Computing the Stanley depth ${ }^{\text {th }}$

Dorin Popescu ${ }^{\text {a,* }}$, Muhammad Imran Qureshi ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Mathematics "Simion Stoilow", University of Bucharest, PO Box 1-764, Bucharest 014700, Romania
${ }^{\mathrm{b}}$ Abdus Salam School of Mathematical Sciences, GC University, Lahore, 68-B New Muslim town Lahore, Pakistan

ARTICLE INFO

Article history:

Received 25 November 2009
Available online 16 December 2009
Communicated by Steven Dale Cutkosky

Keywords:

Monomial ideals
Stanley decompositions
Stanley depth

Abstract

Let Q and Q^{\prime} be two monomial primary ideals of a polynomial algebra S over a field. We give an upper bound for the Stanley depth of $S /\left(Q \cap Q^{\prime}\right)$ which is reached if Q, Q^{\prime} are irreducible. Also we show that Stanley's Conjecture holds for $Q_{1} \cap Q_{2}$, $S /\left(Q_{1} \cap Q_{2} \cap Q_{3}\right),\left(Q_{i}\right)_{i}$ being some irreducible monomial ideals of S.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Let K be a field and $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over K in n variables and M a finitely generated multigraded (i.e. \mathbb{Z}^{n}-graded) S-module. Given $z \in M$ a homogeneous element in M and $Z \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$, let $z K[Z] \subset M$ be the linear K-subspace of all elements of the form $z f, f \in K[Z]$. This subspace is called Stanley space of dimension $|Z|$, if $z K[Z]$ is a free $K[Z]$-module. A Stanley decomposition of M is a presentation of the K-vector space M as a finite direct sum of Stanley spaces $\mathcal{D}: M=\bigoplus_{i=1}^{r} z_{i} K\left[Z_{i}\right]$. Set sdepth $\mathcal{D}=\min \left\{\left|Z_{i}\right|: i=1, \ldots, r\right\}$. The number

$$
\operatorname{sdepth}(M):=\max \{\operatorname{sdepth}(\mathcal{D}): \mathcal{D} \text { is a Stanley decomposition of } M\}
$$

is called the Stanley depth of M. This is a combinatorial invariant which has some common properties with the homological invariant depth. Stanley conjectured (see [17]) that sdepth $M \geqslant \operatorname{depth} M$, but this conjecture is still open for a long time in spite of some results obtained mainly for $n \leqslant 5$ (see $[1,16,8$,

[^0]0021-8693/\$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2009.11.025
$2,12,13$]). An algorithm to compute the Stanley depth is given in [9] and was used here to find several examples. Very important in our computations were the results from $[3,6,15]$.

Let Q, Q^{\prime} be two monomial primary ideals such that $\operatorname{dim} S /\left(Q+Q^{\prime}\right)=0$. Then
sdepth $S /\left(Q \cap Q^{\prime}\right) \leqslant \max \left\{\min \left\{\operatorname{dim}\left(S / Q^{\prime}\right),\left\lceil\frac{\operatorname{dim}(S / Q)}{2}\right\rceil\right\}, \min \left\{\operatorname{dim}(S / Q),\left\lceil\frac{\operatorname{dim}\left(S / Q^{\prime}\right)}{2}\right\rceil\right\}\right\}$,
and the bound is reached when Q, Q^{\prime} are non-zero irreducible monomial ideals (see Proposition 2.2, or more general in Corollary 2.4), $\left\lceil\frac{a}{2}\right\rceil$ being the smallest integer $\geqslant a / 2, a \in \mathbf{Q}$.

Let Q_{1}, Q_{2}, Q_{3} be three non-zero irreducible monomial ideals of S. If $\operatorname{dim} S /\left(Q_{1}+Q_{2}\right)=0$ then

$$
\operatorname{sdepth}\left(Q_{1} \cap Q_{2}\right) \geqslant\left\lceil\frac{\operatorname{dim}\left(S / Q_{1}\right)}{2}\right\rceil+\left\lceil\frac{\operatorname{dim}\left(S / Q_{2}\right)}{2}\right\rceil
$$

(see Lemma 4.3, or more general in Theorem 4.5). In this case, our bound is better than the bound given by [10] and [11] (see Remark 4.2). Using these results we show that sdepth $\left(Q_{1} \cap Q_{2}\right) \geqslant$ $\operatorname{depth}\left(Q_{1} \cap Q_{2}\right)$, and

$$
\text { sdepth } S /\left(Q_{1} \cap Q_{2} \cap Q_{3}\right) \geqslant \operatorname{depth} S /\left(Q_{1} \cap Q_{2} \cap Q_{3}\right) \text {, }
$$

that is Stanley's Conjecture holds for $Q_{1} \cap Q_{2}$ and $S /\left(Q_{1} \cap Q_{2} \cap Q_{3}\right)$ (see Theorems 5.6, 5.9).

