state can be epigenetic
(a stable change of phenotype without mutation). This example is borrowed from [9,22].

The gene regulatory network that controls mucus production has been elucidated [43,23] and is depicted in Fig. 13. In
this figure, z represents alginate synthesis (i.e. mucus production), x activates mucus production, and y is an inhibitor of x.

We introduce the set of propositions {onx , ony , onz , xx , xy , xz , yx}, where z is not a gene, but onz means that mucus is
produced.

Among the thresholds for concentrations of x, it has been shown that xz is the highest [23]. Thus there are two possibil-
ities for the order, xx < xy < xz or xy < xx < xz. We have two specifications depending on the order of the thresholds. The
behaviour specification for the order xx < xy < xz is given in Fig. 14, where we chose the strong specification.

The properties that should be checked are as follows:

• The bacteria regularly produces mucus: Gonz .
• The bacteria never produces mucus: G¬onz .

We check whether each property, in conjunction with the behavioural specification, is satisfiable. The result of checking
is that both properties are satisfiable in both threshold orderings. Therefore, it is possible that the wild-type bacteria have
both mucoid and non-mucoid behaviour. This result motivates us to verify this hypothesis experimentally.

In the above analysis we do not constrain the multivariate regulation function for x which merges the inputs from x
and y. That is, when both x and y are effective, x has a choice of active or inactive. Now we assume that the negative effect
from y is superior to the positive effect from x. In this case the bacteria may not become mucoid state since xy < xz. We
check this hypothesis. We modify the behavioural specification by replacing the clause G((¬xx ∧ yx) → ¬onx) in Fig. 14 with
G(yx → ¬onx). We check whether the modified behavioural specification with the property Gonz is not satisfiable. This is
actually the case for both orderings of xx and xy. These results mean the hypothesis that wild-type P. aeruginosa may have
a stable mucoid state is rebutted by the assumption that the negative effect of y overpowers the positive effect of x.

According to the current biological knowledge, all wild-type P. aeruginosa strains have the genetic capacity to synthesise
alginate but normally produce only very small amounts of this polymer. Mucoid phenotype is only observed in mutants,
and the conversion to this phenotype from wild-type is not observed outside the human host [20] in which the bacteria
are mutated. Our latter analysis coincides with these biological facts. Our analysis assumes that in the regulation function
of gene x the negative effect of gene y overpowers the positive effect of gene x. If it is confirmed experimentally, our model
clarifies why wild-type P. aeruginosa do not have mucoid phenotype.

162 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
G(xz → xy) ∧
G(xy → xx) ∧
G((xx ∧ ¬yx) → onx) ∧
G((¬xx ∧ yx) → ¬onx) ∧
G(xy ↔ ony) ∧
G(xz ↔ onz) ∧
G(onx → F (¬onx ∨ xx)) ∧
G((onx ∧ xx) → (xxU (¬onx ∨ xy))) ∧
G((onx ∧ xy) → (xy U (¬onx ∨ xz))) ∧
G((onx ∧ xz) → (xz W ¬onx)) ∧
G(¬onx → F (onx ∨ ¬xz)) ∧
G((¬onx ∧ ¬xz) → (¬xzU (onx ∨ ¬xy))) ∧
G((¬onx ∧ ¬xy) → (¬xy U (onx ∨ ¬xx))) ∧
G((¬onx ∧ ¬xx) → (¬xx W onx)) ∧
G(ony → F (¬ony ∨ yx)) ∧
G((ony ∧ yx) → (yx W ¬ony)) ∧
G(¬ony → F (ony ∨ ¬yx)) ∧
G((¬ony ∧ ¬yx) → (¬yx W ony))

Fig. 14. Specification for possible behaviours of the network for mucus production in P. aeruginosa.

3.7. About complexity

Analysis in our method is based on LTL satisfiability checking, which is a PSPACE-complete problem [44]. Therefore, the
known algorithms are exponential in the size of an input formula. As we can see from Section 3.3, the length of a formula
specifying possible behaviours of a network is proportional to the size of the network (the number of nodes and edges).
Therefore, some techniques are strongly desirable which ease this computational cost. We develop two techniques for this
purpose. The first is a modular analysis which is discussed in the next section, while the second is an approximate analysis
which is discussed in Section 5.

4. Modular analysis of gene regulatory networks

In this section we present a method for modular analysis of gene regulatory networks. A network is divided into several
subnetworks, and the possible behaviours of the subnetworks are integrated to obtain behaviours of the whole network. By
ignoring local propositions in the subnetworks, we reduce the dimension of the state space. Thus this method reduces the
cost of the analysis of a gene network.

4.1. Preliminary

We first present the mathematical preliminaries for LTL satisfiability checking.

Definition 5. Let σ , σ ′ ∈ P(A)ω . The expression σ ⊕ σ ′ denotes the sequence (σ [0] ∪ σ ′[0])(σ [1] ∪ σ ′[1])(σ [2] ∪ σ ′[2])

Definition 6. Let φ be an LTL formula. Prop(φ) denotes the set of propositions occurring in φ.

The next definition is of the Büchi automaton, which is a kind of ω-automata accepting infinite words.

Definition 7. A Büchi automaton is a quintuple 〈Q , �, δ, qI , F 〉, where Q is a finite set of states, � is a finite alphabet,
δ : Q × � →P(Q) is the state transition function, qI ∈ Q is the initial state, and F ⊆ Q is the set of accepting states. A run
of a Büchi automaton on an infinite word α = α[0]α[1] · · · ∈ �ω is an infinite sequence ρ = ρ[0]ρ[1] · · · ∈ Q ω , such that
ρ[0] = qI and ρ[i + 1] ∈ δ(ρ[i], α[i]) for all i ≥ 0. An infinite word α is accepted by the automaton if the run over α visits
at least one state in F infinitely often. We denote the set of infinite words accepted by an automaton A by L(A).

It is known that Büchi automata are closed under intersection [48].

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 163
Theorem 1. Büchi automata are closed under intersection. Namely, for any Büchi automata A and B, it is possible to construct a Büchi
automaton that accepts L(A) ∩ L(B), where the alphabet sets of A and B are the same.

A time structure satisfying the LTL formula φ is an infinite word over the alphabet � = P(Prop(φ)). The next theo-
rem [50] states that we can construct a Büchi automaton that exactly accepts the models of φ. In the following theorem,
|φ| denotes the length of φ.

Theorem 2 (Vardi). Given an LTL formula φ , one can construct a Büchi automaton Aφ = 〈Q , �, δ, qI , F 〉 such that |Q | is in 2O (|φ|) ,
� = P(Prop(φ)) and L(Aφ) = {σ ∈ P(Prop(φ))ω | σ |� φ}.

Corollary 1. An LTL formula φ is satisfiable if and only if L(Aφ) �= ∅.

This corollary says that the problem of LTL satisfiability checking is reduced to emptiness testing of a Büchi automaton.

4.2. Modular satisfiability checking of LTL

Suppose that φ = φ1 ∧ · · · ∧ φn . The idea of modular method is to construct the automaton Aφ by constructing the
automata Aφ1 , . . . , Aφn individually and intersecting them. First we introduce some terminology.

Definition 8. Let A and B be finite sets such that A ⊆ B and suppose that σ ∈P(B)ω . The sequence σ ↓ A denotes (σ [0] ∩
A)(σ [1] ∩ A) · · · ∈ P(A)ω . Let L ⊆ P(B)ω . The set L ↓ A denotes {σ ↓ A | σ ∈ L}, the restriction of L to A. Let M ⊆ P(A)ω .
The set M B ⊆ P(B)ω denotes the maximum set such that M = M B ↓ A.

Proposition 1. M B always exists.

Proof. It is easily seen that X = ⋃
σ∈M{σ ⊕ ρ | ρ ∈ P(B − A)ω} is the maximum set that satisfies M = X ↓ A. �

Proposition 2. Let A = 〈Q , P(A), δ, qI , F 〉 be a Büchi automaton. For any finite set B ⊇ A there exists a Büchi automaton that accepts
L(A)B .

Proof. Replace the alphabet set in A by P(B). �
Hereafter, we assume that φ = φ1 ∧ · · · ∧ φn is an LTL formula. Moreover, we simply write L(Aφi) for L(Aφi)

Prop(φ) .

Proposition 3. L(Aφ) = L(Aφ1) ∩ · · · ∩ L(Aφn).

Proof. Let σ ∈ L(Aφ). By Theorem 2, we have σ |� φ. Therefore, σ |� φi for i = 1, . . . , n. From this, we have σ ↓
P(Prop(φi)) |� φi , that is, σ ↓ P(Prop(φi)) ∈ L(Aφi) for i = 1, . . . , n. By Definition 8, we have σ ∈ L(Aφi) for i = 1, . . . , n.
The converse of this argument also holds. �
Definition 9. LP(φi) = Prop(φ) −

⋃

1≤ j≤n, j �=i

Prop(φ j) is the set of local propositions in φi .

Propositions that are not local to any φi are called global propositions.

