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Abstract

We consider various (free) completion processes: the exact completion and the regular com-
pletion of a category with weak 5nite limits, the pre-regular completion of a category with 5nite
products and weak 5nite limits, the exact completion of a regular category, the regular re6ection
of a pre-regular category, and the 5ltered-colimit completion of a small category. In each case
we give necessary and su8cient conditions for the completion to be extensive; or, in the case of
the pre-regular completion, for the completion to satisfy a weakened notion of extensivity which
we call pre-extensivity. c© 2001 Elsevier Science B.V. All rights reserved.

MSC: 18A35; 18D99; 18E10

0. Introduction

An extensive category is, roughly speaking, a category with 5nite coproducts which
are “well behaved”. This notion was already known implicity in the 1960s – a stronger
version involving in5nite coproducts is part of Giraud’s characterization of Grothendieck
toposes – but has recently been isolated as an important one in its own right. It has
since found a variety of applications, for example in proof theory [9], categorical Ga-
lois theory [11], and in the study of descent morphisms for internal structures [36].
For a systematic study of extensive categories, one may consult the reference paper of
Carboni, Walters, and the 5rst author [13], or that of Cockett [18].
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An extensive category which moreover has 5nite limits is said to be lextensive:
a lextensive category is precisely a category with 5nite limits, and 5nite coproducts
which are disjoint and stable under pullback. Thus Grothendieck toposes are lextensive,
by Giraud’s characterization, as are elementary toposes; but so too are much less well-
behaved categories, such as the category Top of topological spaces and continuous maps.

Some interesting examples of extensive categories which fail to be lextensive are
the free completion under coproducts of a general category, and the category HTop of
topological spaces and homotopy classes of maps. In fact, HTop does have products,
formed as in Top, but it lacks equalizers. On the other hand, it does have weak
equalizers, namely the homotopy equalizers [37].

A regular category [3] is a category with 5nite limits, in which every arrow may
be factorized as a strong epimorphism followed by a monomorphism, and furthermore
the strong epimorphisms are stable under pullback. A regular category is said to be
exact if every equivalence relation is a kernel pair. The basic properties of regular and
exact categories are summarized in [6]. The free exact category on a category with
weak 5nite limits has been studied in [17,26]; we call it the exact completion of the
category with weak 5nite limits. If the category with weak 5nite limits actually has
5nite limits, then this is simply the “free exact category on a left exact one” of [10].
Exact completions have been used to study geometric morphisms and localizations
of algebraic categories [40,41], and also in type theory, where the exact completion
of the lextensive category Top is of great interest [16,5,39]. As well as the exact
completion of a category with weak 5nite limits, one may form the regular completion
of a category with weak 5nite limits; the precise universal properties which de5ne
these completions are recalled in Sections 1 and 3 below.

The second author and Carboni gave a two-step construction for the exact completion
[17]: 5rst one forms the regular completion of the category with weak 5nite limits, and
then the exact completion of the resulting regular category. Here the exact completion
of a regular category B is quite diMerent from the exact completion of B seen merely
as a category with weak 5nite limits; once again, the precise universal property is
recalled below. The original idea for the construction of the exact completion of a
regular category is due to Lawvere [34]; it was made explicit in [19], and further
studied in [17]. The 5rst author described a quite diMerent construction in [32], using a
category of sheaves on the regular category. The exact completion of a regular category
has also attracted interest in the study of quasi-varieties [38].

If the original category with weak 5nite limits actually has 5nite products, then the
regular completion, which was the 5rst step in the construction of the exact com-
pletion given in [17], itself splits into two steps: the pre-regular (or Freyd) com-
pletion, followed by the regular re6ection of the resulting pre-regular category; here a
pre-regular category is a category with 5nite limits, endowed with a proper stable factor-
ization system. The pre-regular completion, used implicitly in [21] to embed the stable
homotopy category in an abelian category, has been formalized in [24], under the name
of the Freyd-completion; while the regular re6ection of a pre-regular category has been
studied in [29] in connection with the calculus of relations.
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For any completion process, such as those considered above, one may ask under what
conditions the resulting category is extensive, and this is the general subject of this
paper. Some results of this kind are already known. Free completions under coproducts
(5nite or in5nite) are always extensive; but the free completion under initial objects of
a category can never be extensive if the category already has an initial object P, for
the sum P+P in the new category will not be disjoint. Usually, however, the situation
is more complicated; in fact, the two cases just mentioned diMer from all others we
shall study here in that the original category is not assumed to have 5nite coproducts,
and that the unit – the functor from the original category to the completion that allows
one to express the universal property – does not preserve coproducts. In fact, most
of the completion processes studied here can be seen as free completions with respect
to certain colimits, with these colimits being of a type that commute in Set with
5nite products; it is this latter property which ensures that the unit preserves 5nite
coproducts.

In [15], as part of a study of syntactic characterizations of locally presentable cat-
egories with various types of extra structure, the notion of nearly extensive category
was de5ned, and it was shown that the Cauchy completion of a category with 5nite
coproducts is extensive if and only if the original category is nearly extensive. It was
also shown that for a small category C with 5nite colimits, the category Lex(Cop;Set)
of 5nite-limit-preserving functors from Cop to Set is extensive if and only if C is; the
fact that Lex(Cop;Set) is extensive for an extensive category C with pullbacks had
already been proved in [20]. The category Lex(Cop;Set), however, is the completion
under 5ltered colimits of C, and so this result 5ts into the general subject of the pa-
per, being a partial characterization of those categories with 5nite coproducts whose
completion under 5ltered colimits is extensive.

It was further proved in [15] that for a small category C with 5nite coproducts,
the category FP(Cop;Set) of 5nite-product-preserving functors from Cop to Set is
extensive if and only if C is nearly extensive; or equivalently, if and only if the Cauchy
completion of C is extensive. In [2], however, Ad2amek and Rosick2y characterized
FP(Cop;Set) as the free completion of C under a class of colimits there called the sifted
colimits, following Lair’s terminology tamisante [33]; Lair (essentially) characterized
the sifted colimits as those which commute in Set with 5nite products. Putting together
the results of [15,2], we see that the sifted colimit completion of a small category C
with 5nite coproducts is extensive if and only if C is nearly extensive; that is, if and
only if the Cauchy completion of C is extensive.

The free completion Crc under re6exive coequalizers, of a category C with 5nite
coproducts, was constructed by Andy Pitts; this was reported in [8]. Since for a small
category C with 5nite coproducts Lex(Cop

rc ;Set) is equivalent to FP(Cop;Set), the
results of [15] imply that Crc is extensive if and only if C is nearly extensive.

In order to study the exact completion of HTop, the second author and Gran investi-
gated when the exact completion of a category with weak 5nite limits is extensive, and
gave a complete answer to this question [23], using the notion of a weakly lextensive
category.
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The aim of this paper is to give a detailed account of the stability of the notion
of extensivity through various completion processes, including those mentioned above.
In Section 1 we recall some de5nitions, and compare the notion of weakly lextensive
category to that of nearly extensive category; this analysis includes necessary and su8-
cient conditions for a Cauchy completion to be extensive, and for the exact completion
of a category with weak 5nite limits to be extensive. In Sections 2 and 3 we consider
the exact completion of a regular category, and the regular completion of a category
with weak 5nite limits, giving in each case necessary and su8cient conditions for the
completion to be extensive. In Section 4 we give necessary and su8cient conditions for
the regular re6ection of a pre-regular category with 5nite coproducts to be extensive;
these involve the new notion of a pre-extensive category. In Section 5 we give neces-
sary and su8cient conditions for the pre-regular completion of a category with 5nite
products and weak 5nite limits to be pre-extensive. Finally in Section 6, we consider
completions under 5ltered colimits of arbitrary small categories, not assumed as in [15]
to have 5nite colimits, and characterize when such completions are extensive.

We consider only 5nite coproducts, which, since we are generally dealing with ex-
tensive categories, we henceforth call sums. The legs of the colimit cone of a sum
we call injections; any arrow called iS with some subscript S is understood to be an
injection; and given f : X → A and g : Y → A, we write (f g) : X + Y → A for the
unique arrow satisfying (f g)iX = f and (f g)iY = g.

1. Nearly extensive categories

Recall [13] that a category C with sums is said to be extensive if for all objects X
and Y the “sum-functor”

(C=X )× (C=Y ) +−→C=(X + Y )

taking (f : A→ X; g : B→ Y ) to (f + g : A + B→ X + Y ), and de5ned on arrows
in the obvious way, is an equivalence of categories.

In fact, there are various equivalent ways of de5ning extensive categories, as the
following proposition shows; those facts not explicitly contained in [13] are easy
exercises.