1. A lower bound for Stanley's depth of some cycle modules

We start with few simple lemmas which we include for the completeness of our paper.
Lemma 1.1. Let Q be a monomial primary ideal in $S=K\left[x_{1}, \ldots, x_{n}\right]$. Suppose that $\sqrt{Q}=\left(x_{1}, \ldots, x_{r}\right)$ where $1 \leqslant r \leqslant n$, Then there exists a Stanley decomposition

$$
S / Q=\bigoplus u K\left[x_{r+1}, \ldots, x_{n}\right]
$$

where the sum runs on monomials $u \in K\left[x_{1}, \ldots, x_{r}\right] \backslash\left(Q \cap K\left[x_{1}, \ldots, x_{r}\right]\right)$.
Proof. Given $u, v \in K\left[x_{1}, \ldots, x_{r}\right] \backslash\left(Q \cap K\left[x_{1}, \ldots, x_{r}\right]\right)$ and $h, g \in K\left[x_{r+1}, \ldots, x_{n}\right]$ with $u h=v g$ then we get $u=v, g=h$. Thus the given sum is direct. Note that there exist just a finite number of monomials in $K\left[x_{1}, \ldots, x_{r}\right] \backslash\left(Q \cap K\left[x_{1}, \ldots, x_{r}\right]\right)$. Let $0 \neq \alpha \in(S \backslash Q)$ be a monomial. Then $\alpha=u f$, where $f \in$ $K\left[x_{r+1}, \ldots, x_{n}\right]$ and $u \in K\left[x_{1}, \ldots, x_{r}\right]$. Since $\alpha \notin Q$ we have $u \notin Q$. Thus $S / Q \subset \bigoplus u K\left[x_{r+1}, \ldots, x_{n}\right]$, the other inclusion being trivial.

Lemma 1.2. Let Q be a monomial primary ideal in $S=K\left[x_{1}, \ldots, x_{n}\right]$. Then sdepth $S / Q=\operatorname{dim} S / Q=$ depth S / Q.

Proof. Let $\operatorname{dim} S / Q=n-r$ for some $0 \leqslant r \leqslant n$. We have $\operatorname{dim} S / Q \geqslant \operatorname{sdepth} S / Q$ by [1, Theorem 2.4]. Renumbering variables we may suppose that $\sqrt{Q}=\left(x_{1}, \ldots, x_{r}\right)$. Using the above lemma we get the converse inequality. As S / Q is Cohen Macaulay it follows $\operatorname{dim} S / Q=\operatorname{depth} S / Q$, which is enough.

Lemma 1.3. Let I, J be two monomial ideals of $S=K\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
\begin{aligned}
\operatorname{sdepth}(S /(I \cap J)) \geqslant & \max \{\min \{\operatorname{sdepth}(S / I), \operatorname{sdepth}(I /(I \cap J))\}, \\
& \min \{\operatorname{sdepth}(S / J), \operatorname{sdepth}(J /(I \cap J))\}\} .
\end{aligned}
$$

Proof. Consider the following exact sequence of S-modules:

$$
0 \rightarrow I /(I \cap J) \rightarrow S /(I \cap J) \rightarrow S / I \rightarrow 0
$$

By [14, Lemma 2.2], we have

$$
\begin{equation*}
\operatorname{sdepth}(S /(I \cap J)) \geqslant \min \{\operatorname{sdepth}(S / I), \operatorname{sdepth}(I /(I \cap J))\} . \tag{1}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
\operatorname{sdepth}(S /(I \cap J)) \geqslant \min \{\operatorname{sdepth}(S / J), \operatorname{sdepth}(J /(I \cap J))\} . \tag{2}
\end{equation*}
$$

The proof ends using (1) and (2).
Proposition 1.4. Let Q, Q^{\prime} be two monomial primary ideals in $S=K\left[x_{1}, \ldots, x_{n}\right]$ with different associated prime ideals. Suppose that $\sqrt{Q}=\left(x_{1}, \ldots, x_{t}\right), \sqrt{Q^{\prime}}=\left(x_{r+1}, \ldots, x_{n}\right)$ for some integers t, r with $0 \leqslant r \leqslant t \leqslant n$. Then

$$
\begin{aligned}
& \operatorname{sdepth}\left(S /\left(Q \cap Q^{\prime}\right)\right) \\
& \quad \geqslant \max \left\{\min _{v}\left\{r, \operatorname{sdepth}\left(Q^{\prime} \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right), \operatorname{sdepth}\left(\left(Q^{\prime}: v\right) \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right)\right\},\right. \\
& \left.\quad \min _{w}\left\{n-t, \operatorname{sdepth}\left(Q \cap K\left[x_{1}, \ldots, x_{r}\right]\right), \operatorname{sdepth}\left((Q: w) \cap K\left[x_{1}, \ldots, x_{r}\right]\right)\right\}\right\},
\end{aligned}
$$

where v, w run in the set of monomials containing only variables from $\left\{x_{r+1}, \ldots, x_{t}\right\}, w \notin Q, v \notin Q^{\prime}$.
Proof. If Q, or Q^{\prime} is zero then the inequality holds trivially. If $r=0$ then $Q \cap K\left[x_{1}, \ldots, x_{r}\right]=$ $Q \cap K=0$, and the inequality is clear. A similar case is $t=n$. Thus we may suppose $1 \leqslant r \leqslant t<n$. Applying Lemma 1.3 it is enough to show that

$$
\operatorname{sdepth}\left(Q^{\prime} /\left(Q \cap Q^{\prime}\right)\right) \geqslant \min \left\{\operatorname{sdepth}\left(Q^{\prime} \cap K\left[x_{t+1}, \ldots x_{n}\right]\right), \operatorname{sdepth}\left(\left(Q^{\prime}: v\right) \cap K\left[x_{t+1}, \ldots x_{n}\right]\right)\right\}
$$

