Journal of Algebra 323 (2010) 2943-2959

Computing the Stanley depth $\stackrel{\text{\tiny{themselven}}}{\to}$

Dorin Popescu^{a,*}, Muhammad Imran Qureshi^b

^a Institute of Mathematics "Simion Stoilow", University of Bucharest, PO Box 1-764, Bucharest 014700, Romania ^b Abdus Salam School of Mathematical Sciences, GC University, Lahore, 68-B New Muslim town Lahore, Pakistan

ARTICLE INFO

Article history: Received 25 November 2009 Available online 16 December 2009 Communicated by Steven Dale Cutkosky

Keywords: Monomial ideals Stanley decompositions Stanley depth

ABSTRACT

Let Q and Q' be two monomial primary ideals of a polynomial algebra S over a field. We give an upper bound for the Stanley depth of $S/(Q \cap Q')$ which is reached if Q, Q' are irreducible. Also we show that Stanley's Conjecture holds for $Q_1 \cap Q_2$, $S/(Q_1 \cap Q_2 \cap Q_3)$, $(Q_i)_i$ being some irreducible monomial ideals of S.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Let *K* be a field and $S = K[x_1, ..., x_n]$ be the polynomial ring over *K* in *n* variables and *M* a finitely generated multigraded (i.e. \mathbb{Z}^n -graded) *S*-module. Given $z \in M$ a homogeneous element in *M* and $Z \subseteq \{x_1, ..., x_n\}$, let $zK[Z] \subset M$ be the linear *K*-subspace of all elements of the form zf, $f \in K[Z]$. This subspace is called Stanley space of dimension |Z|, if zK[Z] is a free K[Z]-module. A Stanley decomposition of *M* is a presentation of the *K*-vector space *M* as a finite direct sum of Stanley spaces \mathcal{D} : $M = \bigoplus_{i=1}^r z_i K[Z_i]$. Set sdepth $\mathcal{D} = \min\{|Z_i|: i = 1, ..., r\}$. The number

 $sdepth(M) := max \{ sdepth(D) : D \text{ is a Stanley decomposition of } M \}$

is called the Stanley depth of *M*. This is a combinatorial invariant which has some common properties with the homological invariant depth. Stanley conjectured (see [17]) that sdepth $M \ge$ depth *M*, but this conjecture is still open for a long time in spite of some results obtained mainly for $n \le 5$ (see [1,16,8,

0021-8693/\$ - see front matter © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2009.11.025

 $^{^{*}}$ The authors would like to express their gratitude to ASSMS of GC University Lahore for creating a very appropriate atmosphere for research work. This research is partially supported by HEC Pakistan. The first author was mainly supported by CNCSIS Grant ID-PCE no. 51/2007.

^{*} Corresponding author.

E-mail addresses: dorin.popescu@imar.ro (D. Popescu), imranqureshi18@gmail.com (M.I. Qureshi).

2,12,13]). An algorithm to compute the Stanley depth is given in [9] and was used here to find several examples. Very important in our computations were the results from [3,6,15].

Let Q, Q' be two monomial primary ideals such that dim S/(Q + Q') = 0. Then

sdepth
$$S/(Q \cap Q') \leq \max\left\{\min\left\{\dim(S/Q'), \left\lceil \frac{\dim(S/Q)}{2} \right\rceil\right\}, \min\left\{\dim(S/Q), \left\lceil \frac{\dim(S/Q')}{2} \right\rceil\right\}\right\}$$

and the bound is reached when Q, Q' are non-zero irreducible monomial ideals (see Proposition 2.2, or more general in Corollary 2.4), $\lceil \frac{a}{2} \rceil$ being the smallest integer $\ge a/2$, $a \in \mathbf{Q}$.

Let Q_1 , Q_2 , Q_3 be three non-zero irreducible monomial ideals of S. If dim $S/(Q_1 + Q_2) = 0$ then

sdepth
$$(Q_1 \cap Q_2) \ge \left\lceil \frac{\dim(S/Q_1)}{2} \right\rceil + \left\lceil \frac{\dim(S/Q_2)}{2} \right\rceil$$

(see Lemma 4.3, or more general in Theorem 4.5). In this case, our bound is better than the bound given by [10] and [11] (see Remark 4.2). Using these results we show that $sdepth(Q_1 \cap Q_2) \ge depth(Q_1 \cap Q_2)$, and

sdepth
$$S/(Q_1 \cap Q_2 \cap Q_3) \ge \operatorname{depth} S/(Q_1 \cap Q_2 \cap Q_3)$$
,

that is Stanley's Conjecture holds for $Q_1 \cap Q_2$ and $S/(Q_1 \cap Q_2 \cap Q_3)$ (see Theorems 5.6, 5.9).

1. A lower bound for Stanley's depth of some cycle modules

We start with few simple lemmas which we include for the completeness of our paper.

Lemma 1.1. Let Q be a monomial primary ideal in $S = K[x_1, ..., x_n]$. Suppose that $\sqrt{Q} = (x_1, ..., x_r)$ where $1 \le r \le n$, Then there exists a Stanley decomposition

$$S/Q = \bigoplus uK[x_{r+1},\ldots,x_n],$$

where the sum runs on monomials $u \in K[x_1, ..., x_r] \setminus (Q \cap K[x_1, ..., x_r])$.

Proof. Given $u, v \in K[x_1, ..., x_r] \setminus (Q \cap K[x_1, ..., x_r])$ and $h, g \in K[x_{r+1}, ..., x_n]$ with uh = vg then we get u = v, g = h. Thus the given sum is direct. Note that there exist just a finite number of monomials in $K[x_1, ..., x_r] \setminus (Q \cap K[x_1, ..., x_r])$. Let $0 \neq \alpha \in (S \setminus Q)$ be a monomial. Then $\alpha = uf$, where $f \in K[x_{r+1}, ..., x_n]$ and $u \in K[x_1, ..., x_r]$. Since $\alpha \notin Q$ we have $u \notin Q$. Thus $S/Q \subset \bigoplus uK[x_{r+1}, ..., x_n]$, the other inclusion being trivial. \Box

Lemma 1.2. Let Q be a monomial primary ideal in $S = K[x_1, ..., x_n]$. Then sdepth $S/Q = \dim S/Q = \operatorname{depth} S/Q$.

Proof. Let dim S/Q = n - r for some $0 \le r \le n$. We have dim $S/Q \ge$ sdepth S/Q by [1, Theorem 2.4]. Renumbering variables we may suppose that $\sqrt{Q} = (x_1, \dots, x_r)$. Using the above lemma we get the converse inequality. As S/Q is Cohen Macaulay it follows dim S/Q = depth S/Q, which is enough. \Box

Lemma 1.3. Let I, J be two monomial ideals of $S = K[x_1, ..., x_n]$. Then

sdepth
$$(S/(I \cap J)) \ge \max\{\min\{\operatorname{sdepth}(S/I), \operatorname{sdepth}(I/(I \cap J))\},\min\{\operatorname{sdepth}(S/J), \operatorname{sdepth}(J/(I \cap J))\}\}.$$

Proof. Consider the following exact sequence of *S*-modules:

$$0 \to I/(I \cap J) \to S/(I \cap J) \to S/I \to 0.$$

By [14, Lemma 2.2], we have

$$\operatorname{sdepth}(S/(I \cap J)) \ge \min\{\operatorname{sdepth}(S/I), \operatorname{sdepth}(I/(I \cap J))\}.$$
 (1)

Similarly, we get

$$sdepth(S/(I \cap J)) \ge \min\{sdepth(S/J), sdepth(J/(I \cap J))\}.$$
(2)

The proof ends using (1) and (2). \Box

Proposition 1.4. Let Q, Q' be two monomial primary ideals in $S = K[x_1, ..., x_n]$ with different associated prime ideals. Suppose that $\sqrt{Q} = (x_1, ..., x_t)$, $\sqrt{Q'} = (x_{r+1}, ..., x_n)$ for some integers t, r with $0 \le r \le t \le n$. Then

$$sdepth(S/(Q \cap Q'))$$

$$\geq \max\left\{\min_{v}\{r, sdepth(Q' \cap K[x_{t+1}, \dots, x_n]), sdepth((Q':v) \cap K[x_{t+1}, \dots, x_n])\}, \\ \min_{w}\{n-t, sdepth(Q \cap K[x_1, \dots, x_r]), sdepth((Q:w) \cap K[x_1, \dots, x_r])\}\right\},$$

where v, w run in the set of monomials containing only variables from $\{x_{r+1}, \ldots, x_t\}, w \notin Q, v \notin Q'$.