Proposition 1.1. If C is a category with sums; then:
(1) C is extensive if and only if it has pullbacks along injections; and in a commu-

tative diagram

ZX −−−−→ Z ←−−−−ZY

�



�



�

X −−→
iX

X + Y ←−−
iY

Y

the top row is a sum if and only if the squares are pullbacks;
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(2) C is extensive if and only if it satis<es the following two conditions:
(i) all the squares

A iA−→ A + B

f



�



� f+g

X −→
iX

X + Y

are pullbacks;
(ii) for each arrow f : Z → X + Y there are arrows fX : ZX → X and fY :
ZY → Y and an isomorphism t : ZX + ZY → Z; giving a commutative diagram

(3) if C has a terminal object 1 then it is extensive if and only if it satis<es the
conditions of (1) above in the case X = Y = 1;

It was observed in [15] that condition (i) in part (2) of the proposition is equivalent
to the functor + : (C=X ) × (C=Y ) → C=(X + Y ) being fully faithful, while condition
(ii) is equivalent to its being essentially surjective on objects.

We also note for future reference the following easy fact about extensive categories:

Proposition 1.2. In any extensive category
(i) the third diagram below is a pullback if the <rst two are pullbacks

PX
qX−→ B

pX



�



�f

X −−→
aX

A

PY
qY−→ B

pY



�



�f

Y −−→
aY

A

PX + PY
(qX qY )−−−→B

pX +pY



�



�f

X + Y −−−→
(aX aY )

A

(ii) sums of monomorphisms are monomorphisms;
(iii) sums of pullbacks are pullbacks;
(iv) sums of equivalence relations are equivalence relations;
(v) sums are disjoint; and initial objects are strict.

We recall from [15] the notion of nearly extensive category. A functor F : A→ B
is said to be nearly surjective if every object B of B is a retract of FA for some object
A of A, and a category C with sums is said to be nearly extensive if the sum-functors
+ : (C=X )×(C=Y )→ C=(X +Y ) are fully faithful and nearly surjective; this is clearly
the case if and only if C satis5es condition (i) in Proposition 1.1(2), and a modi5ed
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condition (ii) in which the arrow t is not required to be invertible, but only to have a
section; that is, a map t′ with tt′ = 1.

Recall that the Cauchy-completion Ccc of a category C is de5ned to be the “free
category in which idempotents split” on the category C; that is, the value at C of a
left biadjoint to the inclusion 2-functor from the 2-category Catcc of Cauchy-complete
categories to the 2-category Cat of categories.

One may give an explicit construction of Ccc by de5ning an object to be an idem-
potent in C, and an arrow from (A; e : A → A) to (A′; e′ : A′ → A′) to be an arrow
f : A → A′ in C satisfying e′f = f = fe. The fully faithful functor y : C → Ccc

taking an object A to the identity (idempotent) on A is the unit for the biadjunction.
This allows a characterization of Cauchy completions.

Lemma 1.3. A functor y : C→ D exhibits D as the Cauchy completion of C if and
only if D is Cauchy complete; and y is fully faithful and nearly surjective.

Proof. This may be proved directly from the construction of Ccc given immediately
before the lemma, but it is also a consequence of [28, Proposition 5:62].

The following result was proved in [15]:

Theorem 1.4. If C is a category with sums; then its Cauchy completion Ccc has sums;
the inclusion y : C → Ccc preserves sums; and Ccc is extensive if and only if C is
nearly extensive.

Remark 1.5. In fact, more is true. There is a 2-category Sums of categories with
sums, sum-preserving functors, and natural transformations; and it has full sub-2-catego-
ries Ext, Sumscc, and Extcc, consisting of the extensive categories, the Cauchy com-
plete categories with sums, and the Cauchy complete extensive categories. The inclu-
sions of Sumscc into Sums and Extcc into Ext both have left biadjoints, each taking
C to Ccc.

The exact completion of a category C with weak 5nite limits consists of an exact
category Cex and a functor z : C → Cex with the property that, for any exact cat-
egory D, composition with z induces an equivalence of categories between the full
subcategory of the functor category [Cex;D] consisting of the regular functors, and the
full subcategory of the functor category [C;D] consisting of those functors called left
coverings in [17] and =at in [26]. Recall that for a category C with weak 5nite limits
and a category D with 5nite limits, a functor F : C→ D is said to be a left covering
if for each 5nite category J, each functor K : J → C, and each weak limit L of K ,
the canonical comparison from FL to the limit of FK is a strong epimorphism. Equiv-
alently, a functor F : C→ D between categories C and D as above is a left covering
if and only if it is “representably 6at” in the sense that for each object D of D the
composite D(D; F) : C → Set of F and the representable functor D(D;−) is 6at in
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the classical sense, recalled in Section 6 below. In fact, a functor F : C→ Set (where
C has weak 5nite limits) is a left covering if and only it is 6at, but in the absence
of weak 5nite limits in C, not every 6at functor from C to Set need be representably
6at. We recall that if C has 5nite limits, then F is a left covering if and only if it
preserves 5nite limits.

Although strictly speaking the exact completion consists both of the category Cex

and the functor z, we may sometimes say simply “Cex is the exact completion of C”.
We recall from [17] that Ccc has weak 5nite limits if C does so, and that the inclusion
y : C→ Ccc then induces an equivalence between Cex and (Ccc)ex.

Recall [23] that a category C with sums and weak 5nite limits is said to be weakly
lextensive if

(i) sums are disjoint and initial objects are strict;
(ii) for each choice of the weak products X × Y and X × Z , the evident projections

exhibit the sum (X × Y ) + (X × Z) as a weak product of X and Y + Z ;
(iii) if the 5rst two of the diagrams below are weak equalizers then so is the third.

EX
eX−→X

fX−→−→
gX

Z EY
eY−→Y

fY−→−→
gY

Z

EX + EY
eX +eY−−→X + Y

(fX fY )
−−→−−→

(gX gY )
Z

The following result, although not explicitly stated in [23], provides the motivation
for the name “weakly lextensive”:

Lemma 1.6. An extensive category with weak <nite limits is weakly lextensive.

Proof. Let C be an extensive category with weak 5nite limits, then condition (i) holds
by Proposition 1.2. We shall verify condition (iii), leaving (ii) to the reader. In the
notation of (iii), given an arrow h : A→ X + Y , we may write A as a sum AX + AY ,
and h as hX + hY : AX + AY → X + Y , where hX : AX → X and hY : AY → Y . Now
(fX + fY )h = (gX + gY )h if and only if fX hX = gX hX and fYhY = gY hY , in which
case there exist arrows sX : AX → EX and sY : AY → EY satisfying hX = eX sX and
hY = eY sY ; thus h = hX + hY = eX sX + eY sY = (eX + eY )(sX + sY ), giving the required
factorization.

The main abstract result of [23] is:

Theorem 1.7. If C has sums and weak <nite limits then Cex is extensive if and only
if C is weakly lextensive; in this case z : C→ Cex preserves sums.

Remark 1.8. In fact, by [17, Corollary 34], if C is merely a category with weak 5nite
limits, then z : C→ Cex preserves any sums which happen to exist in C. We have been
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unable to determine, however, whether Cex must have sums for an arbitrary category
C with sums and weak 5nite limits, not necessarily extensive.

Our main new result in this section is that the notions of weakly lextensive category
and nearly extensive category in fact coincide:

Theorem 1.9. If C has sums and weak <nite limits; then the following conditions are
equivalent:
(i) C is nearly extensive;

(ii) Ccc is extensive;
(iii) Ccc is weakly lextensive;
(iv) Cex is extensive;
(v) C is weakly lextensive.

Proof. We have (i)⇒ (ii) by Theorem 1.4, and (ii)⇒ (iii) by Lemma 1.6; while
(iii)⇒ (iv) follows by Theorem 1.7 and the fact that (Ccc)ex � Cex; and (iv) ⇒
(v) follows by Theorem 1.7. Thus we need only prove that every weakly lexten-
sive category is nearly extensive. If C is weakly lextensive, then the functors + :
(C=X ) × (C=Y ) → C=(X + Y ) are fully faithful by [23, Proposition 1.2(3)], thus we
need only show that they are nearly surjective. Suppose then that f : Z → X + Y is
given, and form weak pullbacks

ZX
x−−−−→ Z

y←−−−−ZY

fX



�



� f



� fY

X −−→
iX

X + Y ←−−
iY

Y:

By the weak lextensivity of C (see, for example, [23, Proposition 1.2(2)]) the square

ZX + ZY
(x y)−−−→ Z

fX +fY



�



�f

X + Y−−−→
1

X + Y

is also a weak pullback, giving a (not necessarily unique) arrow t′ : Z → ZX + ZY

satisfying (x y)t′ = 1 and f = (fX + fY )t′; now t′ is the desired section for (x y)
giving the near surjectivity of + : (C=X )× (C=Y )→ C=(X + Y ).