Definition 10. Let Aφi = 〈Q , �, δ, qI , F 〉. A−
φi

denotes the Büchi automaton 〈Q , �′, δ′, qI , F 〉 where �′ = {s − LP(φi) | s ∈ �}
and

δ′(q, s′) =
⋃

l⊆LP(φi)

δ(q, s′ ∪ l).

Intuitively, A−
φi

is obtained by ignoring local propositions LP(φi) from the transition function. We need the following
lemma for modular satisfiability checking.

Lemma 1. L(A−) = {σ ↓ (Prop(φ) − LP(φi)) | σ ∈ L(Aφi)} for i = 1, . . . , n.
φi

164 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
Proof. Let Aφi = 〈Q , �, δ, qI , F 〉 and A−
φi

= 〈Q , �′, δ′, qI , F 〉. Suppose that ρ ∈ L(A−
φi

) and that q[0]q[1]q[2] . . . is an accept-

ing run in A−
φi

over ρ . By the definition of a run, we have q[j + 1] ∈ δ′(q[j], ρ[j]) for all j ≥ 0. Since q[0]q[1]q[2] . . . is
also an accepting run in Aφi , there exists an infinite word σ on which it is the run; that is to say, q[j + 1] ∈ δ(q[j], σ [j])
for all j ≥ 0. By the definition of A−

φi
, there exists σ ′[j] ⊆ LP(φi) such that σ [j] = ρ[j] ∪ σ ′[j] for all j ≥ 0. Thus we have

σ = ρ ⊕ σ ′ , i.e. σ ↓ (Prop(φ) − LP(φi)) = ρ . The converse inclusion is trivial. �
Corollary 2. L(Aφi) = L(A−

φi
).

Proof. First we prove L(Aφi) ⊆ L(A−
φi

). Let σ ∈ L(Aφi). By the proof of Proposition 1, there exists σ ′ ∈ L(Aφi) and ρ ∈
P(Prop(φ) − Prop(φi))

ω such that σ = σ ′ ⊕ρ . By the proof of Lemma 1, there exists σ ′′ ∈ L(A−
φi

) and σ ′′′ ∈P(LP(φi))
ω such

that σ ′ = σ ′′ ⊕ σ ′′′ . Thus we have σ = σ ′′ ⊕ (σ ′′′ ⊕ ρ), where σ ′′′ ⊕ ρ ∈ P((Prop(φ) − Prop(φi)) ∪ LP(φi))
ω = P(Prop(φ) −

(Prop(φi) − LP(φi)))
ω . As a consequence, we have σ ′′ ⊕ (σ ′′′ ⊕ ρ) = σ ∈ L(A−

φi
). Now we prove the inverse inclusion. Let

σ ∈ L(A−
φi

). By the proof of Proposition 1, there exists σ ′ ∈ L(A−
φi

) and ρ ∈P(Prop(φ) − (Prop(φi) − LP(φi)))
ω such that σ =

σ ′ ⊕ ρ . Since Prop(φ) − (Prop(φi) − LP(φi)) = (Prop(φ) − Prop(φi)) ∪ LP(φi), we have ρ = ρ ′ ⊕ ρ ′′ for some ρ ′ ∈ P(Prop(φ) −
Prop(φi))

ω and ρ ′′ ∈ P(LP(φi))
ω . Thus σ = σ ′ ⊕ ρ = σ ′ ⊕ (ρ ′ ⊕ ρ ′′) = (σ ′ ⊕ ρ ′′) ⊕ ρ ′ . Here since we know σ ′ = (σ ′ ⊕ ρ ′′) ↓

(Prop(φi) −LP(φi)) ∈ L(A−
φi

), we have σ ′ ⊕ρ ′′ ∈ L(Aφi) by Lemma 1. Thus by applying Proposition 1, we have (σ ′ ⊕ρ ′′) ⊕ρ ′ =
σ ∈ L(Aφi). �

The following theorem is the main result of this section.

Theorem 3. L(Aφ) �= ∅ ⇔ L(A−
φ1

) ∩ · · · ∩ L(A−
φn

) �= ∅.

Proof. By Proposition 3, this claim is equivalent to

L(Aφ1) ∩ · · · ∩ L(Aφn) �= ∅ ⇔ L(A−
φ1

) ∩ · · · ∩ L(A−
φn

) �= ∅.

This is the case since by Corollary 2, we have L(Aφi) = L(A−
φi

) for i = 1, . . . , n. �
From this theorem, we have the following modular satisfiability checking method for φ = φ1 ∧ · · · ∧ φn .

1. Construct Aφi for each i.
2. Abstract Aφi to A−

φi
by deleting the local propositions LP(φi).

3. Intersect all A−
φi

. This is done by using Proposition 2 and Theorem 1.
4. Check non-emptiness of the intersected automaton.

The key of efficacy is to abstract local propositions from automata Aφi .
The more local propositions we have, the more we can abstract automata A−

φi
, and thus the intersected automaton will

be semantically simple and the cost of checking non-emptiness will be reduced. Thus the efficacy of modular checking
depends on whether there are many local propositions. Note that this method, however, needs extra costs of intersecting
automata whose complexity is linear in the product of the sizes of intersected automata.

Our modular method can be compared to Aoshima et al.’s modular method [6,5]. They divide an LTL formula into
several modules, compute constraints on global propositions of each module and replace them with those constraints. Their
modular method is at LTL level. In our method, we compute Büchi automata for each module and simplify them, then
compute a product of each automaton. So our modular method is at automaton level. Since computing constraints on global
propositions of each module is not trivial, our modular method is more applicable.

4.3. Application to gene regulatory network analysis

We apply the modular satisfiability checking of LTL to our framework of network analysis.
Let φ = φ1 ∧· · ·∧φn be a behavioural specification of a network and ψ be a biological property. We check whether φ ∧ψ

is satisfiable or φ ∧ ¬ψ is unsatisfiable. By Theorem 3, φ ∧ ψ is satisfiable if and only if L(A−
φ1

) ∩ · · · ∩ L(A−
φn

) ∩ L(Aψ) �= ∅.

Similarly, φ ∧ ¬ψ is unsatisfiable if and only if L(A−
φ1

) ∩ · · · ∩ L(A−
φn

) ∩ L(A¬ψ) = ∅.
The problem is how to subdivide φ into φ1 ∧ · · · ∧ φn . For the analysis of gene regulatory networks, behaviour specifica-

tion of a network can be decomposed into the specifications for its subnetworks. Therefore, we can take φi as a behavioural
specification for each subnetwork. The local propositions for φi are propositions concerning nodes and edges which are ‘con-
fined’ to subnetworks, that is to say, nodes that are only connected by edges in the subnetwork. Subnetworks that contain
many such local propositions represent a good division. Note that propositions contained in ψ are global propositions.

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 165
Fig. 15. Example.

Fig. 16. Subnetwork 1.

Fig. 17. Subnetwork 2.

G((ax → ab) ∧
(ab ↔ onb) ∧

(ona → F (ab ∨ ¬ona)) ∧
((ona ∧ ab) → (ab W ¬ona)) ∧
((ona ∧ ax) → (axW ¬ona)) ∧

(¬ona → F (¬ax ∨ ona)) ∧
((¬ona ∧ ¬ax) → (¬axW ona)) ∧
((¬ona ∧ ¬ab) → (¬ab W ona)))

Fig. 18. Specification for subnetwork 1.

4.4. Result and discussion

In this section, we apply our modular method for three example networks and evaluate how the modular method
improves the efficiency.

First example is the artificial network depicted in Fig. 15. We subdivide this network into two subnetworks depicted in
Figs. 16 and 17.

For this network, we do not explicitly give a biological property ψ but assume that it consists of the propositions
ona, onb, onz1 , onz2 and onz3 , and consider a as the system input and b, z1, z2 and z3 as the system outputs. For each
subnetwork we give behavioural specifications (Figs. 18, 19). We can see that ab is the local proposition in the specification
for subnetwork 1 and that xx , onx , xz1 , xz2 and xz3 are the local propositions for subnetwork 2.

Note that since gene x is on the boundary between subnetworks 1 and 2, we can choose which subnetwork specification
includes the clauses about the regulation of x (from gene a and itself). If we include them in to the specification for
subnetwork 1, proposition ax will be a local proposition but onx and xx will not be local propositions. Since we preferred to
have more local propositions, we included the clauses into the specification for subnetwork 2.

In Table 1, we show the size and number of propositions for each automaton and analysis time3 (the sum of automaton
construction time and emptiness testing time). Translations from LTL to Büchi automata4 and computing their intersections
make use of our implementation based on Aoshima’s algorithm [5].

This example is rather small and has so few local propositions that we do not benefit from modular analysis. We could
not compensate the extra cost of intersecting automata.

Let us consider another example depicted in Fig. 20, involving malT gene expression in Escherichia coli taken from [2].

3 The following computational environment was used: CPU Intel(R) Core(TM) i7-3820 3.60 GHz and 32 GB of RAM.
4 For technical reasons, we used generalised Büchi automata from which we can construct equivalent Büchi automata.