where v is a monomial of $K\left[x_{r+1}, \ldots, x_{n}\right] \backslash\left(Q \cap Q^{\prime}\right)$. We have a canonical injective map

$$
Q^{\prime} /\left(Q \cap Q^{\prime}\right) \rightarrow S / Q
$$

By Lemma 1.1 we get

$$
Q^{\prime} /\left(Q \cap Q^{\prime}\right)=Q^{\prime} \cap\left(\bigoplus u K\left[x_{t+1}, \ldots, x_{n}\right]\right)=\bigoplus\left(Q^{\prime} \cap u K\left[x_{t+1}, \ldots, x_{n}\right]\right)
$$

where u runs in the monomials of $K\left[x_{1}, \ldots, x_{t}\right] \backslash Q$. Here

$$
Q^{\prime} \cap u K\left[x_{t+1}, \ldots, x_{n}\right]=u\left(Q^{\prime} \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right) \quad \text { if } u \in K\left[x_{1}, \ldots, x_{r}\right]
$$

and

$$
Q^{\prime} \cap u K\left[x_{t+1}, \ldots, x_{n}\right]=u\left(\left(Q^{\prime}: u\right) \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right) \quad \text { if } u \notin K\left[x_{1}, \ldots, x_{r}\right] .
$$

If $u \in Q^{\prime}$ then $Q^{\prime}: u=S$. We have

$$
\begin{aligned}
Q^{\prime} /\left(Q \cap Q^{\prime}\right)= & \left(\bigoplus u\left(Q^{\prime} \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right)\right) \oplus\left(\bigoplus z K\left[x_{t+1}, \ldots, x_{n}\right]\right) \\
& \oplus\left(\bigoplus u v\left(\left(Q^{\prime}: v\right) \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right)\right),
\end{aligned}
$$

where the sum runs for all monomials $u \in\left(K\left[x_{1}, \ldots, x_{r}\right] \backslash Q\right), z \in Q^{\prime} \backslash Q$ and $v \in K\left[x_{r+1}, \ldots, x_{t}\right]$, $v \notin Q^{\prime} \cup Q$. Now it is enough to apply [14, Lemma 2.2] to get the above inequality.

Theorem 1.5. Let Q and Q^{\prime} be two irreducible monomial ideals of S. Then

$$
\begin{aligned}
\operatorname{sdepth}_{S} S /\left(Q \cap Q^{\prime}\right) \geqslant & \max \left\{\min \left\{\operatorname{dim}\left(S / Q^{\prime}\right),\left\lceil\frac{\operatorname{dim}(S / Q)+\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)}{2}\right\rceil\right\},\right. \\
& \left.m i n\left\{\operatorname{dim}(S / Q),\left\lceil\frac{\operatorname{dim}\left(S / Q^{\prime}\right)+\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)}{2}\right\rceil\right\}\right\}
\end{aligned}
$$

Proof. If the associated prime ideals of Q, Q^{\prime} are the same then the above inequality says that sdepth $_{S} S /\left(Q \cap Q^{\prime}\right) \geqslant \operatorname{dim} S / Q$, which follows from Lemma 1.2 . Thus we may suppose that the associated prime ideals of Q, Q^{\prime} are different. We may suppose that Q is generated in variables $\left\{x_{1}, \ldots, x_{t}\right\}$ and Q^{\prime} is generated in variables $\left\{x_{r+1}, \ldots, x_{p}\right\}$ for some integers $0 \leqslant r \leqslant t \leqslant p \leqslant n$. Since $\operatorname{dim}(S / Q)=n-t, \operatorname{dim}\left(S / Q^{\prime}\right)=n-p+r$ and $\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)=n-p$ we get

$$
n-t-\left\lfloor\frac{p-t}{2}\right\rfloor=\left\lceil\frac{(n-t)+(n-p)}{2}\right\rceil=\left\lceil\frac{\operatorname{dim}(S / Q)+\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)}{2}\right\rceil
$$

$\left\lfloor\frac{a}{2}\right\rfloor$ being the biggest integer $\leqslant a / 2, a \in \mathbf{Q}$. Similarly, we have

$$
n-p+r-\left\lfloor\frac{r}{2}\right\rfloor=\left\lceil\frac{\operatorname{dim}\left(S / Q^{\prime}\right)+\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)}{2}\right\rceil
$$

On the other hand by [6], and [15, Theorem 2.4] sdepth $\left(Q^{\prime} \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right)=n-t-\left\lfloor\frac{p-t}{2}\right\rfloor$ and $\operatorname{sdepth}\left(Q \cap K\left[x_{1}, \ldots, x_{r}, x_{p+1}, \ldots, x_{n}\right]\right)=n-p+r-\left\lfloor\frac{r}{2}\right\rfloor$. In fact, the quoted result says in particular that sdepth of each irreducible ideal L depends only on the number of variables of the ring and the number of variables generating L (a description of irreducible monomial ideals is given in [18]). Since ($\left.Q^{\prime}: v\right) \cap K\left[x_{t+1}, \ldots, x_{n}\right]$ is still an irreducible ideal generated by the same variables as Q^{\prime} we conclude that

$$
\operatorname{sdepth}\left(\left(Q^{\prime}: v\right) \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right)=\operatorname{sdepth}\left(Q^{\prime} \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right),
$$