Proof. If Q, or Q' is zero then the inequality holds trivially. If r = 0 then $Q \cap K[x_1, ..., x_r] = Q \cap K = 0$, and the inequality is clear. A similar case is t = n. Thus we may suppose $1 \le r \le t < n$. Applying Lemma 1.3 it is enough to show that

$$sdepth(Q'/(Q \cap Q')) \ge \min\{sdepth(Q' \cap K[x_{t+1}, \ldots, x_n]), sdepth((Q': v) \cap K[x_{t+1}, \ldots, x_n])\},\$$

where v is a monomial of $K[x_{r+1}, ..., x_n] \setminus (Q \cap Q')$. We have a canonical injective map

$$Q'/(Q \cap Q') \to S/Q.$$

By Lemma 1.1 we get

$$Q'/(Q \cap Q') = Q' \cap \left(\bigoplus uK[x_{t+1},\ldots,x_n]\right) = \bigoplus (Q' \cap uK[x_{t+1},\ldots,x_n]),$$

where *u* runs in the monomials of $K[x_1, \ldots, x_t] \setminus Q$. Here

$$Q' \cap uK[x_{t+1}, ..., x_n] = u(Q' \cap K[x_{t+1}, ..., x_n])$$
 if $u \in K[x_1, ..., x_r]$

and

$$Q' \cap uK[x_{t+1}, ..., x_n] = u((Q': u) \cap K[x_{t+1}, ..., x_n])$$
 if $u \notin K[x_1, ..., x_r]$.

If $u \in Q'$ then Q' : u = S. We have

$$Q'/(Q \cap Q') = \left(\bigoplus u(Q' \cap K[x_{t+1}, \dots, x_n])\right) \oplus \left(\bigoplus zK[x_{t+1}, \dots, x_n]\right)$$
$$\oplus \left(\bigoplus uv((Q':v) \cap K[x_{t+1}, \dots, x_n])\right),$$

where the sum runs for all monomials $u \in (K[x_1, ..., x_r] \setminus Q)$, $z \in Q' \setminus Q$ and $v \in K[x_{r+1}, ..., x_t]$, $v \notin Q' \cup Q$. Now it is enough to apply [14, Lemma 2.2] to get the above inequality. \Box

Theorem 1.5. Let Q and Q' be two irreducible monomial ideals of S. Then

sdepth_S S/(Q ∩ Q') ≥ max
$$\left\{ \min\left\{ \dim(S/Q'), \left\lceil \frac{\dim(S/Q) + \dim(S/(Q + Q'))}{2} \right\rceil \right\}, \\ \min\left\{ \dim(S/Q), \left\lceil \frac{\dim(S/Q') + \dim(S/(Q + Q'))}{2} \right\rceil \right\} \right\}.$$

Proof. If the associated prime ideals of Q, Q' are the same then the above inequality says that sdepth_S $S/(Q \cap Q') \ge \dim S/Q$, which follows from Lemma 1.2. Thus we may suppose that the associated prime ideals of Q, Q' are different. We may suppose that Q is generated in variables $\{x_1, \ldots, x_t\}$ and Q' is generated in variables $\{x_{r+1}, \ldots, x_p\}$ for some integers $0 \le r \le t \le p \le n$. Since $\dim(S/Q) = n - t$, $\dim(S/Q') = n - p + r$ and $\dim(S/(Q + Q')) = n - p$ we get

$$n-t-\left\lfloor\frac{p-t}{2}\right\rfloor = \left\lceil\frac{(n-t)+(n-p)}{2}\right\rceil = \left\lceil\frac{\dim(S/Q)+\dim(S/(Q+Q'))}{2}\right\rceil,$$

 $\lfloor \frac{a}{2} \rfloor$ being the biggest integer $\leq a/2$, $a \in \mathbf{Q}$. Similarly, we have

$$n-p+r-\left\lfloor\frac{r}{2}\right\rfloor=\left\lceil\frac{\dim(S/Q')+\dim(S/(Q+Q'))}{2}\right\rceil.$$

On the other hand by [6], and [15, Theorem 2.4] $\operatorname{sdepth}(Q' \cap K[x_{t+1}, \ldots, x_n]) = n - t - \lfloor \frac{p-t}{2} \rfloor$ and $\operatorname{sdepth}(Q \cap K[x_1, \ldots, x_r, x_{p+1}, \ldots, x_n]) = n - p + r - \lfloor \frac{r}{2} \rfloor$. In fact, the quoted result says in particular that sdepth of each irreducible ideal *L* depends only on the number of variables of the ring and the number of variables generating *L* (a description of irreducible monomial ideals is given in [18]). Since $(Q': v) \cap K[x_{t+1}, \ldots, x_n]$ is still an irreducible ideal generated by the same variables as Q' we conclude that

$$sdepth((Q':v) \cap K[x_{t+1},\ldots,x_n]) = sdepth(Q' \cap K[x_{t+1},\ldots,x_n]),$$

 $v \notin Q'$ being any monomial. Similarly,

$$sdepth((Q:w) \cap K[x_1,\ldots,x_r,x_{p+1},\ldots,x_n]) = sdepth(Q \cap K[x_1,\ldots,x_r,x_{p+1},\ldots,x_n]).$$

It follows that our inequality holds if p = n by Proposition 1.4.

Set $S' = K[x_1, ..., x_p]$, $q = Q \cap S'$, $q' = Q' \cap S'$. As above (case p = n) we get

$$sdepth_{S'}S'/(q \cap q') \ge \max\left\{\min\left\{\dim(S'/q'), \left\lceil \frac{\dim(S'/q)}{2} \right\rceil\right\}, \min\left\{\dim(S'/q), \left\lceil \frac{\dim(S'/q')}{2} \right\rceil\right\}\right\}$$
$$= \max\left\{\min\left\{r, \left\lceil \frac{p-t}{2} \right\rceil\right\}, \min\left\{p-t, \left\lceil \frac{r}{2} \right\rceil\right\}\right\}.$$

Using [9, Lemma 3.6], we have

$$\operatorname{sdepth}_{S}(S/(Q \cap Q')) = \operatorname{sdepth}_{S}(S/(q \cap q')S) = n - p + \operatorname{sdepth}_{S'}(S'/(q \cap q'))$$

It follows that

$$sdepth_{S}(S/(Q \cap Q')) \ge n - p + \max\left\{\min\left\{r, \left\lceil \frac{p-t}{2} \right\rceil\right\}, \min\left\{p-t, \left\lceil \frac{r}{2} \right\rceil\right\}\right\}$$
$$= \max\left\{\min\left\{n - p + r, n - p + \left\lceil \frac{p-t}{2} \right\rceil\right\}, \min\left\{n - t, n - p + \left\lceil \frac{r}{2} \right\rceil\right\}\right\}$$
$$= \max\left\{\min\left\{n - p + r, n - t - \left\lfloor \frac{p-t}{2} \right\rfloor\right\}, \min\left\{n - t, n - p + r - \left\lfloor \frac{r}{2} \right\rfloor\right\}\right\},$$

which is enough. \Box

2. An upper bound for Stanley's depth of some cycle modules

Let Q, Q' be two monomial primary ideals of S. Suppose that Q is generated in variables $\{x_1, \ldots, x_t\}$ and Q' is generated in variables $\{x_{r+1}, \ldots, x_n\}$ for some integers $1 \le r \le t < n$. Thus the prime ideals associated to $Q \cap Q'$ have dimension ≥ 1 and it follows depth($S/(Q \cap Q')) \ge 1$. Then sdepth($S/(Q \cap Q')) \ge 1$ by [5, Corollary 1.6], or [7, Theorem 1.4]. Let \mathcal{D} : $S/(Q \cap Q') = \bigoplus_{i=1}^{s} u_i K[Z_i]$ be a Stanley decomposition of $S/(Q \cap Q')$ with sdepth \mathcal{D} = sdepth($S/(Q \cap Q')$). Thus $|Z_i| \ge 1$ for all *i*. Renumbering (u_i, Z_i) we may suppose that $1 \in u_1 K[Z_1]$, so $u_1 = 1$. Note that Z_i cannot have mixed variables from $\{x_1, \ldots, x_r\}$ and $\{x_{t+1}, \ldots, x_n\}$ because otherwise $u_i K[Z_i]$ will be not a free $K[Z_i]$ -module. As $|Z_1| \ge 1$ we may have either $Z_1 \subset \{x_1, \ldots, x_r\}$ or $Z_1 \subset \{x_{t+1}, \ldots, x_n\}$.