166 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
G((xx → xz3) ∧
(xz3 → xz2) ∧
(xz2 → xz1) ∧
(xz1 ↔ onz1) ∧
(xz2 ↔ onz2) ∧
(xz3 ↔ onz3) ∧

((ax ∧ ¬xx) → onx) ∧
(¬ax → ¬onx) ∧

(onx → F (xz1 ∨ ¬onx)) ∧
((onx ∧ xz1) → (xz1 W ¬onx)) ∧
((onx ∧ xz2) → (xz2 W ¬onx)) ∧
((onx ∧ xz3) → (xz3 W ¬onx)) ∧
((onx ∧ xx) → (xxW ¬onx)) ∧
(¬onx → F (¬xx ∨ onx)) ∧

((¬onx ∧ ¬xx) → (¬xxW onx)) ∧
((¬onx ∧ ¬xz3) → (¬xz3 W onx)) ∧
((¬onx ∧ ¬xz2) → (¬xz2 W onx)) ∧
((¬onx ∧ ¬xz1) → (¬xz1 W onx)))

Fig. 19. Specification for subnetwork 2.

Table 1
The result of analyses for the example network. ‘S’, ‘E’ and ‘P’ represents the num-
ber of states, edges and propositions of the automaton, respectively. ‘T’ represents
the entire time of the analysis. ‘T(ET)’ represents the time of empty-testing of the
automaton. ‘Direct’ means the network is not divided in the analysis. ‘Modular’
means the network is divided into subnetwork 1 and subnetwork 2 in the analysis.

S E P T T(ET)

Direct 33 682 12 0.020 s <0.001 s
Modular 31 592 7 0.143 s <0.001 s

Fig. 20. The network from E. coli involving the malT gene. Positive signs on edges are omitted.

As depicted in Fig. 20, we divide this network into subnetwork 1 to 4. We perform three modular analyses (Modular (A)
to (C) in the table) depending on how we divide the network. We show the results in Table 2.

Except Modular (C), modular analysis is better than direct analysis thanks to the improvement of emptiness testing time.
This improvement is attributed to the reduction of the number of propositions. Note that the size of automaton is the
same as the direct analysis, but the number of propositions are few. This shows how it becomes easier to check emptiness
of automata if we have fewer propositions. Unfortunately Modular (C) is not so efficient. The reason is that the size of

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 167
Table 2
The result of analyses of the network in Fig. 20. ‘S’, ‘E’ and ‘P’ represents the number of states, edges and propo-
sitions of the automaton, respectively. ‘T’ represents the entire time of the analysis. ‘T(ET)’ represents the time of
empty-testing of the automaton. ‘Direct’ means the network is not divided in the analysis. ‘Modular (A)’ means
the network is divided into two networks, i.e. subnetworks 1–3 and subnetwork 4. ‘Modular (B)’ means the net-
work is divided into three networks, i.e. subnetworks 1&2, subnetwork 3 and subnetwork 4. ‘Modular (C)’ means
the network is divided into four networks.

S E P T T(ET)

Direct 8281 14 698 200 28 28.054 s 26.474 s
Modular (A) 8281 14 698 200 8 8.317 s 3.108 s
Modular (B) 8281 14 698 200 9 6.579 s 3.164 s
Modular (C) 15 121 52 414 560 10 38.511 s 26.521 s

Fig. 21. A network in Arabidopsis thaliana.

Table 3
The result of analyses of the network in Fig. 21. ‘S’, ‘E’ and ‘P’ represents the number of states,
edges and propositions of the automaton, respectively. ‘T’ represents the entire time of the
analysis. ‘T(ET)’ represents the time of empty-testing of the automaton. ‘Direct’ means the
network is not divided in the analysis. ‘Modular (A)’ means the network is divided into two
subnetworks, i.e. subnetworks 1&2 and subnetworks 3&4. ‘Modular (B)’ means the network is
divided into four subnetworks.

S E P T T (ET)

Direct 3041 4 395 400 46 3.092 s 2.272 s
Modular (A) 2961 3 775 532 20 2.432 s 0.648 s
Modular (B) 2961 3 910 028 22 3.013 s 0.624 s

automaton with Modular (C) becomes larger than Direct thus the computation of the product automaton was not negligible.
However, the empty testing time was about the same as the direct analysis although the size of the automaton is much
larger. This indicates that the reduction of the number of proposition actually facilitates emptiness testing. This result shows
that the number of division also affects the efficiency of modular analysis.

Let us see another example shown in Fig. 21. This network is obtained from ReIN,5 which is a database of genes of
Arabidopsis thaliana. We divide this network into four subnetworks, as numbered in Fig. 21. We perform two modular
analyses depending on how we divide the network. The results are depicted in Table 3.

Since the direct analysis does not take much time, the benefit we have from modular analysis is a bit small. Even though,
if we compare the time of empty testing, the cost is considerably reduced. Modular analysis almost compensates the cost
of computing product automata and file I/O.

5 http :/ /arabidopsis .med .ohio-state .edu /REIN/.

http://arabidopsis.med.ohio-state.edu/REIN/

168 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
5. Approximate analysis

In modular analysis, we obtain the automaton Aφi from each subnetwork specification φi , abstract (or simplify) Aφi by
ignoring local propositions, then intersect them to obtain the automaton of the entire network. We now try to simplify
not the automata but the subnetwork specifications themselves by abstracting local propositions. Since we forget some
propositions, we may not obtain formulae equivalent to the original ones, but may be able to find stronger or weaker
ones. A stronger one is sufficient for checking satisfiability of the original one and a weaker one is sufficient for checking
unsatisfiability. This means that the set of behaviours are compressed or expanded from the behaviours characterised by
the original specifications. We call such formulae approximate behavioural specifications for subnetworks.

What about biological properties? We do not consider approximation of biological properties by two reasons. First reason
is that it is difficult to find approximate formulae for biological properties. Moreover, it is difficult to ensure that approxi-
mate formula correctly reflects the intended biological property. Second reason is that formulae which describe biological
properties are not so large in general. Therefore we do not benefit from approximation of biological properties.

5.1. General framework of approximate analysis

First we introduce some formal terminology for approximate analysis of LTL satisfiability.

Definition 11. Let φ and ψ be LTL formulae such that Prop(ψ) ⊆ Prop(φ). We define the relation � between LTL formulae
as follows:

ψ � φ ⇔ L(Aψ) ⊆ L(Aφ) ↓ Prop(ψ).

We call ψ an under-approximation of φ.

Definition 12. Let φ and ψ be LTL formulae such that Prop(ψ) ⊆ Prop(φ). We define the relation � between LTL formulae
as follows:

ψ � φ ⇔ L(Aψ) ⊇ L(Aφ) ↓ Prop(ψ).

We call ψ an over-approximation of φ.

Remark 1. The relation � is the inverse relation of � when Prop(ψ) = Prop(φ). We have ⊥ � φ and � � φ for any φ.

The following theorems state that ψ � φ means that ψ is simpler (i.e. having fewer propositions) and stronger than φ
while ψ � φ means that ψ is simpler and weaker than φ.

Theorem 4. Let φ and ψ be LTL formulae such that ψ � φ . If ψ is satisfiable then φ is satisfiable.

Proof. Proof by contrapositive. Suppose that φ is not satisfiable. By Corollary 1, L(Aφ) = ∅. Then L(Aφ) ↓ Prop(ψ) = ∅. By
Definition 11, we have L(Aψ) = ∅, that is, ψ is not satisfiable. �
Theorem 5. Let φ and ψ be LTL formulae such that ψ � φ . If ψ is not satisfiable then φ is not satisfiable.

Proof. Proof by contrapositive. Suppose that φ is satisfiable. By Corollary 1, L(Aφ) �= ∅. Thus there exists σ ∈ L(Aφ). By
Definition 12, there exists ρ ∈ L(Aψ) such that σ ↓ Prop(φ) = ρ . Thus L(Aψ) �= ∅; that is, ψ is satisfiable. �
Lemma 2. The weak specification is an over-approximation of the strong specification.

Proof. By definitions of strong specification and weak specification (Section 3.3). �
We now present the approximate analysis method. Let φ = φ1 ∧ · · · ∧ φn be a behavioural specification and ψ be a bio-

logical property. When we check the satisfiability of φ ∧ ψ , we replace φi by ψi , which does not contain local propositions,
such that ψi � φi , and check the satisfiability of ψ1 ∧ · · · ∧ ψn ∧ ψ . If this is satisfiable, then φ ∧ ψ is also satisfiable by The-
orem 4. When we check the unsatisfiability of φ ∧ ¬ψ , we replace φi by ψi such that ψi � φi , and check the unsatisfiability
of ψ1 ∧ · · · ∧ ψn ∧ ¬ψ . If this is unsatisfiable, then φ ∧ ¬ψ is also unsatisfiable by Theorem 5.

Remark 2. We can combine approximate analysis and modular analysis by checking the satisfiability of the approximate
specification modularly.

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 169
Fig. 22. Negative auto-regulation.