$v \notin Q^{\prime}$ being any monomial. Similarly,

$$
\operatorname{sdepth}\left((Q: w) \cap K\left[x_{1}, \ldots, x_{r}, x_{p+1}, \ldots, x_{n}\right]\right)=\operatorname{sdepth}\left(Q \cap K\left[x_{1}, \ldots, x_{r}, x_{p+1}, \ldots, x_{n}\right]\right)
$$

It follows that our inequality holds if $p=n$ by Proposition 1.4.
Set $S^{\prime}=K\left[x_{1}, \ldots, x_{p}\right], q=Q \cap S^{\prime}, q^{\prime}=Q^{\prime} \cap S^{\prime}$. As above (case $p=n$) we get

$$
\begin{aligned}
\operatorname{sdepth}_{S^{\prime}} S^{\prime} /\left(q \cap q^{\prime}\right) & \geqslant \max \left\{\min \left\{\operatorname{dim}\left(S^{\prime} / q^{\prime}\right),\left\lceil\frac{\operatorname{dim}\left(S^{\prime} / q\right)}{2}\right\rceil\right\}, \min \left\{\operatorname{dim}\left(S^{\prime} / q\right),\left\lceil\frac{\operatorname{dim}\left(S^{\prime} / q^{\prime}\right)}{2}\right\rceil\right\}\right\} \\
& =\max \left\{\min \left\{r,\left\lceil\frac{p-t}{2}\right\rceil\right\}, \min \left\{p-t,\left\lceil\frac{r}{2}\right\rceil\right\}\right\}
\end{aligned}
$$

Using [9, Lemma 3.6], we have

$$
\operatorname{sdepth}_{S}\left(S /\left(Q \cap Q^{\prime}\right)\right)=\operatorname{sdepth}_{S}\left(S /\left(q \cap q^{\prime}\right) S\right)=n-p+\operatorname{sdepth}_{S^{\prime}}\left(S^{\prime} /\left(q \cap q^{\prime}\right)\right)
$$

It follows that

$$
\begin{aligned}
\operatorname{sdepth}_{S}\left(S /\left(Q \cap Q^{\prime}\right)\right) & \geqslant n-p+\max \left\{\min \left\{r,\left\lceil\frac{p-t}{2}\right\rceil\right\}, \min \left\{p-t,\left\lceil\frac{r}{2}\right\rceil\right\}\right\} \\
& =\max \left\{\min \left\{n-p+r, n-p+\left\lceil\frac{p-t}{2}\right\rceil\right\}, \min \left\{n-t, n-p+\left[\frac{r}{2}\right\rceil\right\}\right\} \\
& =\max \left\{\min \left\{n-p+r, n-t-\left\lfloor\frac{p-t}{2}\right]\right\}, \min \left\{n-t, n-p+r-\left\lfloor\frac{r}{2}\right]\right\}\right\},
\end{aligned}
$$

which is enough.

2. An upper bound for Stanley's depth of some cycle modules

Let Q, Q^{\prime} be two monomial primary ideals of S. Suppose that Q is generated in variables $\left\{x_{1}, \ldots, x_{t}\right\}$ and Q^{\prime} is generated in variables $\left\{x_{r+1}, \ldots, x_{n}\right\}$ for some integers $1 \leqslant r \leqslant t<n$. Thus the prime ideals associated to $Q \cap Q^{\prime}$ have dimension $\geqslant 1$ and it follows depth $\left(S /\left(Q \cap Q^{\prime}\right)\right) \geqslant 1$. Then $\operatorname{sdepth}\left(S /\left(Q \cap Q^{\prime}\right)\right) \geqslant 1$ by [5, Corollary 1.6], or [7, Theorem 1.4]. Let $\mathcal{D}: S /\left(Q \cap Q^{\prime}\right)=\bigoplus_{i=1}^{s} u_{i} K\left[Z_{i}\right]$ be a Stanley decomposition of $S /\left(Q \cap Q^{\prime}\right)$ with sdepth $\mathcal{D}=\operatorname{sdepth}\left(S /\left(Q \cap Q^{\prime}\right)\right)$. Thus $\left|Z_{i}\right| \geqslant 1$ for all i. Renumbering (u_{i}, Z_{i}) we may suppose that $1 \in u_{1} K\left[Z_{1}\right]$, so $u_{1}=1$. Note that Z_{i} cannot have mixed variables from $\left\{x_{1}, \ldots, x_{r}\right\}$ and $\left\{x_{t+1}, \ldots, x_{n}\right\}$ because otherwise $u_{i} K\left[Z_{i}\right]$ will be not a free $K\left[Z_{i}\right]$-module. As $\left|Z_{1}\right| \geqslant 1$ we may have either $Z_{1} \subset\left\{x_{1}, \ldots, x_{r}\right\}$ or $Z_{1} \subset\left\{x_{t+1}, \ldots, x_{n}\right\}$.