Corollary 1.10. If C is a Cauchy complete category with sums and weak <nite limits
then Cex is extensive if and only if C is so.

2. The exact completion of a regular category

The 2-category Reg of regular categories, regular functors, and natural transforma-
tions has a full sub-2-category Ex consisting of the exact categories, and the inclusion
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has a left biadjoint. The value at a regular category of this biadjoint is called the exact
completion of the regular category; for a regular category B we write � : B→ Bex=reg

for the unit of the biadjunction. Note that the exact completion of a regular category B
is quite diMerent to the exact completion of B seen merely as a category with (weak)
5nite limits. The context will make it clear which completion is meant when we speak
of “the exact completion”.

Given a regular category B, one may form the 2-category Rel(B) of relations in
B; now every equivalence relation in B is an idempotent in Rel(B), and if we form
a new 2-category by freely splitting these idempotents, then we obtain Bex=reg as the
subcategory of this new 2-category consisting of all the objects and those arrows which
have a right adjoint. This is the original construction, due to Lawvere [34]. A quite
diMerent construction was described in [32]; there Bex=reg was constructed as the closure
of B in a certain category of sheaves on B under coequalizers of equivalence relations;
this shows in particular that Bex=reg may be seen as a full subcategory of the presheaf
category on B. In either case, one may develop, as in [17], a more explicit description;
but all we really need here are the following two facts. The 5rst is proved in [19]; the
second was proved in [32] in the case where B is small, but is in any case an easy
consequence of the 5rst.

Lemma 2.1. (i) Every object in Bex=reg appears as the coequalizer of an equivalence
relation in B.

(ii) If the following diagram is a pullback in Bex=reg; then A lies in the image of �
if B and C do so.

A → B
↓ ↓
C → D

We shall also use the following fact about regular categories, whose proof can be
found in [27]:

Lemma 2.2. If the large rectangle and the left square in the diagram

A → B → C
↓ ↓ ↓
A′ →

q
B′ → C′

are pullbacks; and q is a strong epimorphism; then the right square is a pullback.

A diagram

A

f
−→−→

g
B

q−→C

in an exact category will be called an exact fork if q is the coequalizer of f and g,
and (f; g) is the kernel pair of q. The functor � preserves kernel pairs and coequalizers
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of kernel pairs, and so a diagram in B is an exact fork if and only if its image under
� is an exact fork in Bex=reg.

The goal of this section is to prove Theorem 2.3.

Theorem 2.3. If B is a regular category with sums; then B is extensive if and only
if Bex=reg is extensive and � : B→ Bex=reg preserves sums.

Since a full subcategory of an extensive category is itself extensive if it is closed
under sums and pullbacks along injections, and since � : B → Bex=reg preserves 5nite
limits, B is immediately seen to be extensive if Bex=reg is extensive and � : B→ Bex=reg

preserves sums. The other half requires more work, and will be the result of three
intermediate propositions, which we separate for future reference. (The fact that Bex=reg

is extensive if B is so was stated without proof in [14].)
Recall from Proposition 1.2 that in any extensive category sums of kernel pairs are

kernel pairs.

Proposition 2.4. For any regular category B; if B has sums; and sums of kernel pairs
are kernel pairs; then the functor � : B→ Bex=reg preserves sums; in particular this is
the case if B is extensive.

Proof. Given a sum C = �iCi in B with injections ci : Ci → C, we must show that
�ci : �Ci → �C exhibits �C as the sum �i�Ci in Bex=reg. Let F be an object of Bex=reg,
and let fi : �Ci → F be a family of arrows. By Lemma 2.1(i) there is an exact fork

�S

�k
−→−→
�l

�R
q−→F

in Bex=reg, and then by Lemma 2.1(ii) we can form a diagram

�Ai

�mi−→−→
�ni

�Bi
�pi−→�Ci

�si




�




�

�ri




�

fi

�S

�k
−→−→
�l

�R−→
q

F

in Bex=reg for each i, in which the top row is an exact fork in Bex=reg and so the image
under � of an exact fork in B, the right square is a pullback, and the left squares are
both pullbacks. The sum

A
m
−→−→

n
B

p−→C

of these exact forks in B, will itself be an exact fork in B, and so its image under � will
be an exact fork. If we write ai : Ai → A and bi : Bi → B for the injections, the arrows
ri : Bi → R induce a unique r : B → R satisfying rbi = ri; and the arrows si : Ai → S
induce a unique s : A→ S satisfying sai = si; since rmai = rbimi = rimi = ksi = ksai and
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rnai = rbini = rini = lsi = lsai we have rm = ks and rn = ls. Thus q:�r:�m = q:�k:�s =
q:�l:�s = q:�r:�n and so there is a unique arrow f : �C → F satisfying f:�p = q:�r.
Now f:�ci:�pi = f:�p:�bi = q:�ri = fi:�pi and so f:�ci = fi. One easily con5rms that
f is unique with this property, so that the arrows �ci : �Ci → �C do indeed exhibit
�C as the sum of the �Ci.

Proposition 2.5. Let B be a regular category with sums; suppose that � : B→ Bex=reg

preserves sums; and that we are given a diagram

�Ai

�ki−→−→
�li

�Bi
qi−→ Fi

�ai




�




�

�bi




�

fi

�A

�k
−→−→
�l

�B−→
q

F

in which the rows are exact forks; the arrows ai exhibit A as the sum �iAi; the bi

exhibit B as the sum �iBi; and biki = kai; bili = lai; and fiqi = q:�bi. Then the fi

exhibit F as the sum �iFi in Bex=reg. In particular it follows that Bex=reg has sums.

Proof. Given arrows gi : Fi → G, there is a unique h : �B→ G satisfying h:�bi = giqi;
and h:�k:�ai = h:�bi:�ki = giqi:�ki = giqi:�li = h:�bi:�li = h:�l:�ai, giving h:�k = h:�l; and
so there is a unique g : F → G satisfying gq=h; and now gfiqi =gq:�bi =h:�bi =giqi,
and so gf = gi. A straightforward argument shows that g is unique with this property.

Proposition 2.6. Let B be a regular category with sums; and suppose that � : B →
Bex=reg preserves sums; then Bex=reg is extensive if B is so.

Proof. By the previous proposition Bex=reg has sums, and since Bex=reg has 5nite limits
it certainly has pullbacks along injections. Given an arrow p : F → 1 + 1, we may
form a diagram

�A1
�a1−−−−→�A

�a2←−−−−�A2

↓↓ ↓↓ ↓↓
�B1

�b1−−−−→�B
�b2←−−−−�B2


�



�



�

F1
f1−−−−→ F

f2←−−−−F2

p1



� p



�



�p2

�1 −→
�i1

�(1 + 1) ←−
�i2

�1

in which the middle and lower squares are pullbacks, the upper squares are pairs of
pullbacks, and the upper part of each column is an exact fork. By extensivity of B,
the arrows a1 and a2 exhibit A as the sum A1 + A2, and the arrows b1 and b2 exhibit
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B as the sum B1 + B2. It follows by the previous proposition that f1 and f2 exhibit
F as the coproduct F1 + F2, giving the 5rst half of extensivity.

For the second half, let F = F1 + F2 be given, with injections f1 and f2; then we
may form the top two-thirds of the diagram as before. Given p, p1, and p2 making
the bottom part of the diagram commute, the bottom two squares are pullbacks by
Lemma 2.2.

These three propositions complete the proof of Theorem 2.3.

3. The regular completion of a category with weak +nite limits

The regular completion of a category C with weak 5nite limits is a regular category
Creg equipped with a functor z : C → Creg with the property that for any regular
category D, composition with z induces an equivalence of categories between the full
subcategory of the functor category [Creg;D] consisting of the regular functors, and the
full subcategory of the functor category [C;D] consisting of the left covering functors.
In this section we seek conditions under which the regular completion of a category
with weak 5nite limits is extensive. We use the following result from [17]:

Proposition 3.1. If C has weak <nite limits; then an object F of Cex lies in Creg if
and only if there is a <nite jointly-monic family (mi : F → zAi)i∈I ; if C has a terminal
object then the family may be assumed to be non-empty.

Our 5rst result follows easily from previous theorems.

Proposition 3.2. If C has sums and weak <nite limits and Creg is extensive; then C
is nearly extensive.

Proof. We have Cex � (Creg)ex=reg, thus if Creg is extensive, then so, by Theorem 2.3,
is Cex; hence C is nearly extensive by Theorem 1.9.

The other direction is less straightforward, and we are forced to assume that the
category has a terminal object.