Lemma 2.1. Suppose $Z_1 \subset \{x_1, \ldots, x_r\}$. Then sdepth $(\mathcal{D}) \leq \min\{r, \lceil \frac{n-t}{2} \rceil\}$.

Proof. Clearly sdepth(\mathcal{D}) $\leq |Z_1| \leq r$. Let $a \in \mathbb{N}$ be such that $x_i^a \in Q'$ for all $t < i \leq n$. Let $T = K[y_{t+1}, \ldots, y_n]$ and $\varphi: T \to S$ be the *K*-morphism given by $y_i \to x_i^a$. The composition map $\psi: T \to S \to S/(Q \cap Q')$ is injective. Note also that we may consider $Q' \cap K[x_{t+1}, \ldots, x_n] \subset S/(Q \cap Q')$ since $Q \cap K[x_{t+1}, \ldots, x_n] = 0$. We have

$$(y_{t+1},...,y_n) = \psi^{-1} (Q' \cap K[x_{t+1},...,x_n]) = \bigoplus \psi^{-1} (u_j K[Z_j] \cap Q' \cap K[x_{t+1},...,x_n]).$$

If $u_j K[Z_j] \cap Q' \cap K[x_{t+1}, ..., x_n] \neq 0$ then $u_j \in K[x_{t+1}, ..., x_n]$. Also we have $Z_j \subset \{x_{t+1}, ..., x_n\}$, otherwise $u_j K[Z_j]$ is not free over $K[Z_j]$. Moreover, if $\psi^{-1}(u_j K[Z_j] \cap Q' \cap K[x_{t+1}, ..., x_n]) \neq 0$ then $u_j = x_{t+1}^{b_{t+1}} ... x_n^{b_n}$, $b_i \in \mathbb{N}$ is such that if $x_i \notin Z_j$, $t < i \leq n$, then $a \mid b_i$, let us say $b_i = ac_i$ for some $c_i \in \mathbb{N}$. Denote $c_i = \lceil \frac{b_i}{a} \rceil$ when $x_i \in Z_j$. We get

$$\psi^{-1}(u_j K[Z_j] \cap Q' \cap K[x_{t+1}, \dots, x_n]) = y_{t+1}^{c_{t+1}} \dots y_n^{c_n} K[V_j],$$

where $V_j = \{y_i: t < i \le n, x_i \in Z_j\}$. Thus $\psi^{-1}(u_j K[Z_j] \cap Q' \cap K[x_{t+1}, \dots, x_n])$ is a Stanley space of T and so \mathcal{D} induces a Stanley decomposition \mathcal{D}' of (y_{t+1}, \dots, y_n) such that sdepth $(\mathcal{D}) \le$ sdepth $(\mathcal{D}') \le$ sdepth (y_{t+1}, \dots, y_n) because $|Z_j| = |V_j|$. Consequently sdepth $(\mathcal{D}) \le \lceil \frac{n-t}{2} \rceil$ by [3] and so sdepth $(\mathcal{D}) \le \min\{r, \lceil \frac{n-t}{2} \rceil\}$.

Note also that if t = n, or r = 0 then the same proof works; so sdepth $S/(Q \cap Q') = 0$, which is clear because depth $S/(Q \cap Q') = 0$ (see [5, Corollary 1.6]). \Box

Proposition 2.2. Let Q, Q' be two non-zero monomial primary ideals of S with different associated prime ideals. Suppose that $\dim(S/(Q + Q')) = 0$. Then

sdepth_S(S/(Q ∩ Q'))

$$\leq \max\left\{\min\left\{\dim(S/Q'), \left\lceil \frac{\dim(S/Q)}{2} \right\rceil\right\}, \min\left\{\dim(S/Q), \left\lceil \frac{\dim(S/Q')}{2} \right\rceil\right\}\right\}.$$

Proof. If one of Q, Q' is of dimension zero then depth($S/(Q \cap Q')$) = 0 and so by [5, Corollary 1.6] (or [7, Theorem 1.4]) sdepth($S/(Q \cap Q')$) = 0, that is the inequality holds trivially. Thus we may suppose after renumbering of variables that Q is generated in variables $\{x_1, \ldots, x_t\}$ and Q' is generated in variables $\{x_{r+1}, \ldots, x_p\}$ for some integers t, r, p with $1 \le r \le t , or <math>0 \le r < t \le n$. By hypothesis we have p = n. Let \mathcal{D} be the Stanley decomposition of $S/(Q \cap Q')$ such that sdepth(\mathcal{D}) = sdepth($S/(Q \cap Q')$). Let Z_1 be defined as in Lemma 2.1, that is $K[Z_1]$ is the Stanley space corresponding to 1. If $Z_1 \subset \{x_1, \ldots, x_r\}$ then by Lemma 2.1,

sdepth(
$$\mathcal{D}$$
) $\leq \min\left\{r, \left\lceil \frac{n-t}{2} \right\rceil\right\} = \min\left\{\dim(S/Q'), \left\lceil \frac{\dim(S/Q)}{2} \right\rceil\right\}$

If $Z_1 \subset \{x_{t+1}, \ldots, x_n\}$ we get analogously

sdepth(
$$\mathcal{D}$$
) $\leq \min\left\{n-t, \left\lceil \frac{r}{2} \right\rceil\right\} = \min\left\{\dim(S/Q), \left\lceil \frac{\dim(S/Q')}{2} \right\rceil\right\}$

which shows our inequality. \Box

Theorem 2.3. Let Q and Q' be two non-zero monomial primary ideals of S with different associated prime ideals. Then

sdepth_S S/(Q ∩ Q') ≤ max
$$\left\{ \min\left\{ \dim(S/Q'), \left\lceil \frac{\dim(S/Q) + \dim(S/(Q + Q'))}{2} \right\rceil \right\}, \\ \min\left\{ \dim(S/Q), \left\lceil \frac{\dim(S/Q' + \dim(S/(Q + Q')))}{2} \right\rceil \right\} \right\}.$$

Proof. As in the proof of Proposition 2.2 we may suppose that Q is generated in variables $\{x_1, \ldots, x_t\}$ and Q' is generated in variables $\{x_{r+1}, \ldots, x_p\}$ for some integers $1 \le r \le t , or <math>0 \le r < t \le n$ but now we have not in general p = n. Set $S' = K[x_1, \ldots, x_p]$, $q = Q \cap S'$, $q' = Q' \cap S'$. Using Proposition 2.2 we get

$$sdepth_{S}(S/(q \cap q')) \leq \max\left\{\min\left\{\dim(S/q'), \left\lceil \frac{\dim(S/q)}{2} \right\rceil\right\}, \min\left\{\dim(S/q), \left\lceil \frac{\dim(S/q')}{2} \right\rceil\right\}\right\}$$

By [9, Lemma 3.6] we have

$$\operatorname{sdepth}_{S}(S/(Q \cap Q')) = \operatorname{sdepth}_{S}(S/(q \cap q')S) = n - p + \operatorname{sdepth}_{S'}(S'/(q \cap q')).$$

As in the proof of Theorem 1.5, it follows that

$$sdepth_{S}(S/(Q \cap Q')) \leq n - p + \max\left\{\min\left\{r, \left\lceil \frac{p-t}{2} \right\rceil\right\}, \min\left\{p-t, \left\lceil \frac{r}{2} \right\rceil\right\}\right\}\right\}$$
$$= \max\left\{\min\left\{n - p + r, n - t - \left\lfloor \frac{p-t}{2} \right\rfloor\right\}, \min\left\{n - t, n - p + r - \left\lfloor \frac{r}{2} \right\rfloor\right\}\right\},$$

which is enough. \Box

Corollary 2.4. Let Q and Q' be two non-zero monomial irreducible ideals of S with different associated prime ideals. Then

$$sdepth_{S} S/(Q \cap Q') = \max\left\{\min\left\{\dim(S/Q'), \left\lceil \frac{\dim(S/Q) + \dim(S/(Q + Q'))}{2} \right\rceil\right\},\\ \min\left\{\dim(S/Q), \left\lceil \frac{\dim(S/Q') + \dim(S/(Q + Q'))}{2} \right\rceil\right\}\right\}.$$

For the proof apply Theorem 1.5 and Theorem 2.3.