5.2. Approximate specifications for network motifs

In general, it is non-trivial to find a ‘good’ approximation ψ for arbitrary φ even if φ is a behavioural specification for
a subnetwork of a gene regulatory network. However, it is known that gene regulatory networks contain a small set of
recurring regulation patterns, called network motifs [2,3]. If we have approximate specifications for such motifs, we can
reuse them for analyses of any gene networks. Therefore, we focus on approximate specifications for network motifs.

There are possibly many approximate specifications for network motifs. Since our problem is to analyse biological prop-
erties of gene networks, the approximation should be biologically meaningful. Otherwise the approximate method will
produce a lot of false positives/negatives. To give biologically meaningful approximation, we focus on the biological func-
tions of network motifs. Such functions are considered to be important or useful to many organisms and the network
motifs will be used to realise their functions. We consider five motifs whose functions are well-studied [2,3]: negative
auto-regulation, coherent type 1 feed-forward loops, incoherent type 1 feed-forward loops, single-input modules and multi-
output feed-forward loops.

When we consider under-approximation, we concentrate on specific behaviours amongst all possible behaviours. The
functions of network motifs are suitable for such specific behaviours since they are likely to function that way in the
organisms, or the analysis problem may be related to such functions. That means we exclude behaviours which do not
conform to motif functions.

As for over-approximation, we need to allow extra behaviours which is prohibited in the original specification. Thus
extra behaviours may more or less violate the behaviour principles, e.g. ‘a gene can be ON nevertheless its inhibitor is ON’.
If we allow too much of such behaviours, almost all biological properties will be satisfied and the approximate analysis will
not be useful. The easiest way to obtain over-approximation is just to eliminate some clauses from the original specifica-
tion. Such approximate specifications may not be biologically interpreted but is sometimes useful for approximate analysis.
Note, however, that such approximation does not necessarily abstract local propositions unless we carefully choose clauses
we eliminate. In contrast, under-approximations cannot be obtained in such a syntactic way. We need to devise suitable
approximate specifications by hand.

In the following, under-approximations are given for strong specifications and over-approximations are given for weak
specifications.

Theorem 6. Under-approximations for strong specifications are also under-approximations for weak specifications, and over-
approximations for weak specifications are also over-approximations for strong specifications.

Proof. By Lemma 2. �
Negative auto-regulation Negative auto-regulation is depicted in Fig. 22. This motif has the function of response accelera-
tion [2,3]. In our abstraction, this function cannot be described since we cannot refer to an actual response time in LTL;
that is, accelerated behaviours and non-accelerated behaviours cannot be distinguished. Therefore, we shall ignore negative
auto-regulation in our analysis. For simplicity the approximate specification below is given under the assumption that there
is one input and one output for x which are represented as the level inx of input and xout of x, respectively. However, this
can be easily generalised to multiple inputs and outputs.

First we show the strong specification for negative auto-regulation (weak one is obtained by replacing U -operator with
W -operator):

G((inx ∧ ¬xx) → onx),

G(¬inx → ¬onx),

G(onx → F (¬onx ∨ xout)),

G((onx ∧ xout) → (xoutU (¬onx ∨ xx))),

G((onx ∧ xx) → (xxW ¬onx)),

G(¬onx → F (onx ∨ ¬xx)),

G((¬onx ∧ ¬xx) → (¬xxU (onx ∨ ¬xout))),

G((¬onx ∧ ¬xout) → (¬xout W onx)),

G(xx → xout).

170 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
Fig. 23. Coherent type 1 feed-forward loop.

We now present the following under-approximation for negative auto-regulation in which negative auto-regulation of x
is ignored:

G(inx ↔ onx),

G(onx → F (xout ∨ ¬onx)),

G((onx ∧ xout) → (xout W ¬onx)),

G(¬onx → F (¬xout ∨ onx)),

G((¬onx ∧ ¬xout) → (¬xout W onx)).

The abstracted local proposition is xx .
An over-approximation for this network motif is given below:

G(¬inx → ¬onx),

G(onx → F (¬onx ∨ xout)),

G((onx ∧ xout) → (xout W ¬onx)),

G((¬onx ∧ ¬xout) → (¬xout W onx))

The abstracted local proposition is xx . This specification is obtained by eliminating clauses including proposition xx from the
original weak specification. If we biologically interpret this specification, it allows extra behaviours such that gene x is OFF
even if the input to x is coming, or gene x is expressed continually beyond xout even if it is turned OFF.

Coherent type 1 feed-forward loop The coherent type 1 feed-forward loop (C1-FFL) is the pattern depicted in Fig. 23. There
are two types of input function (AND/OR) for z that merge the influence of x and y [2,3]. For the AND function, C1-FFL
shows a delay after stimulation by x, but no delay when the stimulation stops. For the OR function, the FFL has the opposite
effect to the AND case; that is, it shows no delay after stimulation by x but shows a delay when the stimulation stops.

We show the strong specification of this motif for AND version with xy < xz (the weak one can be obtained by replacing
U -operator by W -operator):

G(onx → F (¬onx ∨ xy)),

G((onx ∧ xy) → (xy U (¬onx ∨ xz))),

G((onx ∧ xz) → (xz W ¬onx)),

G(¬onx → F (onx ∨ ¬xz)),

G((¬onx ∧ ¬xz) → (¬xzU (onx ∨ ¬xy))),

G((¬onx ∧ ¬xy) → (¬xy W onx)),

G(xz → xy),

G(xy ↔ ony),

G((ony ∧ ¬yz) → F (¬ony ∨ yz)),

G((ony ∧ yz) → (yz W ¬ony)),

G((¬ony ∧ yz) → F (ony ∨ ¬yz)),

G((¬ony ∧ ¬yz) → (¬yz W ony)),

G((xz ∧ yz) ↔ onz).

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 171
Fig. 24. Incoherent Type 1 Feed-forward loop.

For under-approximation, we ignore y and consider them as simple regulations. Thus the difference between AND and
OR does not occur in approximate formula. Although the original specifications for this motif depend on the orderings of
the thresholds xy and xz, we can present a single under-approximation as follows:

G(onx → F (onz ∨ ¬onx)),

G((onx ∧ onz) → (onz W ¬onx)),

G(¬onx → F (¬onz ∨ onx)),

G((¬onx ∧ ¬onz) → (¬onz W onx)).

The abstracted local propositions are xy , xz , yz and ony .
An over-approximation for AND version with xy < xz is given below:

G(onx → F (ony ∨ ¬onx)),

G((onx ∧ ony) → (ony W ¬onx)),

G((onx ∧ xz) → (xz W ¬onx)),

G(¬onx → F (¬xz ∨ onx)),

G((¬onx ∧ ¬xz) → (¬xz ∨ onx)),

G((¬onx ∧ ¬ony) → (¬ony W onx)),

G(xz → ony),

G((ony ∧ ¬yz) → F (¬ony ∨ yz)),

G((ony ∧ yz) → (yz W ¬ony)),

G((¬ony ∧ yz) → F (ony ∨ ¬yz)),

G((¬ony ∧ ¬yz) → (¬yz W ony)),

G((xz ∧ yz) ↔ onz).

Note that we abstracted one proposition xy . In fact, this over-approximation satisfies both inclusions in the right hand side
of Definition 12, which means the over-approximation does not accommodate any extra behaviour. The reason is that this
‘over’-approximation is obtained by substituting xy by ony in the original weak specification. Due to the clause G(xy ↔ ony),
this approximation does not change the meaning of the formula.

An over-approximation for the OR version can be obtained by just changing ∧-operator in the switching condition on
gene z by ∨-operator.

Incoherent type 1 feed-forward loop Incoherent type 1 feed-forward loop (I1-FFL) is a pattern depicted in Fig. 24. Assume
that the threshold of x for z is lower than that of x for y. Since x activates z, if x becomes ON, z will be turned ON. Then, if
gene x keeps being expressed, y eventually becomes ON. Since y inhibits z, z will become OFF afterwards. As a result, this
motif generates pulse-like dynamics on z.

The strong specification for this motif is as follows (the weak one can be obtained similarly as for the previous motifs):

G(onx → F (¬onx ∨ xz)),

G((onx ∧ xz) → (xzU (¬onx ∨ xy))),

G((onx ∧ xy) → (xy W ¬onx)),

G(¬onx → F (onx ∨ ¬xy)),

G((¬onx ∧ ¬xy) → (¬xy U (onx ∨ ¬xz))),

172 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
Fig. 25. Single-input module.

G((¬onx ∧ ¬xz) → (¬xz W onx)),

G(xy → xz),

G(xy ↔ ony),

G(ony → F (¬ony ∨ yz)),

G((ony ∧ yz) → (yz W ¬ony)),

G(¬ony → F (ony ∨ ¬yz)),

G((¬ony ∧ ¬yz) → (¬yz W ony)),

G((xz ∧ ¬yz) ↔ onz).