Proposition 3.3. If C is nearly extensive with weak <nite limits and a terminal object;
then Creg and Cex are lextensive; and the inclusions C→ Creg and Creg → Cex preserve
sums.

Proof. We know by Theorem 1.9 that Cex is extensive and that the inclusion C→ Cex

preserves sums. Since the inclusion Creg → Cex is fully faithful, and Creg is closed in
Cex under 5nite limits, it will su8ce to show that Creg is closed in Cex under sums.
Since the inclusion C→ Cex preserves sums, the inital object of Cex is contained in C,
and so also in Creg. Thus we need only show that Creg is closed in Cex under binary
sums.
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Let F and G be objects of Creg; then we may 5nd 5nite non-empty jointly monic fam-
ilies (mi : F → zAi)i∈I and (nj : G → zBj)j∈J ; and these give rise to monomorphisms
m : F → ,izAi and n : G → ,jzBj. By Proposition 1.2 the arrow m + n : F + G →
(,izAi) + (,jzBj) is also a monomorphism. For each pair (i; j) ∈ I × J we write rij
for the composite of the projection ,izAi → zAi and the injection zAi → zAi + zBj, and
similarly we write sij for the composite of the projection ,izBj → zBj and the injec-
tion zBj → zAi + zBj; the arrows rij and sij induce an arrow tij : (,izAi) + (,jzBj)→
zAi +zBj; 5nally the arrows tij induce an arrow t : (,izAi)+(,jzBj)→ ,i;j(zAi +zBj).
The fact that t is monomorphic follows by a straightforward but tedious argument using
the extensivity of Cex; then t(m + n) : F + G → ,i;j(zAi + zBj) is a monomorphism,
which proves that F + G is in Creg.

In fact, the assumption of the terminal object in C is less severe than it might seem,
due to the following result:

Proposition 3.4. Let C be a Cauchy complete category with weak <nite limits. If
Creg is extensive then C has a terminal object.

Proof. Since Creg is extensive, the inclusion Creg → Cex preserves sums, and so Creg

is closed in Cex under sums. Thus if 1 denotes the terminal object of Creg, there is a
5nite jointly monic family (mi : 1 + 1→ zAi)i∈I . If I is non-empty, then we can 5nd
an arrow x : 1→ zAi by composing mi with one of the injections 1→ 1 + 1, and now
x : 1 → zAi and the unique map u : zAi → 1 provide a splitting of the idempotent xu
on zAi. Since C is Cauchy complete, it follows that 1 lies in C.

If on the other hand I is empty, then 1 + 1 is a subobject of 1, and so the two
injections 1→ 1 + 1 are equal. But Creg is extensive, and so sums are disjoint and
initial objects are strict; now the disjointness of sums and the equality of the injections
1 → 1 + 1 imply that 1 is initial, while the fact that initial objects are strict now
implies that Creg is equivalent to the terminal category. Since C is a full subcategory
of Creg, either C is equivalent to the terminal category, or C is empty, but since C has
a weak terminal object it cannot be empty, and so we conclude that C is equivalent
to the terminal category, and so has a terminal object.

Corollary 3.5. If C is a Cauchy complete category with sums and weak <nite limits;
then Creg is extensive if and only if C is extensive and has a terminal object. The
inclusion z : C→ Creg then preserves sums.

4. The regular re,ection of a pre-regular category

In this and the next section we are concerned with the pre-regular categories,
introduced below. Recall that a factorization system (E;M) on a category B is said
to be proper if each arrow in E is an epi and each arrow in M is a mono; and said
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to be stable if the pullback of any arrow in E is in E; of course the pullback of any
arrow in M lies in M for any factorization system. The 5rst section of [12] contains
a good introduction to factorization systems; here we recall only that for a proper
factorization system (E;M), and a composite gf, we have f ∈ M if gf ∈ M, and
g ∈ E if gf ∈ E; and that M contains the regular monomorphisms and E the regular
epimorphisms.

We de5ne a pre-regular category to be a category with 5nite limits equipped with a
stable proper factorization system. Such structures have been considered in [29,25]. Of
course, any regular category has a canonical pre-regular structure, for which E consists
of the strong epimorphisms, and M consists of the monomorphisms. Regular categories
will henceforth be assumed to have this canonical pre-regular structure, unless another
factorization system is explicitly speci5ed. An example of a pre-regular category which
is not regular is Top, with E consisting of the epimorphisms (that is, the continuous
surjections) and M consisting of the strong monomorphisms (that is, the subspace
inclusions).

A functor between pre-regular categories will be called pre-regular if it preserves
5nite limits, takes chosen epimorphisms to chosen epimorphisms, and takes chosen
monomorphisms to chosen monomorphisms. We write Preg for the 2-category of
pre-regular categories, pre-regular functors, and natural transformations. This contains
Reg as the full sub-2-category of Preg consisting of the regular categories with their
canonical pre-regular structure; or, equivalently those pre-regular categories for which
M consists of all the monomorphisms, and so E consists precisely of the strong epi-
morphisms. The value at a pre-regular category B of the left biadjoint to the inclusion
of Reg in Preg is what we mean by the regular re6ection of the pre-regular category;
we call it Breg=preg, and write p : B→ Breg=preg for the unit.

This regular re6ection was studied in [29], and constructed using the calculus of
relations: 5rst one forms the 2-category RelB of relations in B with respect to M –
thus an arrow in RelB from A to B is an arrow from C to A × B which lies in M

– and then the regular re6ection of B is the subcategory of RelB consisting of all
the objects and those arrows which have right adjoints. It now follows that RelB is
equivalent to the 2-category of relations in Breg=preg.

One may also, as further observed in [29], form the regular re6ection of B as
the category of fractions B[�−1] in the sense of Gabriel and Zisman [22], where �
consists of those arrows in E which are monomorphisms; it is this approach that we
shall follow. We give in Theorem 4.3 below a characterization of those preregular
categories B with sums for which the regular re6ection Breg=preg is extensive and the
functor p : B→ Breg=preg preserves sums.

Suppose then that B is a pre-regular category, and let � be the class of those
arrows in E which are monomorphisms. It was observed in [29], that � is a pullback
congruence in the sense of B2enabou [4]; that is, � contains the isomorphisms, is closed
under composition, and stable under pullback, and if a composite gf is in � then g
is in � if and only if f is so. It follows by the results of [4] that p : B → B[�−1]
preserves 5nite limits and that an arrow in B is inverted by p if and only if it lies in �.
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In the slice category B=Z an arrow is an arrow of B rendering commutative a
certain triangle; the arrow in B=Z will be deemed to lie in � if the corresponding
arrow in B does so. Likewise an arrow in B=X × B=Y will be deemed to lie in � if
the corresponding arrows in B=X and B=Y do so.

Now for any objects X and Y the “sum-functor”

B=X × B=Y +−→B=(X + Y )

has a right adjoint . which takes an object (A→ X +Y ) of B=(X +Y ) to its pullbacks
along the injections iX : X → X + Y and iY : Y → X + Y ; and we shall say that B is
pre-extensive if for each X and Y the components of the unit and the counit of the
adjunction + 	 . lie in �. Explicitly, this says that if we form the pullbacks

A1
a1−−−−→ A

a2←−−−−A2

u1



�



� u



� u2

X −−→
iX

X + Y ←−−
iY

Y

C1
j−−→ B1 + B2

w



�



� v1+v2

X −−→
iX

X + Y

then the induced map (a1 a2) : A1 + A2 → A lies in �, as does the unique map
k : B1 → C satisfying wk = v1 and jk = iB1 .

Of course, any extensive pre-regular category is pre-extensive, while in the special
case of regular categories (with the canonical pre-regular structure), the notions of
pre-extensivity and extensivity coincide.

Proposition 4.1. In any pre-extensive category injections are monic and initial objects
are strict.

Proof. For an injection iA : A→ A + B we have a commutative diagram

in which the middle and inner square is a pullback and k is in �. Now i1 is (split)
monic, and so its pullback j is monic, while k is monic since it is in �; thus the
composite iA = jk is monic. Given an arrow f : A→ 0 we have pullback squares

A
1−−→A

1←−−A

f



�



� f



� f

0−−→
1

0←−−
1

0
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and now the codiagonal ∇ : A + A→ A is in � and so monic; thus the two injections
A→ A + A are equal. It follows that any parallel pair of arrows with domain A must
be equal, and so that the unique arrow from 0 to A is inverse to f.

The next result we wish to prove is that � is closed under sums. Of course E is
closed under sums, and so it will su8ce to prove that 1 + 1′ is monic if 1 and 1′ are
in �.