Corollary 2.5. Let P and P' be two different non-zero monomial prime ideals of S, which are not included one in the other. Then

$$sdepth_{S} S/(P \cap P') = \max\left\{\min\left\{\dim(S/P'), \left\lceil\frac{\dim(S/P) + \dim(S/(P + P'))}{2}\right\rceil\right\},\\ \min\left\{\dim(S/P), \left\lceil\frac{\dim(S/P') + \dim(S/(P + P'))}{2}\right\rceil\right\}\right\}.$$

Proof. For the proof apply Corollary 2.4.

Corollary 2.6. Let \triangle be a simplicial complex in *n* vertices with only two different facets F, F'. Then

sdepth
$$K[\triangle] = \max\left\{\min\left\{|F'|, \left\lceil \frac{|F| + |F \cap F'|}{2}\right\rceil\right\}, \min\left\{|F|, \left\lceil \frac{|F'| + |F \cap F'|}{2}\right\rceil\right\}\right\}$$

3. An illustration

Let $S = K[x_1, ..., x_6]$, $Q = (x_1^2, x_2^2, x_3^2, x_4^2, x_1x_2x_4, x_1x_3x_4)$, $Q' = (x_4^2, x_5, x_6)$. By our Theorem 2.3 we get

sdepth
$$S/(Q \cap Q') \leq \max\left\{\min\left\{3, \left\lceil \frac{2}{2} \right\rceil\right\}, \min\left\{2, \left\lceil \frac{3}{2} \right\rceil\right\}\right\} = \max\{1, 2\} = 2.$$

On the other hand, we claim that $I = ((Q : w) \cap K[x_1, x_2, x_3]) = (x_1^2, x_2^2, x_3^2, x_1x_2, x_1x_3)$ for $w = x_4$ and sdepth $I = 1 < 2 = \text{sdepth}(Q \cap K[x_1, x_2, x_3])$. Thus our Proposition 1.4 gives

sdepth
$$S/(Q \cap Q') \ge \max\left\{\min\left\{3, \left\lceil \frac{2}{2} \right\rceil\right\}, \min\left\{2, \left\lceil \frac{3}{2} \right\rceil, 1\right\}\right\} = 1.$$

In this section, we will show that sdepth($S/(Q \cap Q')$) = 1.

First we prove our claim. Suppose that there exists a Stanley decomposition \mathcal{D} of I with sdepth $\mathcal{D} \ge 2$. Among the Stanley spaces of \mathcal{D} we have five important $x_1^2 K[Z_1]$, $x_2^2 K[Z_2]$, $x_3^2 K[Z_3]$,

 $x_1x_2K[Z_4]$, $x_1x_3K[Z_5]$ for some subsets $Z_i \subset \{x_1, x_2, x_3\}$ with $|Z_i| \ge 2$. If $Z_4 = \{x_1, x_2, x_3\}$ and Z_5 contains x_2 then the last two Stanley spaces will have a non-zero intersection and if Z_1 contains x_2 then the first and the fourth Stanley space will have non-zero intersection. Now if $x_2 \notin Z_5$ and $x_2 \notin Z_1$ then the first and the last space will intersect. Suppose that $Z_4 = \{x_1, x_2\}$. Then $x_2 \notin Z_1$ (resp. $x_1 \notin Z_2$) because otherwise the intersection of $x_1x_2K[Z_4]$ with the first Stanley space (resp. the second one) will be again non-zero. As $|Z_1|, |Z_2| \ge 2$ we get $Z_1 = \{x_1, x_3\}, Z_2 = \{x_2, x_3\}$. But $x_1 \notin Z_3$ because otherwise the first and the third Stanley space will contain $x_1^2x_3^2$, which is impossible. Similarly, $x_2 \notin Z_3$, which contradicts $|Z_3| \ge 2$. The case $Z_5 = \{x_1, x_3\}$ gives a similar contradiction.

Now suppose that $Z_4 = \{x_1, x_3\}$. If $Z_5 \supset \{x_1, x_2\}$ we see that the intersection of the last two Stanley spaces from the above five, contains $x_1^2 x_2 x_3$ and if $Z_5 = \{x_2, x_3\}$ we see that the intersection of the same Stanley spaces contains $x_1 x_2 x_3$. Contradiction (we saw that $Z_5 \neq \{x_1, x_3\}$)! Hence sdepth $\mathcal{D} \leq 1$ and so sdepth I = 1 using [5].

Next we show that sdepth $S/(Q \cap Q') = 1$. Suppose that \mathcal{D}' is a Stanley decomposition of $S/(Q \cap Q')$ such that sdepth $S/(Q \cap Q') = 2$. We claim that \mathcal{D}' has the form

$$S/(Q \cap Q') = \left(\bigoplus v K[x_5, x_6]\right) \oplus \left(\bigoplus_{i=1}^{s} u_i K[Z_i]\right)$$

for some monomials $v \in (K[x_1, ..., x_4] \setminus Q)$, $u_i \in (Q \cap K[x_1, ..., x_4])$ and $Z_i \subset \{x_1, x_2, x_3\}$. Indeed, let $v \in (K[x_1, ..., x_4] \setminus Q)$. Then vx_5 , vx_6 belong to some Stanley spaces of \mathcal{D}' , let us say uK[Z], u'K[Z']. The presence of x_5 in u or Z implies that Z does not contain any x_i , $1 \leq i \leq 3$, otherwise uK[Z] will be not free over K[Z]. Thus $Z \subset \{x_5, x_6\}$. As $|Z| \ge 2$ we get $Z = \{x_5, x_6\}$ and similarly $Z' = \{x_5, x_6\}$. Thus $vx_5x_6 \in (uK[Z] \cap u'K[Z'])$ and it follows that u = u', Z = Z' because the sum in \mathcal{D}' is direct. It follows that $u|vx_5, u|vx_6$ and so u|v, that is v = uf, f being a monomial in x_5, x_6 . As $v \in K[x_1, ..., x_4]$ we get f = 1 and so u = v.

A monomial $w \in (Q \setminus Q')$ is not a multiple of x_5 , x_6 , because otherwise $w \in Q'$. Suppose w belongs to a Stanley space uK[Z] of \mathcal{D}' . If $u \in (K[x_1, \ldots, x_4] \setminus Q)$ then as above \mathcal{D}' has also a Stanley space $uK[x_5, x_6]$ and both spaces contains u. This is false since the sum is direct. Thus $u \in (Q \cap K[x_1, \ldots, x_4])$, which shows our claim.

Hence \mathcal{D}' induces two Stanley decompositions $S/Q = \bigoplus_{v \in (K[x_1,...,x_4] \setminus Q)} vK[x_5, x_6]$, $Q/(Q \cap Q') = \bigoplus_{i=1}^{s} u_i K[Z_i]$, where $u_i \in (Q \cap K[x_1,...,x_4])$ and $Z_i \subset \{x_1, x_2, x_3\}$. Then we get the following Stanley decompositions

$$Q \cap K[x_1,...,x_3] = \bigoplus_{i=1, u_i \notin (x_4)}^{s} u_i K[Z_i], \qquad I = \bigoplus_{i=1, x_4 \mid u_i}^{s} (u_i/x_4) K[Z_i].$$

As $2 \leq \min_i |Z_i|$ we get sdepth $I \geq 2$. Contradiction!

4. A lower bound for Stanley's depth of some ideals

Let Q, Q' be two non-zero irreducible monomial ideals of S such that $\sqrt{Q} = (x_1, ..., x_t), \sqrt{Q'} = (x_{r+1}, ..., x_p)$ for some integers r, t, p with $1 \le r \le t , or <math>0 = r < t < p \le n$, or $1 \le r \le t = p \le n$.