Lemma 2.1. Suppose $Z_{1} \subset\left\{x_{1}, \ldots, x_{r}\right\}$. Then sdepth $(\mathcal{D}) \leqslant \min \left\{r,\left\lceil\frac{n-t}{2}\right\rceil\right\}$.
Proof. Clearly $\operatorname{sdepth}(\mathcal{D}) \leqslant\left|Z_{1}\right| \leqslant r$. Let $a \in \mathbb{N}$ be such that $x_{i}^{a} \in Q^{\prime}$ for all $t<i \leqslant n$. Let $T=$ $K\left[y_{t+1}, \ldots, y_{n}\right]$ and $\varphi: T \rightarrow S$ be the K-morphism given by $y_{i} \rightarrow x_{i}^{a}$. The composition map $\psi: T \rightarrow$ $S \rightarrow S /\left(Q \cap Q^{\prime}\right)$ is injective. Note also that we may consider $Q^{\prime} \cap K\left[x_{t+1}, \ldots, x_{n}\right] \subset S /\left(Q \cap Q^{\prime}\right)$ since $Q \cap K\left[x_{t+1}, \ldots, x_{n}\right]=0$. We have

$$
\left(y_{t+1}, \ldots, y_{n}\right)=\psi^{-1}\left(Q^{\prime} \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right)=\bigoplus \psi^{-1}\left(u_{j} K\left[Z_{j}\right] \cap Q^{\prime} \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right)
$$

If $u_{j} K\left[Z_{j}\right] \cap Q^{\prime} \cap K\left[x_{t+1}, \ldots, x_{n}\right] \neq 0$ then $u_{j} \in K\left[x_{t+1}, \ldots, x_{n}\right]$. Also we have $Z_{j} \subset\left\{x_{t+1}, \ldots, x_{n}\right\}$, otherwise $u_{j} K\left[Z_{j}\right]$ is not free over $K\left[Z_{j}\right]$. Moreover, if $\psi^{-1}\left(u_{j} K\left[Z_{j}\right] \cap Q^{\prime} \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right) \neq 0$ then $u_{j}=x_{t+1}^{b_{t+1}} \ldots x_{n}^{b_{n}}, b_{i} \in \mathbb{N}$ is such that if $x_{i} \notin Z_{j}, t<i \leqslant n$, then $a \mid b_{i}$, let us say $b_{i}=a c_{i}$ for some $c_{i} \in \mathbb{N}$. Denote $c_{i}=\left\lceil\frac{b_{i}}{a}\right\rceil$ when $x_{i} \in Z_{j}$. We get

$$
\psi^{-1}\left(u_{j} K\left[Z_{j}\right] \cap Q^{\prime} \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right)=y_{t+1}^{c_{t+1}} \ldots y_{n}^{c_{n}} K\left[V_{j}\right],
$$

where $V_{j}=\left\{y_{i}: t<i \leqslant n, x_{i} \in Z_{j}\right\}$. Thus $\psi^{-1}\left(u_{j} K\left[Z_{j}\right] \cap Q^{\prime} \cap K\left[x_{t+1}, \ldots, x_{n}\right]\right)$ is a Stanley space of T and so \mathcal{D} induces a Stanley decomposition \mathcal{D}^{\prime} of $\left(y_{t+1}, \ldots, y_{n}\right)$ such that $\operatorname{sdepth}(\mathcal{D}) \leqslant$ $\operatorname{sdepth}\left(\mathcal{D}^{\prime}\right) \leqslant \operatorname{sdepth}\left(y_{t+1}, \ldots, y_{n}\right)$ because $\left|Z_{j}\right|=\left|V_{j}\right|$. Consequently $\operatorname{sdepth}(\mathcal{D}) \leqslant\left\lceil\frac{n-t}{2}\right\rceil$ by [3] and so sdepth $(\mathcal{D}) \leqslant \min \left\{r,\left\lceil\frac{n-t}{2}\right\rceil\right\}$.

Note also that if $t=n$, or $r=0$ then the same proof works; so sdepth $S /\left(Q \cap Q^{\prime}\right)=0$, which is clear because depth $S /\left(Q \cap Q^{\prime}\right)=0$ (see [5, Corollary 1.6]).

Proposition 2.2. Let Q, Q^{\prime} be two non-zero monomial primary ideals of S with different associated prime ideals. Suppose that $\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)=0$. Then

$$
\begin{aligned}
& \operatorname{sdepth}_{S}\left(S /\left(Q \cap Q^{\prime}\right)\right) \\
& \quad \leqslant \max \left\{\min \left\{\operatorname{dim}\left(S / Q^{\prime}\right),\left\lceil\frac{\operatorname{dim}(S / Q)}{2}\right\rceil\right\}, \min \left\{\operatorname{dim}(S / Q),\left\lceil\frac{\operatorname{dim}\left(S / Q^{\prime}\right)}{2}\right\rceil\right\}\right\} .
\end{aligned}
$$

Proof. If one of Q, Q^{\prime} is of dimension zero then $\operatorname{depth}\left(S /\left(Q \cap Q^{\prime}\right)\right)=0$ and so by [5, Corollary 1.6] (or [7, Theorem 1.4]) $\operatorname{sdepth}\left(S /\left(Q \cap Q^{\prime}\right)\right)=0$, that is the inequality holds trivially. Thus we may suppose after renumbering of variables that Q is generated in variables $\left\{x_{1}, \ldots, x_{t}\right\}$ and Q^{\prime} is generated in variables $\left\{x_{r+1}, \ldots, x_{p}\right\}$ for some integers t, r, p with $1 \leqslant r \leqslant t<p \leqslant n$, or $0 \leqslant r<t \leqslant n$. By hypothesis we have $p=n$. Let \mathcal{D} be the Stanley decomposition of $S /\left(Q \cap Q^{\prime}\right)$ such that $\operatorname{sdepth}(\mathcal{D})=\operatorname{sdepth}\left(S /\left(Q \cap Q^{\prime}\right)\right)$. Let Z_{1} be defined as in Lemma 2.1, that is $K\left[Z_{1}\right]$ is the Stanley space corresponding to 1 . If $Z_{1} \subset\left\{x_{1}, \ldots, x_{r}\right\}$ then by Lemma 2.1,

$$
\operatorname{sdepth}(\mathcal{D}) \leqslant \min \left\{r,\left\lceil\frac{n-t}{2}\right\rceil\right\}=\min \left\{\operatorname{dim}\left(S / Q^{\prime}\right),\left\lceil\frac{\operatorname{dim}(S / Q)}{2}\right\rceil\right\} .
$$