First we introduce some notation. We say that an object P is pre-initial if the unique
arrow from 0 to P lies in �; in fact since the initial object 0 is strict, any arrow with
domain 0 is monic, and so it su8ces that the arrow be in E. If P is pre-initial and
there is an arrow f : Q → P, then

0 −→ Q


�



� f

0 −→ P

is a pullback since 0 is strict; thus Q too is pre-initial since the class � is stable
under pullback. Observe also that any parallel pair of arrows with pre-initial domain
must be equal. We write PX;Y for the pullback of the injections iX : X → X + Y and
iY : X → X + Y ; by pre-extensivity the object PX;Y must be pre-initial.

We now suppose that 1 : A→ B and 1′ : A′ → B′ are in � and prove that 1 + 1′ is
monic. We do this in three steps. First, we suppose that u : C → A and u′ : C → A′

satisfy (1 + 1′)iAu = (1 + 1′)iA′u′. Then iB1u = (1 + 1′)iAu = (1 + 1′)iA′u′ = iB′1′u′

and so there is a map from C to PB;B′ . It follows that C is pre-initial, and so that
iAu = iA′u′.

For the second step, we suppose that u : C → A and v : C → A + A′ satisfy
(1 + 1′)iAu = (1 + 1′)v. We can form pullbacks

C1
c1−−−−→ C

c2←−−−−C2

v1



�



� v



� v2

A −−→
iA

A + A′←−−
iA′

A′

and now (1 + 1′)iAuc2 = (1 + 1′)vc2 = (1 + 1′)iA′v2 and so iAuc2 = iA′v2 = vc2 by the
5rst step; while iB1uc1 = (1 + 1′)iAuc1 = (1 + 1′)vc1 = (1 + 1′)iAv1 = iB1v1 and so
uc1 = v1 since iB and 1 are monic; whence iAuc1 = iAv1 = vc1. Thus iAuc2 = vc2 and
iAuc1 = vc1, and so iAu = v since (c1 c2) is in � and so epimorphic.

Finally, let u : C → A + B and v : C → A + B satisfy (1 + 1′)u = (1 + 1′)v, and
form pullbacks

C1
c1−−−−→ C

c2←−−−−C2

u1



�



� u



� u2

A −−→
iA

A + A′←−−
iA′

A′:
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Then (1 + 1′)iAu1 = (1 + 1′)uc1 = (1 + 1′)vc1 and so vc1 = iAu1 = uc1 by the second
step; while (1 + 1′)iA′u2 = (1 + 1′)uc2 = (1 + 1′)vc2 and so vc2 = iA′u2 = uc2 by the
second step once again. Now since uc1 = vc1 and uc2 = vc2 and (c1 c2) is in � and
so epimorphic, it follows that u = v, and so that 1 + 1′ is monic. This completes the
proof.

Proposition 4.2. � is closed under sums.

We are now ready to prove the main result of this section.

Theorem 4.3. If B is a pre-regular category with sums; then B is pre-extensive if
and only if Breg=preg is extensive and p : B→ Breg=preg preserves sums.

Proof. If B is pre-extensive then � is closed under sums by Proposition 4.2, and now
B[�−1] has sums and p : B→ B[�−1] preserves sums by Section 3:2 [30] (which is
a “worked example” of the more general Theorem 4:2 in the same paper). We have
also seen that p preserves 5nite limits, since � is a pullback congruence. Disjoint-
ness of sums in B[�−1] follows immediately from the fact that the components of
the unit of the adjunction + 	 . are in � and so inverted by p; while stability of
sums under pullback by an arrow in the image of p follows immediately from the
fact that the components of the counit of the adjunction + 	 . are in � and so in-
verted by p. But of course sums are always stable under pullback by an invertible
arrow, and every arrow in B[�−1] is the composite of an arrow in the image of p
and an invertible arrow, and so sums are stable in B[�−1], and B[�−1] is exten-
sive.

If on the other hand B[�−1] is extensive and p preserves sums, then pre-extensivity
of B is immediate from the fact that p preserves 5nite limits and that the only arrows
inverted by p are those in �.

5. The pre-regular completion

In this 5nal section on the suite of constructions related to exact completions, we
consider free pre-regular categories; not in fact on an arbitrary category with weak
5nite limits, but rather on a category with 5nite products and weak equalizers; the
existence of all weak 5nite limits is then a consequence.

In [24,25] many interesting examples – mainly triangulated categories and homotopy
categories – of categories with 5nite products and weak equalizers are discussed. For
such a category C, a new category FrC is constructed; an object of FrC is an arrow
a : A → A′ in C, while an arrow in FrC from (a : A → A′) to (b : B → B′) is an
arrow Sf : A→ B′ for which there exist arrows f : A→ B and f′ : A′ → B′ satisfying
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bf = Sf and f′a = Sf, as in the diagram below.

(Alternatively one can de5ne an arrow to be an equivalence class of pairs (f;f′)
satisfying bf = f′a, with respect to the evident equivalence relation.) The category
FrC is pre-regular if we take an arrow to be in E when it can be represented by
(f;f′) as above with f invertible, and in M when it can be represented by (f;f′)
as above with f′ invertible. The evident functor d : C → FrC taking an object A to
(1A : A → A) is fully faithful and preserves 5nite products. Furthermore d is a left
pre-covering, in the sense that for every 5nite category J, every functor K : J→ C,
and every weak limit L of K , the canonical comparison from dL to the limit of dK
lies in E. We often identify an object of C with its image under d.

In fact, we shall write Cpreg for FrC, and call it (along with d) the pre-regular
completion, for it has the following universal property:

Proposition 5.1. For any pre-regular category D; composition with d induces an
equivalence of categories between the full subcategory of the functor category
[Cpreg;D] consisting of the pre-regular functors; and the full subcategory of the func-
tor category [C;D] consisting of those functors which preserve <nite products and
are left pre-coverings.

Remark 5.2. In fact, FrC has various other universal properties, investigated in some
detail in [25], but not needed here; in particular, the above proposition remains true
if we assume only that D has 5nite limits and a proper factorization system, not
necessarily stable.

From the universal properties of the various objects involved one easily deduces the
existence of an equivalence between (Cpreg)reg=preg and Creg.

We say that an object P of a pre-regular category B is projective if it is projective
with respect to the class E of epimorphisms; that is, if B(P;−) : B→ Set sends arrows
in E to surjections (and so is a pre-regular functor). It was observed in [25] that the
full subcategory (Cpreg)proj of Cpreg consisting of the projective objects is precisely the
closure under retracts of the image of d. It follows that d, seen as a functor from
C to (Cpreg)proj, is fully faithful and nearly surjective. Since Cpreg has 5nite limits, it
is Cauchy complete; and so (Cpreg)proj is Cauchy complete since it is closed in Cpreg

under retracts. It now follows by Lemma 1.3 that d : C→ (Cpreg)proj exhibits (Cpreg)proj

as the Cauchy completion of C. On the other hand, the inclusion y : C→ Ccc induces
a functor ypreg : Cpreg → (Ccc)preg, which is easily seen to be an equivalence, using the
construction of Cpreg as FrC.



S. Lack, E.M. Vitale / Journal of Pure and Applied Algebra 159 (2001) 203–230 221

Dually, we say that an object I of a pre-regular category B is injective if it is injective
with respect to the class M of monomorphisms; that is if B(−; I) : Bop → Set sends
arrows in M to surjections. Once again the injective objects are precisely the retracts
of those in the image of C.

We use the following facts about Cpreg, all proved in [25]:

Proposition 5.3. (i) For every object B of Cpreg; there exist arrows eB : SB → B and
mB : B→ B̃ with eB in E; mB in M; and with SB and B̃ in (the image of) C.

(ii) If C has sums then Cpreg has sums; d preserves sums; and sums of M’s are
M’s.

We are now ready to prove the main result of this section.

Theorem 5.4. If C is a category with sums; <nite products; and weak equalizers; then
the following conditions are equivalent:
(i) Cpreg is pre-extensive and sums are stable;

(ii) Cpreg is pre-extensive;
(iii) C is nearly extensive;
(iv) Ccc is extensive.

Proof. Trivially (i) implies (ii); while the fact that (ii) implies (iii) is almost as easy,
for if Cpreg is pre-extensive, then Creg is extensive by Theorem 1.4 and the equivalence
Creg � (Cpreg)reg=preg, and so C is nearly extensive by Proposition 3.2. The equivalence
of (iii) and (iv) was proved in Theorem 1.4, and so it remains only to prove that (iv)
implies (i). Since Cpreg � (Ccc)preg, it will su8ce to show that if D is an extensive
category with 5nite products and weak 5nite limits, then Dpreg is pre-extensive and has
stable sums.