Lemma 4.1. Suppose that p = n, t = r. Then

sdepth
$$(Q \cap Q') \ge \left\lceil \frac{r}{2} \right\rceil + \left\lceil \frac{n-r}{2} \right\rceil \ge n/2.$$

Proof. It follows $1 \le r < p$. Let $f \in Q \cap K[x_1, ..., x_r]$, $g \in Q' \cap K[x_{r+1}, ..., x_n]$ and $\mathcal{M}(T)$ be the monomials from an ideal *T*. The correspondence $(f, g) \to fg$ defines a map $\varphi : \mathcal{M}(Q \cap K[x_1, ..., x_r]) \times \mathbb{C}$

 $\mathcal{M}(Q' \cap K[x_{r+1}, \ldots, x_n]) \to \mathcal{M}(Q \cap Q')$, which is injective. If *w* is a monomial of $Q \cap Q'$, let us say w = fg for some monomials $f \in K[x_1, \ldots, x_r]$, $g \in K[x_{r+1}, \ldots, x_n]$ then $fg \in Q$ and so $f \in Q$ because the variables x_i , i > r are regular on S/Q. Similarly, $g \in Q'$ and so $w = \varphi((f, g))$, that is φ is surjective. Let \mathcal{D} be a Stanley decomposition of $Q \cap K[x_1, \ldots, x_r]$,

$$\mathcal{D}: \quad Q \cap K[x_1, \ldots, x_r] = \bigoplus_{i=1}^{s} u_i K[Z_i]$$

with sdepth \mathcal{D} = sdepth($Q \cap K[x_1, ..., x_r]$) and \mathcal{D}' a Stanley decomposition of $Q' \cap K[x_{r+1}, ..., x_n]$,

$$\mathcal{D}': \quad Q' \cap K[x_{r+1}, \dots, x_n] = \bigoplus_{j=1}^e v_j K[T_j]$$

with sdepth \mathcal{D}' = sdepth($Q' \cap K[x_{r+1}, ..., x_n]$). They induce a Stanley decomposition

$$\mathcal{D}'': \quad Q \cap Q' = \bigoplus_{j=1}^{e} \bigoplus_{i=1}^{s} u_i v_j K[Z_i \cup T_j]$$

because of the bijection φ . Thus

$$sdepth(Q \cap Q') \ge sdepth \mathcal{D}'' = \min_{i,j} (|Z_i| + |T_j|) \ge \min_i |Z_i| + \min_j |T_j|$$

= sdepth \mathcal{D} + sdepth \mathcal{D}'
= sdepth($Q \cap K[x_1, \dots, x_r]$) + sdepth($Q' \cap K[x_{r+1}, \dots, x_n]$)
= $\left(r - \left\lfloor \frac{r}{2} \right\rfloor\right) + \left(n - r - \left\lfloor \frac{n - r}{2} \right\rfloor\right) = \left\lceil \frac{r}{2} \right\rceil + \left\lceil \frac{n - r}{2} \right\rceil \ge n/2.$

Remark 4.2. Suppose that n = 8, r = 1. Then by the above lemma we get $\operatorname{sdepth}(Q \cap Q') \ge \lceil \frac{1}{2} \rceil + \lceil \frac{7}{2} \rceil = 5$. Since $|G(Q \cap Q')| = 7$ we get by [10,11] the same lower bound $\operatorname{sdepth}(Q \cap Q') \ge 8 - \lfloor \frac{7}{2} \rfloor = 5$. If n = 8, r = 2 then by [10,11] we have $\operatorname{sdepth}(Q \cap Q') \ge 8 - \lfloor \frac{12}{2} \rfloor = 2$ but our previous lemma gives $\operatorname{sdepth}(Q \cap Q') \ge \lceil \frac{2}{2} \rceil + \lceil \frac{6}{2} \rceil = 4$.

Lemma 4.3. *Suppose that* p = n*. Then*

$$\operatorname{sdepth}(Q \cap Q') \ge \left\lceil \frac{r}{2} \right\rceil + \left\lceil \frac{n-t}{2} \right\rceil.$$

Proof. We show that

$$Q \cap Q' = (Q \cap Q' \cap K[x_{r+1}, \dots, x_t])S$$

$$\oplus \left(\bigoplus_{w} w(((Q \cap Q'): w) \cap K[x_1, \dots, x_r, x_{t+1}, \dots, x_n])\right),$$

where *w* runs in the monomials of $K[x_{r+1}, ..., x_t] \setminus (Q \cap Q')$. Indeed, a monomial *h* of *S* has the form h = fg for some monomials $f \in K[x_{r+1}, ..., x_t]$, $g \in K[x_1, ..., x_r, x_{t+1}, ..., x_n]$. Since Q, Q' are

irreducible we see that $h \in Q \cap Q'$ either when f is a multiple of a minimal generator of $Q \cap Q' \cap K[x_{r+1}, \ldots, x_t]$, or $f \notin (Q \cap Q' \cap K[x_{r+1}, \ldots, x_t])$ and then

$$h \in f(((Q \cap Q'): f) \cap K[x_1, ..., x_r, x_{t+1}, ..., x_n]).$$

Let \mathcal{D} be a Stanley decomposition of $(Q \cap Q' \cap K[x_{r+1}, \dots, x_t])S$,

$$\mathcal{D}: \quad (Q \cap Q' \cap K[x_{r+1}, \ldots, x_t])S = \bigoplus_{i=1}^{s} u_i K[Z_i]$$

with sdepth \mathcal{D} = sdepth($Q \cap Q' \cap K[x_{r+1}, ..., x_t]$)S and for all $w \in (K[x_{r+1}, ..., x_t] \setminus (Q \cap Q'))$, let \mathcal{D}_w be a Stanley decomposition of $((Q \cap Q') : w) \cap K[x_1, ..., x_r, x_{t+1}, ..., x_n]$,

$$\mathcal{D}_w: \quad ((Q \cap Q'): w) \cap K[x_1, \dots, x_r, x_{t+1}, \dots, x_n] = \bigoplus_w \bigoplus_j v_{wj} K[T_{wj}]$$

with sdepth \mathcal{D}_w = sdepth(($(Q \cap Q'): w$) $\cap K[x_1, ..., x_r, x_{t+1}, ..., x_n]$). Since $K[x_{r+1}, ..., x_t] \setminus (Q \cap Q')$ contains just a finite set of monomials we get a Stanley decomposition of $Q \cap Q'$,

$$\mathcal{D}': \quad \mathcal{Q} \cap \mathcal{Q}' = \left(\bigoplus_{i=1}^{s} u_i K[Z_i]\right) \oplus \left(\bigoplus_{w} \bigoplus_{j} w v_{wj} K[T_{wj}]\right),$$

where *w* runs in the monomials of $K[x_{r+1}, \ldots, x_t] \setminus (Q \cap Q')$. Then

sdepth
$$\mathcal{D}' = \min_{w} \{ \text{sdepth } \mathcal{D}, \text{sdepth } \mathcal{D}_{w} \}$$

$$= \min_{w} \{ \text{sdepth} (Q \cap Q' \cap K[x_{r+1}, \dots, x_{t}]) S,$$

$$\text{sdepth} (((Q \cap Q') : w) \cap K[x_{1}, \dots, x_{r}, x_{t+1}, \dots, x_{n}]) \}.$$

But $((Q \cap Q'): w) \cap K[x_1, \dots, x_r, x_{t+1}, \dots, x_n]$ is still an intersection of two irreducible ideals and

sdepth
$$(((Q \cap Q'): w) \cap K[x_1, \ldots, x_r, x_{t+1}, \ldots, x_n]) \ge \left\lceil \frac{r}{2} \right\rceil + \left\lceil \frac{n-t}{2} \right\rceil$$

by Lemma 4.1. We have sdepth $(Q \cap Q' \cap K[x_{r+1}, ..., x_t]) \ge 1$ and so

$$\operatorname{sdepth}(Q \cap Q' \cap K[x_{r+1}, \ldots, x_t])S \ge 1 + n - t + r$$

by [9, Lemma 3.6]. Thus

$$\operatorname{sdepth}(Q \cap Q') \ge \operatorname{sdepth} \mathcal{D}' \ge \left\lceil \frac{r}{2} \right\rceil + \left\lceil \frac{n-t}{2} \right\rceil$$