Focusing on the pulse-like dynamics, we have the following under-approximation:

G((onx ∧ ¬ony) → F (onz ∨ ¬onx)),

G((onx ∧ onz) → (onzU ony)),

G((onx ∧ ony) → ((ony ∧ ¬onz)W ¬onx)),

G(¬onx → (¬onz ∧ ¬ony)).

The abstracted local propositions are xy , xz and yz .
An over-approximation for this motif is given below:

G(onx → F (¬onx ∨ xz)),

G((onx ∧ xz) → (xz W ¬onx)),

G((onx ∧ ony) → (ony W ¬onx)),

G(¬onx → F (onx ∨ ¬ony)),

G((¬onx ∧ ¬ony) → (¬ony W onx)),

G((¬onx ∧ ¬xz) → (¬xz W onx)),

G(ony → xz),

G(ony → F (¬ony ∨ yz)),

G((ony ∧ yz) → (yz W ¬ony)),

G(¬ony → F (ony ∨ ¬yz)),

G((¬ony ∧ ¬yz) → (¬yz W ony)),

G((¬xz ∧ yz) ↔ onz).

We abstracted proposition xy . Like the over-approximation for C1-FFL, this over-approximation in principle characterises
the same behaviour set as the original weak specification. Thus this over-approximation can be seen as some kind of
‘optimisation’ of the weak specification for this motif.

Single-input module A single-input module is a pattern in which one regulator (called the master gene) regulates a group
of target genes (Fig. 25). All regulations from the master gene are of the same type (positive or negative). We only consider
the positive case but the negative case is similar.

The function of this motif is a last-in first-out (LIFO) temporal order on expressions of target genes. Assume that
the thresholds for z1, z2, . . . , zn occur in this ascending order. When the master regulator x is ON, the regulated genes
z1, z2, . . . , zn are turned ON in this order. When x is turned OFF, genes zn, zn−1, . . . z1 are turned OFF in this order.

For simplicity we set n = 2 in the following but generalisation is easy. The strong specification for this network motif is
as follows (the weak one can be obtained similarly for other motifs):

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 173
Fig. 26. Multi-output feed-forward loop.

G(onx → F (¬onx ∨ xz1)),

G((onx ∧ xz1) → (xz1 U (¬onx ∨ xz2))),

G((onx ∧ xz2) → (xz2 W ¬onx),

G(¬onx → F (onx ∨ ¬xz2)),

G((¬onx ∧ ¬xz2) → (¬xz2 U (onx ∨ ¬xz1))),

G((¬onx ∧ ¬xz1) → (¬xz1 W onx)),

G(xz2 → xz1),

G(xz1 ↔ onz1),

G(xz2 ↔ onz2).

We present an under-approximation.

G(onz2 → onz1),

G(onx → (onxU onz2)),

G((onx ∧ onz1) → (onz1 W ¬onx)),

G((onx ∧ onz2) → (onz2 W ¬onx)),

G(¬onx → (¬onxU¬onz1)),

G((¬onx ∧ ¬onz2) → (¬onz2 W onx)),

G((¬onx ∧ ¬onz1) → (¬onz1 W onx)).

The abstracted local propositions are xz1 and xz2 . Behaviours that satisfy this formula are such that once x is turned ON
it remains ON until all target genes become active, and once x is turned OFF it remains OFF until all target genes become
inactive. Therefore, behaviours such that x is turned OFF before all target genes become active or x is turned ON before all
target genes become inactive are excluded from the possible behaviours obtained using the original specification.

We now present an over-approximation:

G(onz2 → onz1),

G((onx ∧ onz1) → (onz1 W ¬onx)),

G((onx ∧ onz2) → (onz2 W ¬onx)),

G((¬onx ∧ ¬onz2) → (¬onz2 W onx)),

G((¬onx ∧ ¬onz1) → (¬onz1 W onx)).

Propositions xz1 and xz2 are ignored. This over-approximation says that the temporal order of activation and inactivation
of target genes is preserved but some genes may not be activated when x is turned ON or inactivated when x is turned
OFF. Such behaviours are also allowed in the weak specification but we can specify the same constraint without local
propositions. Note, however, that this over-approximation allows extra behaviours. The example is that first gene x, z1 and
z2 are ON then gene x is turned OFF but gene z1 and gene z2 are still ON.

Multi-output feed-forward loop A multi-output feed-forward loop is a generalisation of a feed-forward loop with n target
genes (Fig. 26). The function of this motif is interesting when each input function for zi is OR and the threshold orders
for x and y are inverted, that is, xz1 < xz2 < · · · < xzn and yz1 > yz2 > · · · > yzn . Moreover, we assume that the threshold
xy is smaller than any of xzi s. In this case this motif can generate a first-in first-out (FIFO) temporal order on expression
of target genes. The activation order is z1z2 . . . zn and the inactivation order is the opposite. This is because, when gene x
becomes ON for sufficient time, gene y and z1 to zn will become ON in this order due to the order of thresholds xz1 to xzn .

174 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
Since gene x is expressed sufficiently long, we assume that gene y is expressed at the highest expression level yz1 . At this
situation we turn gene x OFF. Then the expression level of gene x begins to decrease and finally will fall to a basal level.
At this moment, genes z1 to zn are still ON since the level of gene y is highest for a while and activates z1 to zn . Since
the activation effect of gene x to y disappears, the level of gene y begins to decrease and finally falls below the highest
threshold yz1 and gene z1 is turned OFF (recall that the threshold order of gene y is the opposite of that of gene x). In this
manner z2 to zn will be turned OFF in this order.

We show the strong specification of this network motif (we set n = 2 but generalisation is easy):

G(onx → F (¬onx ∨ xy)),

G((onx ∧ xy) → (xy U (¬onx ∨ xz1))),

G((onx ∧ xz1) → (xz1 U (¬onx ∨ xz2))),

G((onx ∧ xz2) → (xz2 W ¬onx)),

G(¬onx → F (onx ∨ ¬xz2)),

G((¬onx ∧ ¬xz2) → (¬xz2 U (onx ∨ ¬xz1))),

G((¬onx ∧ ¬xz1) → (¬xz1 U (onx ∨ ¬xy))),

G((¬onx ∧ ¬xy) → (¬xy W onx)),

G(xz2 → xz1),

G(xz1 → xy),

G(xy ↔ ony),

G(ony → F (¬ony ∨ yz2)),

G((ony ∧ yz2) → (yz2 U (¬ony ∨ yz1))),

G((ony ∧ yz1) → (yz1 W ¬ony)),

G(¬ony → F (ony ∨ ¬yz1)),

G((¬ony ∧ ¬yz1) → (¬yz1 U (ony ∨ ¬xz2))),

G((¬ony ∧ ¬yz2) → (¬yz2 W ony),

G(yz1 → yz2),

G((xz1 ∨ yz1) → onz1),

G((¬xz1 ∧ ¬yz1) → ¬onz1),

G((xz2 ∨ yz2) → onz2),

G((¬xz2 ∧ ¬yz2) → ¬onz2).

Focusing on the property mentioned above we have the following under-approximation:

G(onx → (onz2 → onz1)),

G(¬onx → (¬onz2 → ¬onz1)),

G((onx → (onxU onz1))),

G((onx ∧ onz1) → ((onx ∧ onz1)U (onx ∧ onz2))),

G((onx ∧ onz2) → (onz2 W ¬onx)),

G(¬onx → (¬onxU¬onz1)),

G((¬onx ∧ ¬onz1) → ((¬onx ∧ ¬onz1)U (¬onx ∧ ¬onz2))),

G((¬onx ∧ ¬onz2) → (¬onz2 W onx)).

The abstracted local propositions are xy , xz1 , xz2 , ony , yz1 and yz2 . This formula says that when x is turned ON, z1 and
z2 are activated in this order, and that when x is turned OFF, z1 and z2 are inactivated in the opposite order.

An over-approximation is given as follows:

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 175
Table 4
The result of analyses for the network in Fig. 15.

S E P T T(ET)

D 33 682 12 0.020 s <0.001 s
M 31 592 7 0.143 s <0.001 s
A(under) 25 396 8 0.018 s <0.001 s
A(over) 33 692 8 0.020 s <0.001 s
MA(under) 25 396 6 0.152 s <0.001 s
MA(over) 33 664 6 0.160 s <0.001 s

Fig. 27. A network in E. coli.

G(((onx ∨ ony) ∧ onz1) → (onz1 W (¬onx ∨ ¬ony))),

G(((onx ∨ ony) ∧ onz2) → (onz2 W (¬onx ∨ ¬ony))),

G((¬onx ∧ ¬ony ∧ ¬onz1) → (¬onz1 W (onx ∨ ony))),

G((¬onx ∧ ¬ony ∧ ¬onz2) → (¬onz2 W (onx ∨ ony))).

This specification does not ensure that gene z1 and z2 will be ON even if gene x or y are ON. However, if they become ON,
they keep being ON as long as both gene x and y are ON. Similarly the fact that both gene x and y are OFF does not force
gene z1 and z2 to be OFF. However, once they are turned OFF, they keep being OFF as long as both gene x and y are OFF.