Consider pullbacks

A1
a1−−−−→ A

a2←−−−− A2

u1



�



� u



� u2

X −−→
iX

X + Y ←−−
iY

Y

in Dpreg; we shall show that the induced arrow (a1 a2) : A1 + A2 → A lies both in E

and in M, and so is invertible.
Form eX : SX → X , eY : SY → Y , and eA : SA → A; since eX + eY ∈ E and SA is

projective, there exists an arrow v : SA→ SX + SY with the property that (eX +eY )v=ueA.
Now form the pullbacks

B1
b1−−−−→ SA

b2←−−−− B2

v1



�



� v



� v2

SX −−→
iX

SX + SY ←−−
iY

SY
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in D. Observe that ueAb1 = (eX + eY )vb1 = (eX + eY )i SX v1 = iX eX v1, and so there
is a unique arrow k1 : B1 → A1 satisfying u1k1 = eX v1 and a1k1 = eAb1. Similarly,
there is a unique arrow k2 : B2 → A2 satisfying u2k2 = eY v2 and a2k2 = eAb2. Now
(a1 a2)(k1 + k2) = (a1k1 a2k2) = (eAb1 eAb2) = eA(b1 b2), and (b1 b2) is invertible since
D is extensive; thus (a1 a2)(k1 + k2) is in E, and so too is (a1 a2).

Next form mA : A → Ã, mX : X → X̃ , and mY : Y → Ỹ ; now mA and (mX + mY )u
induce an arrow w : A→ Ã×(X̃ +Ỹ ); while a1 and u1 induce an arrow j1 : A1 → A×X
which lies in M since it is a regular monomorphism; and likewise a2 and u2 induce
an arrow j2 : A2 → A × X in M. Writing 4 : Ã × X̃ + Ã × Ỹ → Ã × (X̃ + Ỹ ) for the
distributivity isomorphism (in D), one easily verify that the diagram

A1 + A2
(a1 a2)−−−−−→ A w−→ Ã× (X̃ + Ỹ )

j1+j2



�

�

 4

A× X + A× Y −−−−−−−−→
mA×mX +mA×mY

Ã× X̃ + Ã× Ỹ

commutes. Now 4 is invertible, while j1 + j2 and mA × mX + mA × mY are in M by
Proposition 5.3, and so (a1 a2) is in M. Since (a1 a2) is already known to be in E, it
follows that (a1 a2) is invertible, and so that sums are stable.

Now sums are stable in Dpreg, and Dpreg has 5nite products, thus Dpreg is distributive;
it follows as in [13] that injections are monic. Consider a diagram

in which the inner square is a pullback; we have to show that k lies in �. First, we
observe that jk, being an injection, is monic, so that k is monic; thus we only need to
show that k is in E. We may form pullbacks

C
1−−−−→ C

c2←−−−− C2

k1



�



� k



� k2

R1
i1−−−−→ R

i2←−−−− R2

j1



�



� j



� j2

C −−→
iC

C + D ←−−
iD

D;

using the fact that iC is monic and jk = iC . By stability of sums, k = k1 + k2, and so
it will su8ce to show that k1 and k2 both lie in E. Now j1k1 = 1; but also ji1k1j1 =
iCj1k1j1 = iCj1 = ji1; and j and i1, being injections, are monic, so that k1j1 = 1. Thus
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k1 is invertible and so is certainly in E; and now it remains only to prove that k2 is
in E.

The equalities iAhi2 = (f + g)ji2 = (f + g)iDj2 = iBgj2 imply the existence of an
arrow from R2 to PA;B; recall from Section 4 that we write PA;B for the pullback of
iA : A → A + B and iB : B → A + B. The arrows A → 1 and B → 1 induce an arrow
from PA;B to P1;1, and so by composition we get an arrow from C2 to P1;1.

But now the inclusion d : D→ Dpreg preserves sums and terminal objects and is a
left pre-covering, while sums in D are disjoint; thus the unique arrow in Dpreg from 0
to P1;1 lies in E. Since Dpreg is distributive, the initial object is strict [13], giving the
pullback

0 t′−→ R2

�



�

0 −→
t

P1;1

in Dpreg; whence t′ ∈ E since t ∈ E. Finally, t′ is the composite of the unique arrow
from 0 to C2 and k2 : C2 → R2, and so k2 ∈ E. This completes the proof.

Corollary 5.5. If C is Cauchy complete; then Cpreg is pre-extensive if and only if C
is extensive.

Finally, we observe that although for an extensive category C the pre-regular com-
pletion Cpreg is not just pre-extensive, but has stable sums, we cannot hope that Cpreg

will actually be extensive:

Proposition 5.6. For a category C with sums; <nite products; and weak <nite limits;
if Cpreg is extensive then C is equivalent to the terminal category.

Proof. By disjointness of sums, the unique map t : 0 → 1 in Cpreg is a regular
monomorphism, and so in M. But the initial object 0 is in C and so injective (with
respect to M) so that the identity on 0 extends to a map s : 1→ 0 satisfying st = 10.
Since 1 is terminal we also have ts = 11, whence the initial and terminal objects in
Cpreg coincide. An extensive category in which the initial and terminal objects coincide
must be equivalent to the terminal category, since the initial object is strict; thus Cpreg

is equivalent to the terminal category. But C is a full subcategory of Cpreg, non-empty
since it has a terminal object, and so it too must be equivalent to the terminal category.

6. The +ltered colimit completion

The free completion under 5ltered colimits of a category C is a category C5lt with
5ltered colimits, equipped with a functor y : C → C5lt, such that for any category D
with 5ltered colimits, composition with y induces an equivalence of categories between
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the category of 5ltered-colimit-preserving functors from C5lt to D and the category of
all functors from C to D. We shall only consider the case where C is small; then C5lt

is given by the category Flat(Cop;Set) of =at functors from Cop to Set. Recall that
F : Cop → Set is said to be 6at if the left Kan extension LanY F : [Cop;Set]→ Set
of F along the Yoneda embedding preserves 5nite limits; and that F is 6at if and only
if the opposite of the category of elements of F is 5ltered. Representable functors are
always 6at, and so we have a restricted Yoneda embedding y : C→ Flat(Cop;Set), and
it is this y which exhibits Flat(Cop;Set) as the 5ltered-colimit completion of C. We
recall also that any functor F : Cop → Set, 6at or otherwise, is the colimit in [Cop;Set]
of the the composite YpF , where Y : C → [Cop;Set] is the Yoneda embedding and
pF : el(F)op → C is the canonical projection functor from the opposite of the category
of elements of F to C which “forgets the element”. For more details about 5ltered
colimits, 6at functors, and the related 5nitely presentable objects which arise below,
one may consult the recent book [1].

In the special case where C has 5nite colimits, and so Cop has 5nite limits, a
functor F : Cop → Set is 6at if and only if it preserves 5nite limits, and so C5lt is just
Lex(Cop;Set). We saw in the Introduction that Lex(Cop;Set) is extensive if and only
if C is so; in this section we investigate the extensivity of C5lt when C is assumed
only to have 5nite coproducts. Throughout this section C will be a small category with
5nite coproducts.

If C has 5nite coproducts, then the category FP(Cop;Set) of 5nite-product-preserving
functors from Cop to Set is re6ective in [Cop;Set] for general reasons [31], but we can
in fact describe the re6ection explicitly. We use the free completion of the category
Cop with respect to 5nite products, which may be constructed as Fam(C)op – the
“Fam” construction is described below, and, in more detail, in [13] – but all we
need are certain general facts about such completions, which we now summarize; all
are proved in [28]. Composition with the inclusion Z : Cop → Fam(C)op induces
an equivalence of categories, for every category D with 5nite products, between the
category of 5nite-product-preserving functors from Fam(C)op to D and the category
of all functors from Cop to D; indeed this is what we mean by the completion with
respect to 5nite products. The 5nite-product-preserving functor corresponding under
this equivalence to a functor F : Cop → D turns out to be the right Kan extension
RanZ F : Fam(C)op → D; we also write R : Fam(C)op → Cop for the essentially
unique 5nite-product-preserving functor satisfying RZ ∼= 1. A functor G : Cop → D is
itself 5nite-product-preserving if and only if the map GR → RanZ G induced by the
isomorphism GRZ ∼= G is invertible.

We shall now describe the re6ection. Given an arbitrary functor F : Cop → Set we
form RanZ F , and then the left Kan extension LanR RanZ F : Cop → Set of RanZ F .
Now RanZ F preserves 5nite products, hence so too does LanR RanZ F , by a theorem
of Borceux and Day [7].

Proposition 6.1. The re=ection into FP(Cop;Set) of F : Cop → Set is given by the
<nite-product-preserving functor LanR RanZ F .
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Proof. For any 5nite-product-preserving functor G : Cop → Set, we have natural
bijections

FP(Cop;Set)(LanR RanZ F; G)∼= [Cop;Set](LanR RanZ F; G)
∼= [Fam(C)op;Set](RanZ F; GR)
∼= [Fam(C)op;Set](RanZ F;RanZ G)
∼= (Cop;Set)(F;G);

the last because RanZ is fully faithful since Z is so.