Note that the proof goes even when $0 \le r < t \le n$ (anyway sdepth $Q \cap Q' \ge 1$ if n = t, r = 0). \Box

Lemma 4.4.

$$\operatorname{sdepth}(Q \cap Q') \ge n - p + \left\lceil \frac{r}{2} \right\rceil + \left\lceil \frac{p-t}{2} \right\rceil.$$

Proof. As usual we see that there are now (n - p) free variables and it is enough to apply [9, Lemma 3.6] and Lemma 4.3. \Box

Theorem 4.5. Let Q and Q' be two non-zero irreducible monomial ideals of S. Then

$$sdepth_{S}(Q \cap Q') \ge \dim(S/(Q + Q')) + \left\lceil \frac{\dim(S/Q') - \dim(S/(Q + Q'))}{2} \right\rceil$$
$$+ \left\lceil \frac{\dim(S/Q) - \dim(S/(Q + Q'))}{2} \right\rceil$$
$$\ge \left\lceil \frac{\dim(S/Q') + \dim(S/Q)}{2} \right\rceil.$$

Proof. After renumbering of variables, we may suppose as above that $\sqrt{Q} = (x_1, \ldots, x_t)$, $\sqrt{Q'} = (x_{r+1}, \ldots, x_p)$ for some integers r, t, p with $1 \le r \le t , or <math>0 = r < t < p \le n$, or $1 \le r \le t = p \le n$. If n = p, r = 0 then $\sqrt{Q} \subset \sqrt{Q'}$ and the inequality is trivial. It is enough to apply Lemma 4.4 because $n - p = \dim(S/(Q + Q'))$, $r = \dim(S/Q') - \dim(S/(Q + Q'))$, $p - t = \dim(S/Q) - \dim(S/(Q + Q'))$. \Box

Remark 4.6. If Q, Q' are non-zero irreducible monomial ideals of S with $\sqrt{Q} = \sqrt{Q'}$ then we have sdepth_S $(Q \cap Q') \ge 1 + \dim S/Q$.

Example 4.7. Let $S = K[x_1, x_2]$, $Q = (x_1)$, $Q' = (x_1^2, x_2)$. We have

sdepth
$$(Q \cap Q') \ge \left\lceil \frac{\dim(S/Q') + \dim(S/Q)}{2} \right\rceil = \left\lceil \frac{1+0}{2} \right\rceil = 1$$

by the above theorem. As $Q \cap Q'$ is not a principle ideal its Stanley depth is < 2. Thus

$$sdepth(Q \cap Q') = 1.$$

Example 4.8. Let $S = K[x_1, x_2, x_3, x_4, x_5]$, $Q = (x_1, x_2, x_3^2)$, $Q' = (x_3, x_4, x_5)$. As $\dim(S/(Q + Q')) = 0$, $\dim S/Q = 2$ and $\dim S/Q' = 2$ we get

sdepth
$$(Q \cap Q') \ge \left\lceil \frac{\dim(S/Q') + \dim(S/Q)}{2} \right\rceil = \left\lceil \frac{2+2}{2} \right\rceil = 2$$

by the above theorem. Note also that

sdepth
$$(Q \cap Q' \cap K[x_1, x_2, x_4, x_5]) = sdepth(x_1x_4, x_1x_5, x_2x_4, x_2x_5)K[x_1, x_2, x_4, x_5] = 3,$$

and

sdepth(((
$$(Q \cap Q'): x_3$$
) $\cap K[x_1, x_2, x_4, x_5]$) = sdepth($(x_1, x_2)K[x_1, x_2, x_4, x_5]$)
= $4 - \lfloor \frac{2}{2} \rfloor = 3$,

by [15]. But sdepth($Q \cap Q'$) \ge 3 because of the following Stanley decomposition

$$Q \cap Q' = x_1 x_4 K[x_1, x_4, x_5] \oplus x_1 x_5 K[x_1, x_2, x_5] \oplus x_2 x_4 K[x_1, x_2, x_4] \oplus x_2 x_5 K[x_2, x_4, x_5]$$

$$\oplus x_3^2 K[x_3, x_4, x_5] \oplus x_2 x_3 K[x_2, x_3, x_4] \oplus x_1 x_3 K[x_1, x_2, x_3] \oplus x_1 x_3 x_4 K[x_1, x_2, x_4, x_5]$$

$$\oplus x_1 x_3 x_5 K[x_1, x_3, x_5] \oplus x_2 x_3 x_5 K[x_2, x_3, x_4, x_5] \oplus x_1 x_2 x_4 x_5 K[x_1, x_2, x_4, x_5]$$

$$\oplus x_1 x_3^2 x_4 K[x_1, x_3, x_4, x_5] \oplus x_1 x_2 x_3 x_5 K[x_1, x_2, x_3, x_5] \oplus x_1 x_2 x_3^2 x_4 K[x_1, x_2, x_3, x_4, x_5]$$

5. Applications

Let $I \subset S$ be a non-zero monomial ideal. A. Rauf presented in [14] the following:

Question 5.1. Does it hold the inequality

sdepth $I \ge 1 + \text{sdepth } S/I$?

The importance of this question is given by the following:

Proposition 5.2. Suppose that Stanley's Conjecture holds for cyclic *S*-modules and the above question has a positive answer for all monomial ideals of *S*. Then Stanley's Conjecture holds for all monomial ideals of *S*.

For the proof note that sdepth $I \ge 1 + \text{sdepth } S/I \ge 1 + \text{depth } S/I = \text{depth } I$.

Remark 5.3. In [12] it is proved that Stanley's Conjecture holds for all multigraded cycle modules over $S = K[x_1, ..., x_5]$. If the above question has a positive answer then Stanley's Conjecture holds for all monomial ideals of *S*. Actually this is true for all square free monomial ideals of *S* as [13] shows.

We show that the above question holds for the intersection of two non-zero irreducible monomial ideals.

Proposition 5.4. *Question 5.1 has a positive answer for intersections of two non-zero irreducible monomial ideals.*

Proof. First suppose that Q, Q' have different associated prime ideals. After renumbering of variables we may suppose as above that $\sqrt{Q} = (x_1, ..., x_t)$, $\sqrt{Q'} = (x_{r+1}, ..., x_p)$ for some integers r, t, p with $1 \le r \le t , or <math>0 = r < t < p \le n$, or $1 \le r \le t = p \le n$. Then

$$\operatorname{sdepth}(Q \cap Q') \ge n - p + \left\lceil \frac{r}{2} \right\rceil + \left\lceil \frac{p-t}{2} \right\rceil$$

by Lemma 4.4. Note that

sdepth
$$(S/(Q \cap Q')) = n - p + \max\left\{\min\left\{r, \left\lceil \frac{p-t}{2} \right\rceil\right\}, \min\left\{p-t, \left\lceil \frac{r}{2} \right\rceil\right\}\right\}$$

by Corollary 2.4. Thus

$$1 + \operatorname{sdepth}(S/(Q \cap Q')) \leq n - p + \left\lceil \frac{r}{2} \right\rceil + \left\lceil \frac{p-t}{2} \right\rceil \leq \operatorname{sdepth}(Q \cap Q').$$

Finally, if Q, Q' have the same associated prime ideal then sdepth $(Q \cap Q') \ge 1 + \dim S/Q$ by Remark 4.6 and so sdepth $(Q \cap Q') \ge 1 + \operatorname{sdepth} S/(Q \cap Q')$. \Box

Next we will show that Stanley's Conjecture holds for intersections of two primary monomial ideals. We start with a simple lemma.

Lemma 5.5. Let Q, Q' be two primary ideals in $S = K[x_1, ..., x_n]$. Suppose $\sqrt{Q} = (x_1, ..., x_t)$ and $\sqrt{Q} = (x_{r+1}, ..., x_p)$ for integers $0 \le r \le t \le p \le n$. Then sdepth $(S/(Q \cap Q')) \ge depth(S/(Q \cap Q'))$, that is Stanley's Conjecture holds for $S/(Q \cap Q')$.