5.3. Result and discussion

We demonstrate the approximate analysis method developed thus far and compare it with the direct analysis method
and modular analysis method developed in Section 4. The combination of the modular and approximate method is also
experimented.

We use the same examples as in the experiments of modular analysis (Section 4.4), including the results of direct and
modular analysis in the tables for comparison.

The first example is the network depicted in Fig. 15. There are two motifs in the network, one a negative auto-regulation
and the other a single-input module. We show the results in Table 4. In the table, ‘D’ represents direct analysis, ‘M’ modular,
‘A’ approximate and ‘MA’ the combination of modular and approximate. Approximate analysis is performed for both under-
and over-approximation. ‘S’ represents the number of states of the automaton, ‘E’ the number of edges of the automaton,
‘P’ the number of propositions and ‘T’ the total analysis time (second). ‘T(ET)’ represents the time of empty-testing of the
automaton.

The second example is the network in Escherichia coli involving the malT gene. We redraw this network in Fig. 27,
emphasising network motifs. The numbers in the box and the triangle are the numbers of target genes in each motif. In this
network we approximate two negative auto-regulations, one single-input module and one multi-output feed-forward loop.
The results are shown in Table 5. The row ‘M’ is ‘Modular (B)’ in Table 2, which was the best among the divisions.

The third example is the network from Arabidopsis thaliana depicted in Fig. 21. In this network, we can find a single-input
module which has 18 target genes in the motif. There are some genes which have regulators other than the master gene.
Thus we cannot use the approximate specification introduced above directly. Fortunately the modification is easy. We do
not omit propositions xy if y has a regulator other than the master gene x, and specify the conditions for activation and
inhibition of y the same as the original ones. The results are shown in Table 6. The row ‘M’ is ‘Modular (A)’ in Table 3,
which was the best among the divisions.

In all cases, the cost of analysis is improved using approximate analysis, particularly for the larger networks. Compared to
modular analysis, approximate analysis is much efficient since we do not have to intersect automata. The modular analysis,
however, has a merit that we can apply it for any network which does not contain network motifs.

176 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
Table 5
The results of analyses of the network in Fig. 27.

S E P T T(ET)

D 8281 14 698 200 28 28.054 s 26.474 s
M 8281 14 698 200 9 6.579 s 3.164 s
A(under) 865 233 118 16 0.111 s 0.068 s
A(over) 2305 3 085 344 17 0.606 s 0.516 s
MA(under) 865 201 294 9 0.410 s 0.044 s
MA(over) 2113 659 832 10 0.567 s 0.148 s

Table 6
The results of analyses of the network in Fig. 21.

S E P T T(ET)

D 3041 4 395 400 46 3.092 s 2.272 s
M 2961 3 775 532 20 2.432 s 0.648 s
A(under) 1281 549 492 29 0.325 s 0.180 s
A(over) 1601 899 182 30 0.448 s 0.296 s
MA(under) 1281 498 828 19 1.120 s 0.096 s
MA(over) 1921 1 038 784 19 0.996 s 0.192 s

Using both modular and approximate analysis is not more efficient than the approximate analysis in all the examples
except for over-approximation in the second example. The reason is that the approximate specifications are not so large
in these examples. Therefore the cost of intersecting automata is relatively high in these experiments. Note, however, that
the time of emptiness testing is reduced by modular&approximate analysis compared to mere approximate analysis. If the
network is large, we may benefit from the combination of modular analysis and approximate analysis.

6. Related work

In this section, we describe some other qualitative methods for biological systems.
BIOCHAM [17] is a language and programming environment for modelling and simulating biochemical systems, and

checking their temporal properties. Reactions are written as rules like A+B=>C, and simulations are performed by replacing
objects on the left-hand side with those on the right-hand side. Since there are many possible rules that can be executed
in each state, there are many possible successor states for each state depending on the rule applied. After simulation,
we have a non-deterministic transition graph whose nodes are possible states and edges are state transitions. The set of
possible behaviours of the simulation over-approximates the set of all behaviours of the system which varies depending
on the kinetic parameters. A biological property is written in computation tree logic (CTL), a type of branching time logic,
and checked in the resulting transition graph. In BIOCHAM, presence or absence of objects is the only matter considered.
On the contrary, objects have a level of concentration in our model. In addition, the description of behaviour is more
expressive and flexible than the rule description in BIOCHAM, where we can only specify the next state. For example, the
rule A + B => C indicates that if the objects A and B appear, then the object C appears in the next state. In our method,
however, we can specify a more flexible rule such as ‘if the objects A and B appear, then the object C appears in some future
state’. Moreover, we can specify the temporal order of events, such as ‘if the objects A and B appear, the object C appears
first and then the object D appears’.

SMBioNet [9] is a tool for formally analysing temporal properties of gene regulatory networks. In SMBioNet, genes have
concentration thresholds for activation or inhibition of each of their regulating genes. A configuration of systems is rep-
resented as a vector of expression values, which are segmented by thresholds. For example, if a gene has two thresholds,
then it has three levels – 0, 1, and 2. Behaviours of a network are captured as a transition system on the vectors of values
for genes in the network. The temporal evolution of systems is described by transition functions on the vectors. Temporal
properties are described in CTL, and verification of them is performed by model-checking [12] on the resulting transition
systems. The description of behaviours in our system is more expressive than the functional description in SMBioNet since
SMBioNet considers only expression levels of genes. In contrast our framework considers, in addition, the modes of genes
(ON/OFF). Moreover, the state transitions of SMBioNet are restricted to those of Hamming distance of 1, that is to say, only
transitions from state (00) to (10) or (01) are allowed.

GNA [14] is a computational tool for the modelling and simulation of gene regulatory networks. GNA achieves simulation
using piecewise linear differential equation models and generates state transition systems that represent possible behaviours
of networks. The qualitative dynamics of a system are completely determined by inequality constraints defining the order-
ing between thresholds and stable equilibria of the system. Network properties of interest are checked automatically using
model checking [8]. This method assumes that the functions of multivariate regulation are known since the piecewise linear
differential equations are approximations of ordinary differential equations. However, the majority of such functions in any
organism are unknown [3]. On the contrary, our method does not need information about such functions, and is there-

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 177
fore more applicable for the current databases of gene regulation such as Reactome6 [13], GeneCards7 [41], Metacyc8[31],
Ingenuity® Knowledge Base,9 and KEGG10 [30].

Although the above tools are useful for checking whether a biological property can be true in network behaviours, it is
unknown how to introduce techniques to improve efficiency.

As we can see from the above studies, temporal logic is useful in analysing biological systems. Other studies using tem-
poral logic to analyse biological systems includes [10,4,34]. Systems are usually modelled by (possibly an approximate form
of) ordinary differential equations. Behaviours of biological systems are abstracted to state transition systems or automata
after simulating the differential equations. Temporal logic is only used to describe the biological properties to be checked
through the model checking approach [12]. That is, these methods are based on a quantitative description of behaviours.

RoVerGeNe [7] aims to analyse behaviours of gene networks under parameter uncertainty or search for valid parameter
sets to satisfy a given property. Behaviours are modelled as piecewise-multiaffine differential equations in which they as-
sume regulation functions and threshold values are known. Their formalism is intermediate of quantitative and qualitative
approach. They need some quantitative information but can perform fine-grained analysis compared to purely qualitative
approach.

Qualitative networks [42] are an extension of Boolean networks [33,46] in which biological components (e.g. genes and
proteins) have multiple level. The level of each component is updated by the associated target function which represents
the cumulative influence of the activation and inhibition from other components. At each step, the level of each compo-
nent only changes by a single level. Biological properties are verified by analysing the steady state of these networks. Thus
properties considered in Qualitative networks are not temporal properties but just the relationships on expression levels
of molecules. For efficient analysis of large networks, modular computation of possible behaviours is proposed and im-
plemented in Qualitative networks. In Qualitative networks, careful and complicated modelling is needed to capture the
asynchronous non-determinism of a system, which is a common problem in analysing a system which contains different
time scale reactions. In our approach, by focusing on the causal relationships, we do not care for time scale of biological
reactions. Moreover, the biological properties checked in our approach is not limited to those in steady state but any tem-
poral property. Another difference is that the network behaviour is deterministic in Qualitative networks, i.e. the model of
the network only describes a single behaviour. In our framework we model all possible behaviours of a network.

Our approach differs from process algebraic approaches such as stochastic π -calculus [38] or Bio-PEPA [11]. These mod-
els are based on biochemical reactions, and each molecule is modelled by a process. Modelled systems are simulated
stochastically or translated into ordinary differential equations, continuous time Markov chains or PRISM [26,25] models.
We need precise molecular mechanisms and quantitative information on parameter variables to give a model, and thus
these approaches are also quantitative. In contrast, our approach only assumes information about activation and inhibition
relationships between genes and therefore is more applicable. If we have more information such as the ordering of thresh-
olds or biases in multivariate regulation, or timing or causal relationship of activation or inhibition (e.g. ‘gene a and b are
known to be activated simultaneously’ or ‘gene a must precede gene b’), we can incorporate such information into our
temporal specification of a system.