If $Z_{1} \subset\left\{x_{t+1}, \ldots, x_{n}\right\}$ we get analogously

$$
\operatorname{sdepth}(\mathcal{D}) \leqslant \min \left\{n-t,\left\lceil\frac{r}{2}\right\rceil\right\}=\min \left\{\operatorname{dim}(S / Q),\left\lceil\frac{\operatorname{dim}\left(S / Q^{\prime}\right)}{2}\right\rceil\right\},
$$

which shows our inequality.
Theorem 2.3. Let Q and Q^{\prime} be two non-zero monomial primary ideals of S with different associated prime ideals. Then

$$
\begin{aligned}
\operatorname{sdepth}_{S} S /\left(Q \cap Q^{\prime}\right) \leqslant & \max \left\{\min \left\{\operatorname{dim}\left(S / Q^{\prime}\right),\left\lceil\frac{\operatorname{dim}(S / Q)+\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)}{2}\right\rceil\right\},\right. \\
& \left.\min \left\{\operatorname{dim}(S / Q),\left\lceil\frac{\operatorname{dim}\left(S / Q^{\prime}+\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)\right)}{2}\right]\right\}\right\} .
\end{aligned}
$$

Proof. As in the proof of Proposition 2.2 we may suppose that Q is generated in variables $\left\{x_{1}, \ldots, x_{t}\right\}$ and Q^{\prime} is generated in variables $\left\{x_{r+1}, \ldots, x_{p}\right\}$ for some integers $1 \leqslant r \leqslant t<p \leqslant n$, or $0 \leqslant r<t \leqslant n$ but now we have not in general $p=n$. Set $S^{\prime}=K\left[x_{1}, \ldots, x_{p}\right], q=Q \cap S^{\prime}, q^{\prime}=Q^{\prime} \cap S^{\prime}$. Using Proposition 2.2 we get

$$
\operatorname{sdepth}_{S}\left(S /\left(q \cap q^{\prime}\right)\right) \leqslant \max \left\{\min \left\{\operatorname{dim}\left(S / q^{\prime}\right),\left\lceil\frac{\operatorname{dim}(S / q)}{2}\right\rceil\right\}, \min \left\{\operatorname{dim}(S / q),\left\lceil\frac{\operatorname{dim}\left(S / q^{\prime}\right)}{2}\right\rceil\right\}\right\}
$$

By [9, Lemma 3.6] we have

$$
\operatorname{sdepth}_{S}\left(S /\left(Q \cap Q^{\prime}\right)\right)=\operatorname{sdepth}_{S}\left(S /\left(q \cap q^{\prime}\right) S\right)=n-p+\operatorname{sdepth}_{S^{\prime}}\left(S^{\prime} /\left(q \cap q^{\prime}\right)\right)
$$

As in the proof of Theorem 1.5, it follows that

$$
\begin{aligned}
\operatorname{sdepth}_{S}\left(S /\left(Q \cap Q^{\prime}\right)\right) & \leqslant n-p+\max \left\{\min \left\{r,\left\lceil\frac{p-t}{2}\right\rceil\right\}, \min \left\{p-t,\left\lceil\frac{r}{2}\right\rceil\right\}\right\} \\
& =\max \left\{\min \left\{n-p+r, n-t-\left\lfloor\frac{p-t}{2}\right\rfloor\right\}, \min \left\{n-t, n-p+r-\left\lfloor\frac{r}{2}\right\rfloor\right\}\right\},
\end{aligned}
$$

which is enough.
Corollary 2.4. Let Q and Q^{\prime} be two non-zero monomial irreducible ideals of S with different associated prime ideals. Then

$$
\begin{aligned}
\operatorname{sdepth}_{S} S /\left(Q \cap Q^{\prime}\right)= & \max \left\{\min \left\{\operatorname{dim}\left(S / Q^{\prime}\right),\left\lceil\frac{\operatorname{dim}(S / Q)+\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)}{2}\right\rceil\right\},\right. \\
& \left.m i n\left\{\operatorname{dim}(S / Q),\left\lceil\frac{\operatorname{dim}\left(S / Q^{\prime}\right)+\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)}{2}\right\rceil\right\}\right\} .
\end{aligned}
$$

For the proof apply Theorem 1.5 and Theorem 2.3.
Corollary 2.5. Let P and P^{\prime} be two different non-zero monomial prime ideals of S, which are not included one in the other. Then

$$
\begin{aligned}
\operatorname{sdepth}_{S} S /\left(P \cap P^{\prime}\right)= & \max \left\{\min \left\{\operatorname{dim}\left(S / P^{\prime}\right),\left\lceil\frac{\operatorname{dim}(S / P)+\operatorname{dim}\left(S /\left(P+P^{\prime}\right)\right)}{2}\right\rceil\right\},\right. \\
& \left.\min \left\{\operatorname{dim}(S / P),\left\lceil\frac{\operatorname{dim}\left(S / P^{\prime}\right)+\operatorname{dim}\left(S /\left(P+P^{\prime}\right)\right)}{2}\right\rceil\right\}\right\} .
\end{aligned}
$$