Proof. If either r = 0, or t = p then depth $S/(Q \cap Q') \leq n - p \leq \text{sdepth}(S/(Q \cap Q'))$ by [9, Lemma 3.6]. Now suppose that r > 0, t < p and let $S' = K[x_1, ..., x_p]$ and $q = Q \cap S'$, $q' = Q' \cap S'$. Consider the following exact sequence of S'-modules

$$0 \to S'/(q \cap q') \to S'/q \oplus S'/q' \to S'/(q+q') \to 0.$$

By Lemma 1.2

$$depth(S'/q \oplus S'/q') = \min\{depth(S'/q), depth(S'/q')\}$$
$$= \min\{dim(S'/q), dim(S'/q')\}$$
$$= \min\{r, p - t\} \ge 1 > 0$$
$$= depth(S'/(q + q')).$$

Thus by Depth Lemma (see e.g. [4])

$$\operatorname{depth}(S'/q \cap q') = \operatorname{depth}(S'/(q+q')) + 1 = 1.$$

But sdepth($S'/(q \cap q')$) ≥ 1 by [5, Corollary 1.6] and so

$$sdepth(S/(Q \cap Q')) = sdepth(S'/(q \cap q')) + n - p \ge 1 + n - p$$
$$= n - p + depth(S'/(q \cap q'))$$
$$= depth(S/(Q \cap Q'))$$

by [9, Lemma 3.6].

Theorem 5.6. Let Q, Q' be two non-zero irreducible ideals of S. Then $sdepth(Q \cap Q') \ge depth(Q \cap Q')$, that is Stanley's Conjecture holds for $Q \cap Q'$.

Proof. By Proposition 5.4, Question 5.1 has a positive answer, so by the proof of Proposition 5.2 it is enough to know that Stanley's Conjecture holds for $S/(Q \cap Q')$. This is given by the above lemma. \Box

Next we consider the cycle module given by an irredundant intersection of 3 irreducible ideals.

Lemma 5.7. Let Q_1, Q_2, Q_3 be three non-zero irreducible monomial ideals of $S = K[x_1, ..., x_n]$. Then

sdepth
$$((Q_2 \cap Q_3)/(Q_1 \cap Q_2 \cap Q_3))$$

$$\geq \dim(S/(Q_1 + Q_2 + Q_3)) + \left\lceil \frac{\dim(S/(Q_1 + Q_2)) - \dim(S/(Q_1 + Q_2 + Q_3))}{2} \right\rceil$$

$$+ \left\lceil \frac{\dim(S/(Q_1 + Q_3)) - \dim(S/(Q_1 + Q_2 + Q_3))}{2} \right\rceil$$
$$\geq \left\lceil \frac{\dim(S/(Q_1 + Q_2)) + \dim(S/(Q_1 + Q_3))}{2} \right\rceil.$$

If $Q_3 \subset Q_1 + Q_2$ then

$$sdepth((Q_2 \cap Q_3)/(Q_1 \cap Q_2 \cap Q_3)) \ge \left\lceil \frac{\dim(S/Q_1) + \dim(S/(Q_1 + Q_3))}{2} \right\rceil$$

Proof. Renumbering the variables we may assume that $\sqrt{Q_1} = (x_1, \ldots, x_t)$ and $\sqrt{Q_2 + Q_3} = (x_{r+1}, \ldots, x_p)$, where $0 \le r \le t . If <math>t = p$ then $\sqrt{Q_1 + Q_2} = \sqrt{Q_1 + Q_3}$ and the inequality is trivial by [9, Lemma 3.6]. Let $S' = K[x_1, \ldots, x_p]$ and $q_1 = Q_1 \cap S'$, $q_2 = Q_2 \cap S'$, $q_3 = Q_3 \cap S'$. We have a canonical injective map $(q_2 \cap q_3)/(q_1 \cap q_2 \cap q_3) \rightarrow S'/q_1$. Now by Lemma 1.1, we have

$$S'/q_1 = \bigoplus uK[x_{t+1},\ldots,x_p]$$

and so

$$(q_2 \cap q_3)/(q_1 \cap q_2 \cap q_3) = \bigoplus ((q_2 \cap q_3) \cap uK[x_{t+1}, \dots, x_p]),$$

where *u* runs in the monomials of $K[x_1, \ldots, x_t] \setminus (q_1 \cap K[x_1, \ldots, x_t])$. If $u \in K[x_1, \ldots, x_r]$ then

$$(q_2 \cap q_3) \cap uK[x_{t+1}, \ldots, x_p] = u(q_2 \cap q_3 \cap K[x_{t+1}, \ldots, x_p])$$

and if $u \notin K[x_1, \ldots, x_r]$ then

$$(q_2 \cap q_3) \cap uK[x_{t+1}, \dots, x_p] = u(((q_2 \cap q_3) : u) \cap K[x_{t+1}, \dots, x_p])$$

Since $(q_2 \cap q_3) : u$ is still an intersection of irreducible monomial ideals we get by Lemma 4.3 that

$$sdepth(((q_2 \cap q_3): u) \cap K[x_{t+1}, \dots, x_p])$$

$$\geqslant \left\lceil \frac{\dim K[x_{t+1}, \dots, x_p]/q_2 \cap K[x_{t+1}, \dots, x_p]}{2} \right\rceil + \left\lceil \frac{\dim K[x_{t+1}, \dots, x_p]/q_3 \cap K[x_{t+1}, \dots, x_p]}{2} \right\rceil$$

Also we have

$$q_2/(q_1 \cap q_2) = \bigoplus u(q_2 \cap K[x_{t+1}, \ldots, x_p]),$$

and it follows

$$S'/(q_1+q_2) \cong (S'/q_1)/(q_2/(q_1 \cap q_2)) = \bigoplus u(K[x_{t+1},\ldots,x_p]/q_2 \cap K[x_{t+1},\ldots,x_p]).$$

Thus dim $S'/(q_1 + q_2) = \dim K[x_{t+1}, ..., x_p]/q_2 \cap K[x_{t+1}, ..., x_p]$ and similarly

$$\dim S'/(q_1 + q_3) = \dim K[x_{t+1}, \dots, x_p]/q_3 \cap K[x_{t+1}, \dots, x_p]$$

Hence

$$sdepth((q_{2} \cap q_{3})/(q_{1} \cap q_{2} \cap q_{3})) \ge \left\lceil \frac{\dim(S'/(q_{1} + q_{2}))}{2} \right\rceil + \left\lceil \frac{\dim(S'/(q_{1} + q_{3}))}{2} \right\rceil$$
$$= \left\lceil \frac{\dim(S/(Q_{1} + Q_{2})) - \dim(S/(Q_{1} + Q_{2} + Q_{3}))}{2} \right\rceil$$
$$+ \left\lceil \frac{\dim(S/(Q_{1} + Q_{3})) - \dim(S/(Q_{1} + Q_{2} + Q_{3}))}{2} \right\rceil.$$

If $Q_3 \subset Q_1 + Q_2$ then $(q_2 \cap q_3) \cap K[x_{t+1}, \dots, x_p] = q_3 \cap K[x_{t+1}, \dots, x_p]$ and so

$$sdepth_{S'}(q_{2} \cap q_{3})/(q_{1} \cap q_{2} \cap q_{3}) \ge sdepth((q_{2} \cap q_{3}) \cap K[x_{t+1}, \dots, x_{p}])$$

$$= p - t - \left\lfloor \frac{ht(q_{3} \cap K[x_{t+1}, \dots, x_{p}])}{2} \right\rfloor$$

$$= \left\lceil \frac{p - t + \dim K[x_{t+1}, \dots, x_{p}]/q_{3} \cap K[x_{t+1}, \dots, x_{p}]}{2} \right\rceil$$

$$= \left\lceil \frac{\dim(S'/q_{1}) + \dim(S'/(q_{1} + q_{3}))}{2} \right\rceil.$$

Now it is enough to apply [9, Lemma 3.6]. \Box

Proposition 5.8. Let Q_1 , Q_2 , Q_3 be three non-zero irreducible ideals of S and $R = S/Q_1 \cap Q_2 \cap Q_3$. Suppose that dim $S/(Q_1 + Q_2 + Q_3) = 0$. Then

sdepth
$$R \ge \max\left\{\min\left\{\operatorname{sdepth} S/(Q_2 \cap Q_3), \left\lceil \frac{\dim(S/(Q_1 + Q_2))}{2} \right\rceil + \left\lceil \frac{\dim(S/(Q_1 + Q_3))}{2} \right\rceil \right\}, \min\left\{\operatorname{sdepth} S/(Q_1 \cap Q_3), \left\lceil \frac{\dim(S/(Q_1 + Q_2))}{2} \right\rceil + \left\lceil \frac{\dim(S/(Q_2 + Q_3))}{2} \right\rceil \right\}, \min\left\{\operatorname{sdepth} S/(Q_1 \cap Q_2), \left\lceil \frac{\dim(S/(Q_3 + Q_2))}{2} \right\rceil + \left\lceil \frac{\dim(S/(Q_1 + Q_3))}{2} \right\rceil \right\} \right\}.$$

For the proof apply Lemma 1.3 and Lemma 5.7.