7. Conclusion

In this article, we have presented a method for analysing the dynamics of gene regulatory networks using LTL satisfiabil-
ity checking. To ease analysis of large networks, we developed the modular analysis method and the approximate analysis
method. Experimental results show that both methods are efficient in analysing large networks.

There are several future directions in our qualitative framework.
An interesting future direction is deriving an additional constraint φ′ to force all behaviours of a gene regulatory network

to satisfy some observed property ψ . This may facilitate finding meaningful biological facts such as the order of thresholds,
regulation biases of multiple regulation or possibility of hidden nodes in networks. To achieve this, we need a method that
extracts useful information from automata that are generally huge as shown in Section 5.3, since they represent possible
behaviours of networks.

As to the modular analysis, developing a light simplification algorithm of Büchi automata will be an important work. In
modular analysis, we just abstracted local propositions from automata for subnetwork specifications. If we do not take costs
into consideration, we can simplify the automata using polynomial time simulation-based algorithm [45]. This powerful
simplification considerably reduces the size of automata. Since small automata are desirable for intersection, we can apply
this simplification algorithm to the automata for subnetwork specifications. From the experiments which are not reported in
this article, however, the total analysis time is not necessarily improved due to the extra polynomial cost of simplification.
However, if we have a ‘light’ simplification algorithm, we may reduce the cost of the modular analysis through automata

6 http :/ /www.reactome .org /ReactomeGWT /entrypoint .html.
7 http :/ /www.genecards .org/.
8 http :/ /metacyc .org/.
9 http :/ /www.ingenuity.com /science /knowledge _base .html.

10 http :/ /www.genome .jp /kegg/.

http://www.reactome.org/ReactomeGWT/entrypoint.html
http://www.genecards.org/
http://metacyc.org/
http://www.ingenuity.com/science/knowledge_base.html
http://www.genome.jp/kegg/

178 S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179
simplification. In this regard, we should keep in mind that if we are only interested in non-emptiness of automata, we can
apply a more aggressive simplification in which the accepting language may be changed while non-emptiness is preserved.

As to the approximate analysis, we need to study more network motifs and find approximate specifications for them.
We are now at a stage to consider applications of our method to real problems in biology, biomedicine, pathology,

pharmacology, and so on. Through such application, we will find the necessity of further development and extension of our
logical framework.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 26730153. We would like to express our gratitude to anony-
mous reviewers for giving us many suggestions to improve the manuscript.

References

[1] M. Abadi, L. Lamport, P. Wolper, Realizable and unrealizable specifications of reactive systems, in: ICALP ’89: Proceedings of the 16th International
Colloquium on Automata, Languages and Programming, in: LNCS, vol. 372, Springer-Verlag, London, UK, 1989, pp. 1–17.

[2] U. Alon, An Introduction To Systems Biology: Design Principles Of Biological Circuits, Chapman and Hall/CRC, 2006.
[3] U. Alon, Network motifs: theory and experimental approaches, Nat. Rev. Genet. 8 (6) (June 2007) 450–461.
[4] M. Antoniotti, A. Policriti, N. Ugel, B. Mishra, Model building and model checking for biochemical processes, Cell Biochem. Biophys. 38 (3) (2003)

271–286.
[5] T. Aoshima, K. Sakuma, N. Yonezaki, An efficient verification procedure supporting evolution of reactive system specifications, in: Proceedings of the

4th International Workshop on Principles of Software Evolution, IWPSE ’01, ACM, New York, NY, USA, 2001, pp. 182–185.
[6] T. Aoshima, N. Yonezaki, An efficient tableau-based verification method with partial evaluation for reactive system specifications, in: Proceedings of

the 10th European–Japanese Conference on Information Modelling and Knowledge Bases, 2000, pp. 363–374.
[7] G. Batt, C. Belta, R. Weiss, Temporal logic analysis of gene networks under parameter uncertainty, IEEE Trans. Automat. Control 53 (2008) 215–229.
[8] G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M. Page, D. Schneider, Validation of qualitative models of genetic regulatory networks by

model checking: analysis of the nutritional stress response in Escherichia coli, Bioinformatics 21 (Suppl. 1) (2005) i19–i28.
[9] G. Bernot, J.P. Comet, A. Richard, J. Guespin, Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical

approach with temporal logic, J. Theoret. Biol. 229 (3) (2004) 339–347.
[10] N. Chabrier, F. Fages, Symbolic model checking of biochemical networks, in: Computational Methods in Systems Biology, CMSB’ 03, in: LNCS, vol. 2602,

Springer-Verlag, 2003, pp. 149–162.
[11] F. Ciocchetta, J. Hillston, Bio-PEPA: a framework for the modelling and analysis of biological systems, Theoret. Comput. Sci. 410 (August 2009)

3065–3084.
[12] E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.
[13] D. Croft, G. O’Kelly, G. Wu, R. Haw, M. Gillespie, L. Matthews, M. Caudy, P. Garapati, G. Gopinath, B. Jassal, S. Jupe, I. Kalatskaya, S. Mahajan, B. May,

N. Ndegwa, E. Schmidt, V. Shamovsky, C. Yung, E. Birney, H. Hermjakob, P. D’Eustachio, L. Stein, Reactome: a database of reactions, pathways and
biological processes, Nucleic Acids Res. 39 (Database-Issue) (2011) 691–697.

[14] H. de Jong, J. Geiselmann, G. Hernandez, M. Page, Genetic network analyzer: qualitative simulation of genetic regulatory networks, Bioinformatics
19 (3) (2003) 336–344.

[15] M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators, Nature 403 (2000) 335–338.
[16] E. Allen Emerson, Temporal and modal logic, in: Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics (B), MIT Press,

1990, pp. 995–1072.
[17] F. Fages, S. Soliman, N. Chabrier-Rivier, Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM, J. Biol. Phys. Chem.

4 (2004) 64–73.
[18] L. Glass, S.A. Kauffman, Co-operative components, spatial localization and oscillatory cellular dynamics, J. Theoret. Biol. 34 (2) (February 1972) 219–237.
[19] L. Glass, S.A. Kauffman, The logical analysis of continuous, non-linear biochemical control networks, J. Theoret. Biol. 39 (1) (April 1973) 103–129.
[20] J.R.W. Govan, V. Deretic, Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia, Microbiol. Rev. 60 (1996)

539–574.
[21] J.R.W. Govan, G.S. Harris, Pseudomonas aeruginosa and cystic fibrosis: unusual bacterial adaptation and pathogenesis, Microbiol. Sci. 3 (10) (1986)

302–308.
[22] J. Guespin, G. Bernot, J.P. Comet, A. Mérieau, A. Richard, C. Hulen, B. Polack, Epigenesis and dynamic similarity in two regulatory networks in Pseu-

domonas aeruginosa, Acta Biotheor. 52 (4) (2004) 379–390.
[23] J. Guespin, M. Kaufman, Positive feedback circuits and adaptive regulations in bacteria, Acta Biotheor. 49 (4) (2001) 207–218.
[24] S. Hagihara, N. Yonezaki, Completeness of verification methods for approaching to realizable reactive specifications, in: Proceedings of 1st Asian Work-

ing Conference on Verified Software, AWCVS’06, vol. 348, 2006, pp. 242–257, UNU-IIST technical report.
[25] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, Probabilistic model checking of complex biological pathways, Theoret. Comput. Sci.

391 (February 2008) 239–257.
[26] A. Hinton, M. Kwiatkowska, G. Norman, D. Parker, PRISM: a tool for automatic verification of probabilistic systems, in: H. Hermanns, J. Palsberg (Eds.),

Proc. 12th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’06, in: LNCS, vol. 3920, Springer,
2006, pp. 441–444.

[27] S. Ito, T. Ichinose, M. Shimakawa, N. Izumi, S. Hagihara, N. Yonezaki, Modular analysis of gene networks by linear temporal logic, J. Integr. Bioinform.
10 (2) (2013).

[28] S. Ito, T. Ichinose, M. Shimakawa, N. Izumi, S. Hagihara, N. Yonezaki, Qualitative analysis of gene regulatory networks using network motifs, in: Pro-
ceedings of the 4th International Conference on Bioinformatics Models, Methods and Algorithms, BIOINFORMATICS2013, 2013, pp. 15–24.

[29] S. Ito, N. Izumi, S. Hagihara, N. Yonezaki, Qualitative analysis of gene regulatory networks by satisfiability checking of linear temporal logic, in: Pro-
ceedings of the 10th IEEE International Conference on Bioinformatics & Bioengineering, BIBE2010, 2010, pp. 232–237.

[30] M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, M. Tanabe, KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res.
40 (2012) D109–D114.