Proof. For the proof apply Corollary 2.4.
Corollary 2.6. Let Δ be a simplicial complex in n vertices with only two different facets F, F^{\prime}. Then

$$
\text { sdepth } K[\Delta]=\max \left\{\min \left\{\left|F^{\prime}\right|,\left\lceil\frac{|F|+\left|F \cap F^{\prime}\right|}{2}\right\rceil\right\}, \min \left\{|F|,\left\lceil\frac{\left|F^{\prime}\right|+\left|F \cap F^{\prime}\right|}{2}\right\rceil\right\}\right\} .
$$

3. An illustration

Let $S=K\left[x_{1}, \ldots, x_{6}\right], Q=\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}, x_{1} x_{2} x_{4}, x_{1} x_{3} x_{4}\right), Q^{\prime}=\left(x_{4}^{2}, x_{5}, x_{6}\right)$. By our Theorem 2.3 we get

$$
\text { sdepth } S /\left(Q \cap Q^{\prime}\right) \leqslant \max \left\{\min \left\{3,\left\lceil\frac{2}{2}\right\rceil\right\}, \min \left\{2,\left\lceil\frac{3}{2}\right\rceil\right\}\right\}=\max \{1,2\}=2
$$

On the other hand, we claim that $I=\left((Q: w) \cap K\left[x_{1}, x_{2}, x_{3}\right]\right)=\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}\right)$ for $w=x_{4}$ and sdepth $I=1<2=\operatorname{sdepth}\left(Q \cap K\left[x_{1}, x_{2}, x_{3}\right]\right)$. Thus our Proposition 1.4 gives

$$
\text { sdepth } S /\left(Q \cap Q^{\prime}\right) \geqslant \max \left\{\min \left\{3,\left\lceil\frac{2}{2}\right\rceil\right\}, \min \left\{2,\left\lceil\frac{3}{2}\right\rceil, 1\right\}\right\}=1
$$

In this section, we will show that $\operatorname{sdepth}\left(S /\left(Q \cap Q^{\prime}\right)\right)=1$.
First we prove our claim. Suppose that there exists a Stanley decomposition \mathcal{D} of I with sdepth $\mathcal{D} \geqslant 2$. Among the Stanley spaces of \mathcal{D} we have five important $x_{1}^{2} K\left[Z_{1}\right], x_{2}^{2} K\left[Z_{2}\right], x_{3}^{2} K\left[Z_{3}\right]$,
$x_{1} x_{2} K\left[Z_{4}\right], x_{1} x_{3} K\left[Z_{5}\right]$ for some subsets $Z_{i} \subset\left\{x_{1}, x_{2}, x_{3}\right\}$ with $\left|Z_{i}\right| \geqslant 2$. If $Z_{4}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and Z_{5} contains x_{2} then the last two Stanley spaces will have a non-zero intersection and if Z_{1} contains x_{2} then the first and the fourth Stanley space will have non-zero intersection. Now if $x_{2} \notin Z_{5}$ and $x_{2} \notin Z_{1}$ then the first and the last space will intersect. Suppose that $Z_{4}=\left\{x_{1}, x_{2}\right\}$. Then $x_{2} \notin Z_{1}$ (resp. $x_{1} \notin Z_{2}$) because otherwise the intersection of $x_{1} x_{2} K\left[Z_{4}\right]$ with the first Stanley space (resp. the second one) will be again non-zero. As $\left|Z_{1}\right|,\left|Z_{2}\right| \geqslant 2$ we get $Z_{1}=\left\{x_{1}, x_{3}\right\}, Z_{2}=\left\{x_{2}, x_{3}\right\}$. But $x_{1} \notin Z_{3}$ because otherwise the first and the third Stanley space will contain $x_{1}^{2} x_{3}^{2}$, which is impossible. Similarly, $x_{2} \notin Z_{3}$, which contradicts $\left|Z_{3}\right| \geqslant 2$. The case $Z_{5}=\left\{x_{1}, x_{3}\right\}$ gives a similar contradiction.

Now suppose that $Z_{4}=\left\{x_{1}, x_{3}\right\}$. If $Z_{5} \supset\left\{x_{1}, x_{2}\right\}$ we see that the intersection of the last two Stanley spaces from the above five, contains $x_{1}^{2} x_{2} x_{3}$ and if $Z_{5}=\left\{x_{2}, x_{3}\right\}$ we see that the intersection of the same Stanley spaces contains $x_{1} x_{2} x_{3}$. Contradiction (we saw that $Z_{5} \neq\left\{x_{1}, x_{3}\right\}$)! Hence sdepth $\mathcal{D} \leqslant 1$ and so sdepth $I=1$ using [5].