Theorem 5.9. Let Q_1 , Q_2 , Q_3 be three non-zero irreducible ideals of S and $R = S/(Q_1 \cap Q_2 \cap Q_3)$. Then sdepth $R \ge \text{depth } R$, that is Stanley's Conjecture holds for R.

Proof. Applying [9, Lemma 3.6] we may reduce the problem to the case when

$$\dim S/(Q_1 + Q_2 + Q_3) = 0.$$

If one of the Q_i has dimension 0 then depth R = 0 and there exists nothing to show. Assume that all Q_i have dimension > 0. If one of the Q_i has dimension 1 then depth R = 1 and by [5] (or [7]) we get sdepth $R \ge 1 = \text{depth } R$. From now on we assume that all Q_i have dimension > 1.

If $Q_1 + Q_2$ has dimension 0 and $Q_3 \not\subset Q_1 + Q_2$ then from the exact sequence

$$0 \rightarrow R \rightarrow S/Q_1 \oplus S/Q_2 \cap Q_3 \rightarrow S/(Q_1 + Q_2) \cap (Q_1 + Q_3) \rightarrow 0,$$

we get depth R = 1 by Depth Lemma and we may apply [5] (or [7]) to get as above sdepth $R \ge 1 =$ depth R. If $Q_3 \subset Q_1 + Q_2$ then by Lemma 1.3, Theorem 5.6 and Lemma 5.7 we have

sdepth
$$R \ge \min\left\{ \operatorname{depth} S/(Q_2 \cap Q_3), \left\lceil \frac{\dim(S/Q_1) + \dim(S/(Q_1 + Q_3))}{2} \right\rceil \right\}$$

$$\ge 1 + \min\left\{ \dim S/(Q_2 + Q_3), \dim S/(Q_1 + Q_3) \right\}$$
$$= \operatorname{depth} R$$

from the above exact sequence and a similar one. Thus we may suppose that $Q_1 + Q_2$, $Q_2 + Q_3$, $Q_1 + Q_3$ have dimension ≥ 1 . Then from the exact sequence

$$0 \to S/(Q_1 + Q_2) \cap (Q_1 + Q_3) \to S/(Q_1 + Q_2) \oplus S/(Q_1 + Q_3) \to S/(Q_1 + Q_2 + Q_3) \to 0$$

we get by Depth Lemma depth $S/(Q_1 + Q_2) \cap (Q_1 + Q_3) = 1$. Renumbering Q_i we may suppose that $\dim(Q_2 + Q_3) \ge \max{\dim(Q_1 + Q_3), \dim(Q_2 + Q_1)}$. Using Proposition 5.8 we have

sdepth
$$R \ge \min\left\{ \operatorname{sdepth} S/Q_2 \cap Q_3, \left\lceil \frac{\dim(S/(Q_1+Q_2))}{2} \right\rceil + \left\lceil \frac{\dim(S/(Q_1+Q_3))}{2} \right\rceil \right\}$$

We may suppose that sdepth $R < \dim S/Q_i$ because otherwise sdepth $R \ge \dim S/Q_i \ge \operatorname{depth} R$. Thus using Theorem 1.5 we get

sdepth
$$R \ge \min\left\{\left\lceil \frac{\dim S/Q_3 + \dim S/(Q_2 + Q_3)}{2} \right\rceil, \left\lceil \frac{\dim(S/(Q_1 + Q_2))}{2} \right\rceil + \left\lceil \frac{\dim(S/(Q_1 + Q_3))}{2} \right\rceil \right\}$$

If $Q_1 \not\subset \sqrt{Q_3}$ then dim $S/Q_3 > \dim S/(Q_1 + Q_3)$ and we get

$$\dim S/Q_3 + \dim S/(Q_2 + Q_3) > \dim (S/(Q_1 + Q_2)) + \dim (S/(Q_1 + Q_3))$$

because dim $S/(Q_2 + Q_3)$ is maxim by our choice. It follows that

sdepth
$$R \ge \left\lceil \frac{\dim(S/(Q_1+Q_2))}{2} \right\rceil + \left\lceil \frac{\dim(S/(Q_1+Q_3))}{2} \right\rceil \ge 2.$$

But from the first above exact sequence we get depth R = 2 with Depth Lemma, that is sdepth $R \ge$ depth R.

If $Q_1 \not\subset \sqrt{Q_2}$ we note that dim $S/Q_2 + \dim S/(Q_2 + Q_3) > \dim(S/(Q_1 + Q_2)) + \dim(S/(Q_1 + Q_3))$ and we proceed similarly as above with Q_2 instead Q_3 . Note also that if $Q_1 \subset \sqrt{Q_2}$ and $Q_1 \subset \sqrt{Q_3}$ we get dim $S/(Q_2 + Q_3) \ge \dim S/(Q_2 + Q_1) = \dim S/Q_2$, respectively dim $S/(Q_2 + Q_3) \ge \dim S/(Q_3 + Q_1) = \dim S/Q_3$. Thus $Q_1 \subset \sqrt{Q_3} = \sqrt{Q_2}$ and it follows sdepth $R \ge \dim S/Q_2$, which is a contradiction. \Box

References

- [1] J. Apel, On a conjecture of R.P. Stanley, Part I Monomial ideals, J. Algebraic Combin. 17 (2003) 39-56.
- [2] I. Anwar, D. Popescu, Stanley conjecture in small embedding dimension, J. Algebra 318 (2007) 1027-1031.
- [3] C. Biro, D.M. Howard, M.T. Keller, W.T. Trotter, S.J. Young, Interval partitions and Stanley depth, J. Combin. Theory Ser. A (2009), in press, doi:10.1016/j.jcta.2009.07.008.
- [4] W. Bruns, J. Herzog, Cohen Macaulay Rings, revised edition, Cambridge University Press, Cambridge, 1996.
- [5] M. Cimpoeas, Stanley depth of monomial ideals in three variables, preprint, arXiv:math.AC/0807.2166, 2008.

2958

^[6] M. Cimpoeas, Stanley depth of complete intersection monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie 51 (99) (2008) 205–211.

- [7] M. Cimpoeas, Some remarks on the Stanley depth for multigraded modules, Le Mathematiche LXIII (II) (2008) 165-171.
- [8] J. Herzog, A. Soleyman Jahan, S. Yassemi, Stanley decompositions and partitionable simplicial complexes, J. Algebraic Combin. 27 (2008) 113–125.
- [9] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra 322 (9) (2009) 3151-3169.
- [10] M.T. Keller, S.J. Young, Stanley depth of squarefree monomial ideals, J. Algebra 322 (10) (2009) 3789-3792.
- [11] R. Okazaki, A lower bound of Stanley depth of monomial ideals, preprint, 2009.
- [12] D. Popescu, Stanley depth of multigraded modules, J. Algebra 321 (2009) 2782-2797.
- [13] D. Popescu, An inequality between depth and Stanley depth, Bull. Math. Soc. Sci. Math. Roumanie 52 (100) (2009) 377-382.
- [14] A. Rauf, Depth and Stanley depth of multigraded modules, Comm. Algebra, in press.
- [15] Y. Shen, Stanley depth of complete intersection monomial ideals and upper-discrete partitions, J. Algebra 321 (2009) 1285– 1292.
- [16] A. Soleyman Jahan, Prime filtrations of monomial ideals and polarizations, J. Algebra 312 (2007) 1011-1032.
- [17] R.P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982) 175-193.
- [18] R.H. Villarreal, Monomial Algebras, Marcel Dekker Inc., New York, 2001.