[31] P.D. Karp, M. Riley, S.M. Paley, A. Pellegrini-Toole, The MetaCyc database, Nucleic Acids Res. 30 (1) (2002) 59–61.
[32] M. Kaufman, J. Urbain, R. Thomas, Towards a logical analysis of the immune response, J. Theoret. Biol. 114 (4) (1985) 527–561.
[33] S.A. Kaufman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theoret. Biol. 22 (3) (1969) 437–467.

http://refhub.elsevier.com/S0304-3975(15)00527-7/bib616261646938397265616C697A61626C65s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib616261646938397265616C697A61626C65s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib616C6F6E3036626F6F6Bs1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib616C6F6E30376E6574776F726Bs1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib616E746F6E696F74746930336D6F64656Cs1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib616E746F6E696F74746930336D6F64656Cs1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib416F7368696D6132303031s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib416F7368696D6132303031s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib616F7368696D613A616Es1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib616F7368696D613A616Es1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib44424C503A6A6F75726E616C732F7461632F4261747442573038s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib62617474303576616C69646174696F6Es1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib62617474303576616C69646174696F6Es1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6265726E6F7430346170706C69636174696F6Es1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6265726E6F7430346170706C69636174696F6Es1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib4368616272696572303373796D626F6C69636D6F64656Cs1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib4368616272696572303373796D626F6C69636D6F64656Cs1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib63696F63636865747461303942696F2D50455041s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib63696F63636865747461303942696F2D50455041s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6D6F64656C636865636B696E67s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib44424C503A6A6F75726E616C732F6E61722F43726F66744F5748474D4347474A4A4B4D4D4E535359424844533131s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib44424C503A6A6F75726E616C732F6E61722F43726F66744F5748474D4347474A4A4B4D4D4E535359424844533131s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib44424C503A6A6F75726E616C732F6E61722F43726F66744F5748474D4347474A4A4B4D4D4E535359424844533131s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6A6F6E67303367656E65746963s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6A6F6E67303367656E65746963s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib73796E7468657469633030656C6F7769747As1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib656D6572736F6E393068616E64626F6F6Bs1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib656D6572736F6E393068616E64626F6F6Bs1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib666167657330346D6F64656C6C696E67616E64s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib666167657330346D6F64656C6C696E67616E64s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib476C6173734C31393732s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib476C6173734C31393733s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib676F76616E39366D6963726F6269616Cs1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib676F76616E39366D6963726F6269616Cs1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib676F76616E383670736575646F6D6F6E6173s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib676F76616E383670736575646F6D6F6E6173s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6775657370696E303465706967656E65736973s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6775657370696E303465706967656E65736973s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6775657370696E3031706F736974697665s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6F61693A697264622E6E69692E61632E6A703A303038332F3030313533383932s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6F61693A697264622E6E69692E61632E6A703A303038332F3030313533383932s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6865617468303870726F626162696C6973746963s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6865617468303870726F626162696C6973746963s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib484B4E503036s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib484B4E503036s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib484B4E503036s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib44424C503A6A6F75726E616C732F6A69622F49746F49534948593133s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib44424C503A6A6F75726E616C732F6A69622F49746F49534948593133s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib69746F31337175616C69746174697665s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib69746F31337175616C69746174697665s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib69746F31307175616C69746174697665s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib69746F31307175616C69746174697665s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib4B616E65686973613130313132303131s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib4B616E65686973613130313132303131s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib4B6172703031303132303032s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib4B6175666D616E31393835s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6B6175666D616E36396D657461626F6C6963s1

S. Ito et al. / Theoretical Computer Science 594 (2015) 151–179 179
[34] M. Kwiatkowska, G. Norman, D. Parker, Using probabilistic model checking in systems biology, SIGMETRICS Perf. Eval. Rev. 35 (4) (2008) 14–21.
[35] R. Mori, N. Yonezaki, Several realizability concepts in reactive objects, in: Information Modeling and Knowledge Bases IV, 1993, pp. 407–424.
[36] D. Peled, T. Wilke, Stutter-invariant temporal properties are expressible without the next-time operator, Inform. Process. Lett. 63 (5) (1997) 243–246.
[37] A. Pnueli, R. Rosner, On the synthesis of a reactive module, in: POPL ’89: Proceedings of the 16th ACM SIGPLAN–SIGACT Symposium on Principles of

Programming Languages, ACM, New York, NY, USA, 1989, pp. 179–190.
[38] C. Priami, A. Regev, E. Shapiro, W. Silverman, Application of a stochastic name-passing calculus to representation and simulation of molecular processes,

Inform. Process. Lett. 80 (October 2001) 25–31.
[39] A. Rabinovich, On translations of temporal logic of actions into monadic second-order logic, Theoret. Comput. Sci. 193 (February 1998) 197–214.
[40] K.Y. Rozier, M.Y. Vardi, LTL satisfiability checking, in: Proceedings of the 14th International SPIN Conference on Model Checking Software, in: LNCS,

vol. 4595, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 149–167.
[41] M. Safran, I. Dalah, J. Alexander, N. Rosen, T. Iny Stein, M. Shmoish, N. Nativ, I. Bahir, T. Doniger, H. Krug, A. Sirota-Madi, T. Olender, Y. Golan, G. Stelzer,

A. Harel, D. Lancet, GeneCards Version 3: the human gene integrator, Database, 2010(0):baq020+, August 2010.
[42] M.A. Schaub, T.A. Henzinger, J. Fisher, Qualitative networks: a symbolic approach to analyze biological signaling networks, BMC Syst. Biol. 1 (4) (2007).
[43] M.J. Schurr, D.W. Martin, M.H. Mudd, V. Deretic, Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa:

functional analysis in a heterologous host and role in the instability of mucoidy, J. Bacteriol. 176 (1994) 3375–3382.
[44] A.P. Sistla, E.M. Clarke, The complexity of propositional linear temporal logics, J. ACM 32 (July 1985) 733–749.
[45] F. Somenzi, R. Bloem, Efficient Büchi automata from LTL formulae, in: Proceedings of the 12th International Conference on Computer Aided Verification,

in: LNCS, vol. 1855, Springer-Verlag, London, UK, 2000, pp. 248–263.
[46] R. Thomas, Boolean formalization of genetic control circuits, J. Theoret. Biol. 42 (3) (1973) 563–585.
[47] R. Thomas, M. Kaufman, Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback

circuits, Chaos 11 (1) (2001) 180–195.
[48] W. Thomas, Automata on infinite objects, in: Jan van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Volume B: Formal Models and

Semantics (B), MIT Press, 1990, pp. 133–164.
[49] V. Vanitha, K. Yamashita, K. Fukuzawa, N. Yonezaki, A method for structuralisation of evolutional specifications of reactive systems, in: ICSE 2000, The

Third International Workshop on Intelligent Software Engineering, WISE3, 2000, pp. 30–38.
[50] M.Y. Vardi, P. Wolper, Reasoning about infinite computations, Inform. and Comput. 115 (November 1994) 1–37.

http://refhub.elsevier.com/S0304-3975(15)00527-7/bib4B4E50303861s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6D6F726939337365766572616Cs1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib70656C6564393773747574746572s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib706E75656C6938396F6Es1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib706E75656C6938396F6Es1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib707269616D6930316170706C69636174696F6Es1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib707269616D6930316170706C69636174696F6Es1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib526162696E6F7669636831393938s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib526F7A69657232303037736174697366696162696C697479s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib526F7A69657232303037736174697366696162696C697479s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib73636861756230377175616C69746174697665s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib736368757272393467656E65s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib736368757272393467656E65s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib536973746C6131393835s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib536F6D656E7A693A32303030s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib536F6D656E7A693A32303030s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib74686F6D61733733626F6F6C65616Es1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib74686F6D617330316D756C746973746174696F6E61726974794949s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib74686F6D617330316D756C746973746174696F6E61726974794949s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib74686F6D6173393068616E64626F6F6Bs1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib74686F6D6173393068616E64626F6F6Bs1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6F61693A697264622E6E69692E61632E6A703A303038332F3030303530303231s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib6F61693A697264622E6E69692E61632E6A703A303038332F3030303530303231s1
http://refhub.elsevier.com/S0304-3975(15)00527-7/bib566172646931393934s1

	Qualitative analysis of gene regulatory networks by temporal logic
	1 Introduction
	2 Logical conceptualisation of network behaviours
	3 Qualitative analysis of gene regulatory networks in LTL
	3.1 Linear temporal logic
	3.2 Analysis of gene regulatory networks by satisﬁability checking in LTL
	3.3 Speciﬁcation of behaviours in LTL
	3.4 Biological properties in LTL
	3.5 Example analysis 1
	3.6 Example analysis 2
	3.7 About complexity

	4 Modular analysis of gene regulatory networks
	4.1 Preliminary
	4.2 Modular satisﬁability checking of LTL
	4.3 Application to gene regulatory network analysis
	4.4 Result and discussion

	5 Approximate analysis
	5.1 General framework of approximate analysis
	5.2 Approximate speciﬁcations for network motifs
	5.3 Result and discussion

	6 Related work
	7 Conclusion
	Acknowledgements
	References