Since FP(Cop;Set) is re6ective in the complete and cocomplete category [Cop;Set],
it is itself complete and cocomplete, but in fact all we really need is the existence of
5nite coproducts in FP(Cop;Set), and these we shall compute explicitly in Proposition
6.2 below.

The restricted Yoneda embedding Y : C→ FP(Cop;Set) preserves 5nite coproducts,
for given a 5nite-product-preserving functor F : Cop → Set and a 5nite coproduct �iCi

in C, we have natural bijections

FP(Cop;Set)(Y (�iCi); F)∼= F(�iCi)
∼= ,iFCi

∼= ,iFP(Cop;Set)(YCi; F);

by the Yoneda lemma and the fact that F preserves the 5nite product �iCi in Cop.
A 6at functor preserves any 5nite limits which exist, thus Flat(Cop;Set) is contained

in FP(Cop;Set). We shall show that Flat(Cop;Set) is closed in FP(Cop;Set) under
5nite coproducts; but to do so, we shall need an explicit description of 5nite coproducts
in FP(Cop;Set). We could derive such a description from Proposition 6.1, but we 5nd
it more convenient to proceed as follows. Given F and G in FP(Cop;Set), we form
their coproduct F + G in (Cop;Set), and then the category of elements of this F + G,
and the functor pF+G : el(F + G)op → C; and we observe that el(F + G)op is the
coproduct of categories el(F)op + el(G)op, and that pF+G is the functor out of this
coproduct induced by pF and pG. We now form the free completion under 5nite
coproducts of el(F + G)op: this can be constructed as the category Fam(el(F + G)op)
of 5nite families in el(F + G)op. An object of Fam(el(F + G)op) is a 5nite family
(Mi)i∈I of objects of el(F + G)op, while an arrow in Fam(el(F + G)op) from (Mi)i∈I

to (Nj)j∈J consists of a function 7 : I → J and an arrow fi : Mi → N7i in el(F +G)op

for each i ∈ I ; see [13] for details. The functor pF+G : el(F + G)op → C induces a
5nite-coproduct-preserving functor p : Fam(el(F + G)op)→ C, and we may now form
the colimit colim(Yp) in [Cop;Set].

Proposition 6.2. The functor colim(Yp) preserves <nite products; and is the coproduct
in FP(Cop;Set) of F and G.
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Proof. Since sifted colimits commute in Set with 5nite products [2,33], the category
FP(Cop;Set) is closed in [Cop;Set] under sifted colimits; thus in particular sifted
colimits of representables lie in FP(Cop;Set). But every category with 5nite coproducts
is sifted [2, Example 1:3(3)], whence it follows that colim(Yp) does indeed lie in
FP(Cop;Set).

Now let H : Cop → Set preserve 5nite products. To give arrows F → H and
G → H is equally to give cocones with vertex H over YpF and YpG; since el(F +
G)op = el(F)op + el(G)op, to give such cocones is to give a cocone over YpF+G with
vertex H . But now since H preserves 5nite products, this is the same thing as to give
a cocone over Yp with vertex H ; that is, an arrow from colim(Yp) to H .

We now use this construction of 5nite coproducts in FP(Cop;Set) to construct 5nite
coproducts in Flat(Cop;Set).

Proposition 6.3. Flat(Cop;Set) is closed in FP(Cop;Set) under <nite coproducts; thus
Flat(Cop;Set) has <nite coproducts and the inclusions Flat(Cop;Set)→ FP(Cop;Set)
and y : C→ Flat(Cop;Set) both preserve <nite coproducts.

Proof. There is no problem with regard to the initial object, which is the representable
functor C(−; 0); thus it will su8ce to consider binary coproducts. We shall show that
if F and G are in FP(Cop;Set), then Fam(el(F+G)op) is 5ltered if el(F)op and el(G)op

are so. The result will then follow since Flat(Cop;Set) is closed in [Cop;Set] under
5ltered colimits, and so in particular any 5ltered colimit of representables is 6at.

Since Fam(el(F + G)op) has 5nite coproducts, it certainly has a cocone over any
5nite discrete diagram; thus we need only prove that there is a cocone over any parallel
pair of arrows

(Mi)i∈I

(7;fi)−→−→
(9;gi)

(Nj)j∈J

in Fam(el(F + G)op). Since I is 5nite and (Mi)i∈I is the coproduct of the Mi, it will
su8ce to consider the case where I is a singleton. Furthermore, it will clearly su8ce
to consider the case where every j ∈ J is in the image of either 7 or 9. If 7i = 9i = j
this reduces to a parallel pair

Mi

fi−→−→
gi

Nj

in el(F + G)op, while if 7i �= 9i, this reduces to a diagram
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in el(F +G)op. In either case, since el(F +G)op = el(F)op + el(G)op and the diagram is
connected, it must be contained either in el(F)op or el(G)op; but el(F)op and el(G)op

are 5ltered, and so in either case there is a cocone, hence a cocone in el(F + G)op,
hence a cocone in Fam(el(F + G)op).

Recall that an object F of Flat(Cop;Set) is said to be 5nitely presentable if the
hom-functor Flat(Cop;Set)(F;−) : Flat(Cop;Set)→ Set preserves 5ltered colimits (of
course, this de5nition makes sense for objects of any category with 5ltered colimits),
and that if C is Cauchy complete, then the 5nitely presentable objects of Flat(Cop;Set)
are precisely the representables.

Proposition 6.4. If C is Cauchy complete; then Flat(Cop;Set) is extensive if and only
if C is so.

Proof. Suppose that Flat(Cop;Set) is extensive; we shall show that its full subcate-
gory of 5nitely presentable objects is extensive, hence that C is so. Since the 5nitely
presentable objects are closed under 5nite colimits, we need only show that they are
closed under summands; that is, if the sum in Flat(Cop;Set) of F and G is 5nitely
presentable, then so too is F .

For this 5rst half of the proof only, we shall use F + G to denote the coproduct of
F and G in Flat(Cop;Set). Suppose that hi : Hi → colimi Hi is the colimit cone of a
diagram H : I→ Flat(Cop;Set) with I 5ltered; we shall show that

Flat(Cop;Set)(F; colimi Hi) ∼= colimi Flat(Cop;Set)(F;Hi):

Let H ′ : I→ Flat(Cop;Set) be the evident functor taking an object i of I to Hi +G.
Now colimi (Hi + G) ∼= colimi Hi + colimi G ∼= colimi Hi + G, since colimits commute
with colimits, and the colimit of a 5ltered diagram constant at G is G itself; thus
hi + 1G : Hi + G → colimi Hi + G is the (5ltered) colimit in Flat(Cop;Set) of H ′.
Given a morphism u : F → colimi Hi we may form u + 1G : F + G → colimi Hi + G;
then since F +G is 5nitely presentable, this factorizes as u+1G =(hi +1G)vi for some
i, and by extensivity of Flat(Cop;Set) the morphism vi : F + G → Hi + G is of the
form ui + 1G for a unique ui : F → Hi, and u = hiui.

On the other hand, if ui : F → Hi and uj : F → Hj satisfy hiui = hjuj, then (hi +
1G)(ui+1G)=(hj+1G)(uj+1G); but F+G is 5nitely presentable, and so there exist a k
and arrows : : i → k and ; : j → k in I with (H:+1G)(ui +1G)=(H;+1G)(uj +1G),
whence, by extensivity of Flat(Cop;Set), we have H::ui = H;:uj. This proves that F
is 5nitely presentable, and so that C is extensive.

Suppose conversely that C is extensive. As we mentioned in the Introduction, the
category FP(Cop;Set) is then extensive – in fact, it is easy to see, as observed by
Lawvere [35], that FP(Cop;Set) is the category of sheaves for a Grothendieck topology
on C and so is a (Grothendieck) topos and in particular is extensive – and we know
that Flat(Cop;Set) is closed in FP(Cop;Set) under 5nite coproducts; thus to prove that
Flat(Cop;Set) is extensive, we need only prove that it is closed under direct summands.
By our construction of coproducts in FP(Cop;Set), it will su8ce to show that for
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5nite-product-preserving functors F and G from Cop to Set, if Fam(el(F + G)op) is
5ltered, then so too is el(F)op.

First, we observe that for any 5nite-product-preserving F the category el(F)op has
5nite coproducts: given objects (C; u ∈ FC) and (D; v ∈ FD) of el(F)op, since F
preserves the product C + D in Cop, we have an object (C + D; (u; v) ∈ F(C + D)) of
el(F)op which one easily veri5es is the coproduct of (C; u) and (D; v) in el(F)op; the
case of the initial object is similar. Thus any 5nite discrete diagram in el(F)op has a
cocone over it, and we need only check that any parallel pair

(C; u)
f−→−→
g

(D; v)

has a cocone over it. Such a pair may equally be deemed to live in el(F + G)op; and
so, viewing (C; u) and (D; v) as singleton families, in the category Fam(el(F + G)op).
Thus we can 5nd a cocone

(D; v)→ (Ei; wi)i∈I

in Fam(el(F + G)op); but clearly if we can 5nd such a cocone, then we can 5nd a
cocone in which I is a singleton, and so a cocone in el(F + G)op. But now, since
el(F + G)op = el(F)op + el(G)op, and (D; v) ∈ el(F)op, the cocone must already be in
el(F)op. Thus el(F)op is 5ltered, F is 6at, and Flat(Cop;Set) is extensive.

Finally, since Flat(Cop
cc ;Set) is equivalent to Flat(Cop;Set), we may immediately

deduce:

Theorem 6.5. If C is a small category with <nite coproducts; then its <ltered colimit
completion Flat(Cop;Set) has <nite coproducts; the inclusion y : C → Flat(Cop;Set)
preserves <nite coproducts; and the following conditions are equivalent:
(i) C is nearly extensive;
(ii) Ccc is extensive;

(iii) Flat(Cop;Set) is extensive.

Remark 6.6. In fact, if C is a Cauchy complete small category, then the 5nitely pre-
sentable objects of Flat(Cop;Set) are precisely the representable functors. Furthermore,
the 5nitely presentable objects are closed under any 5nite colimits that exist, and so in
particular under any 5nite coproducts that exist. It follows that C has 5nite coproducts
if Flat(Cop;Set) does so; from which we deduce that for an arbitrary Cauchy complete
small category, not assumed to have 5nite coproducts, Flat(Cop;Set) is extensive if
and only if C is so.

Acknowledgements

We should like to acknowledge the support of a grant jointly funded by the Universit2e
catholique de Louvain and the University of Sydney which enabled each of us to visit



S. Lack, E.M. Vitale / Journal of Pure and Applied Algebra 159 (2001) 203–230 229

the other’s university. The 5rst author also acknowledges the support of the Australian
Research Council and DETYA.

References

[1] J. Ad2amek, J. Rosick2y, Locally Presentable Categories and Accessible Categories, LMS Lecture Notes
Series, vol. 189, Cambridge University Press, Cambridge, 1994.

[2] J. Ad2amek, J. Rosick2y, On sifted colimits and generalized varieties, preprint, 1999.
[3] M. Barr, Exact categories, in: Exact Categories of Sheaves, Lecture Notes in Mathematics, vol. 236,

Springer, Berlin, 1971.
[4] J. B2enabou, Some remarks on 2-categorical algebra, Bull. Soc. Math. Belgique 41 (1989) 127–194.
[5] L. Birkedal, A. Carboni, G. Rosolini, D.S. Scott, Type theory via exact categories, Proceedings of the

13th Symposium in Logic and Computer Science, IEEE Computer Society, Silver Spring, MD, 1998,
pp. 188–198.

[6] F. Borceux, Handbook of Categorical Algebra, Vol. 2, Cambridge University Press, Cambridge, 1994.
[7] F. Borceux, B.J. Day, On product-preserving Kan extensions, Bull. Austral. Math. Soc. 17 (1977)

247–255.
[8] M. Bunge, A. Carboni, The symmetric topos, J. Pure Appl. Algebra 105 (1995) 233–250.
[9] A. Carboni, Some free constructions in realizability and proof theory, J. Pure Appl. Algebra 103 (1995)

117–148.
[10] A. Carboni, R. Celia Magno, The free exact category on a left exact one, J. Austral. Math. Soc. (Ser.

A) 33 (1982) 295–301.
[11] A. Carboni, G. Janelidze, Decidable (= separable) objects and morphisms in lextensive categories,

J. Pure Appl. Algebra 110 (1996) 219–240.
[12] A. Carboni, G. Janelidze, G.M. Kelly, R. Par2e, On localization and stabilization for factorization systems,

Appl. Categorical Struct. 5 (1997) 1–58.
[13] A. Carboni, S. Lack, R.F.C. Walters, Introduction to extensive and distributive categories, J. Pure Appl.

Algebra 84 (1993) 145–158.
[14] A. Carboni, S. Mantovani, An elementary characterization of categories of separated objects, J. Pure

Appl. Algebra 89 (1993) 63–92.
[15] A. Carboni, M.C. Pedicchio, J. Rosick2y, Syntactic characterizations of various classes of locally

presentables categories, J. Pure Appl. Algebra, to appear.
[16] A. Carboni, G. Rosolini, Locally cartesian closed exact completions, J. Pure Appl. Algebra 154 (2000)

103–116.
[17] A. Carboni, E.M. Vitale, Regular and exact completions, J. Pure Appl. Algebra 125 (1998) 79–116.
[18] J.R.B. Cockett, Introduction to distributive categories, Math. Struct. Comput. Sci. 3 (1993) 277–307.
[19] R.S. Cruciani, La teoria delle relazioni nello studio di categorie regolari e categorie esatte, Riv. Mat.

Univ. Parma 4 (1975) 143–158.
[20] B.J. Day, R.H. Street, Localisations of locally presentable categories II, J. Pure Appl. Algebra 63 (1990)

225–229.
[21] P. Freyd, Stable homotopy, Proceedings of the Conference on Categorical Algebra, La Jolla, 1965,

Springer, Berlin, 1966.
[22] P. Gabriel, M. Zisman, Calculus of Fractions and Homotopy Theory, Springer, Berlin, 1967.
[23] M. Gran, E.M. Vitale, On the exact completion of the homotopy category, Cahiers Top. G2eom. DiM.

Cat2egorique 39 (1998) 287–297.
[24] M. Grandis, Weak subobjects and weak limits in categories and homotopy categories, Cahiers Top.

G2eom. DiM. Cat2egorique 38 (1997) 301–326.
[25] M. Grandis, Weak subobjects and the epi-monic completion of a category, J. Pure Appl. Algebra 154

(2000) 193–212.
[26] H. Hu, W. Tholen, A note on free regular and exact completions and their in5nitary generalizations,

Theory Appl. Categories 2 (1996) 113–132.
[27] G. Janelidze, G.M. Kelly, Galois theory and a general notion of central extension, J. Pure Appl. Algebra

97 (1994) 135–161.



230 S. Lack, E.M. Vitale / Journal of Pure and Applied Algebra 159 (2001) 203–230

[28] G.M. Kelly, Basic Concepts of Enriched Category Theory, LMS Lecture Notes Series, vol. 64,
Cambridge University Press, Cambridge, 1982.

[29] G.M. Kelly, A note on relations relative to a factorization system, in: Category Theory, Proceedings of
the International Conference, Como, 1990, Lecture Notes in Mathematics, vol. 1448, Springer, Berlin,
pp. 249–261.

[30] G.M. Kelly, S. Lack, R.F.C. Walters, Coinverters and categories of fractions for categories with structure,
Appl. Categorical Struct. 1 (1993) 95–102.

[31] J.F. Kennison, On limit preserving functors, Illinois J. Math. 12 (1968) 616–619.
[32] S. Lack, A note on the exact completion of a regular category, and its in5nitary generalizations, Theory

Appl. Categories 5 (1999) 70–80.
[33] C. Lair, Sur le genre d’esquissabilit2e des cat2egories modelables (accessibles) poss2edant les produits de

deux, Diagrammes 35 (1996) 25–52.
[34] F.W. Lawvere, Category theory over a base topos (the “Perugia notes”), unpublished manuscript, 1973.
[35] F.W. Lawvere, Some thoughts on the future of category theory, in: Category Theory, Proceedings of

the International Conference, Como, Lecture Notes in Mathematics, vol. 1448, Springer, Berlin, 1990,
pp. 1–14.

[36] I. Le Creurer, Descent of internal categories, Ph.D. Thesis, Louvain-la-Neuve, 1999.
[37] M. Mather, Pull-backs in homotopy theory, Canadian J. Math. 28 (1976) 225–263.
[38] M.C. Pedicchio, E.M. Vitale, On the abstract characterization of quasi-varieties, preprint, 1998.
[39] J. Rosick2y, Cartesian closed exact completions, J. Pure Appl. Algebra 142 (1999) 261–270.
[40] E.M. Vitale, Localizations of algebraic categories, J. Pure Appl. Algebra 108 (1996) 315–320.
[41] E.M. Vitale, Localizations of algebraic categories II, J. Pure Appl. Algebra 133 (1998) 317–326.