Next we show that sdepth $S /\left(Q \cap Q^{\prime}\right)=1$. Suppose that \mathcal{D}^{\prime} is a Stanley decomposition of $S /\left(Q \cap Q^{\prime}\right)$ such that sdepth $S /\left(Q \cap Q^{\prime}\right)=2$. We claim that \mathcal{D}^{\prime} has the form

$$
S /\left(Q \cap Q^{\prime}\right)=\left(\bigoplus v K\left[x_{5}, x_{6}\right]\right) \oplus\left(\bigoplus_{i=1}^{s} u_{i} K\left[Z_{i}\right]\right)
$$

for some monomials $v \in\left(K\left[x_{1}, \ldots, x_{4}\right] \backslash Q\right), u_{i} \in\left(Q \cap K\left[x_{1}, \ldots, x_{4}\right]\right)$ and $Z_{i} \subset\left\{x_{1}, x_{2}, x_{3}\right\}$. Indeed, let $v \in\left(K\left[x_{1}, \ldots, x_{4}\right] \backslash Q\right)$. Then $v x_{5}, v x_{6}$ belong to some Stanley spaces of \mathcal{D}^{\prime}, let us say $u K[Z], u^{\prime} K\left[Z^{\prime}\right]$. The presence of x_{5} in u or Z implies that Z does not contain any $x_{i}, 1 \leqslant i \leqslant 3$, otherwise $u K[Z]$ will be not free over $K[Z]$. Thus $Z \subset\left\{x_{5}, x_{6}\right\}$. As $|Z| \geqslant 2$ we get $Z=\left\{x_{5}, x_{6}\right\}$ and similarly $Z^{\prime}=\left\{x_{5}, x_{6}\right\}$. Thus $v x_{5} x_{6} \in\left(u K[Z] \cap u^{\prime} K\left[Z^{\prime}\right]\right)$ and it follows that $u=u^{\prime}, Z=Z^{\prime}$ because the sum in \mathcal{D}^{\prime} is direct. It follows that $u\left|v x_{5}, u\right| v x_{6}$ and so $u \mid v$, that is $v=u f, f$ being a monomial in x_{5}, x_{6}. As $v \in K\left[x_{1}, \ldots, x_{4}\right]$ we get $f=1$ and so $u=v$.

A monomial $w \in\left(Q \backslash Q^{\prime}\right)$ is not a multiple of x_{5}, x_{6}, because otherwise $w \in Q^{\prime}$. Suppose w belongs to a Stanley space $u K[Z]$ of \mathcal{D}^{\prime}. If $u \in\left(K\left[x_{1}, \ldots, x_{4}\right] \backslash Q\right)$ then as above \mathcal{D}^{\prime} has also a Stanley space $u K\left[x_{5}, x_{6}\right]$ and both spaces contains u. This is false since the sum is direct. Thus $u \in\left(Q \cap K\left[x_{1}, \ldots, x_{4}\right]\right)$, which shows our claim.

Hence \mathcal{D}^{\prime} induces two Stanley decompositions $S / Q=\bigoplus_{v \in\left(K\left[x_{1}, \ldots, x_{4}\right] \backslash Q\right)} v K\left[x_{5}, x_{6}\right], Q /\left(Q \cap Q^{\prime}\right)=$ $\bigoplus_{i=1}^{s} u_{i} K\left[Z_{i}\right]$, where $u_{i} \in\left(Q \cap K\left[x_{1}, \ldots, x_{4}\right]\right)$ and $Z_{i} \subset\left\{x_{1}, x_{2}, x_{3}\right\}$. Then we get the following Stanley decompositions

$$
Q \cap K\left[x_{1}, \ldots, x_{3}\right]=\bigoplus_{i=1, u_{i} \notin\left(x_{4}\right)}^{s} u_{i} K\left[Z_{i}\right], \quad I=\bigoplus_{i=1, x_{4} \mid u_{i}}^{s}\left(u_{i} / x_{4}\right) K\left[Z_{i}\right] .
$$

As $2 \leqslant \min _{i}\left|Z_{i}\right|$ we get sdepth $I \geqslant 2$. Contradiction!

4. A lower bound for Stanley's depth of some ideals

Let Q, Q^{\prime} be two non-zero irreducible monomial ideals of S such that $\sqrt{Q}=\left(x_{1}, \ldots, x_{t}\right), \sqrt{Q^{\prime}}=$ $\left(x_{r+1}, \ldots, x_{p}\right)$ for some integers r, t, p with $1 \leqslant r \leqslant t<p \leqslant n$, or $0=r<t<p \leqslant n$, or $1 \leqslant r \leqslant t=$ $p \leqslant n$.

Lemma 4.1. Suppose that $p=n, t=r$. Then

$$
\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) \geqslant\left\lceil\frac{r}{2}\right\rceil+\left\lceil\frac{n-r}{2}\right\rceil \geqslant n / 2 .
$$

Proof. It follows $1 \leqslant r<p$. Let $f \in Q \cap K\left[x_{1}, \ldots, x_{r}\right], g \in Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{n}\right]$ and $\mathcal{M}(T)$ be the monomials from an ideal T. The correspondence $(f, g) \rightarrow f g$ defines a map $\varphi: \mathcal{M}\left(Q \cap K\left[x_{1}, \ldots, x_{r}\right]\right) \times$
$\mathcal{M}\left(Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{n}\right]\right) \rightarrow \mathcal{M}\left(Q \cap Q^{\prime}\right)$, which is injective. If w is a monomial of $Q \cap Q^{\prime}$, let us say $w=f g$ for some monomials $f \in K\left[x_{1}, \ldots, x_{r}\right], g \in K\left[x_{r+1}, \ldots, x_{n}\right]$ then $f g \in Q$ and so $f \in Q$ because the variables $x_{i}, i>r$ are regular on S / Q. Similarly, $g \in Q^{\prime}$ and so $w=\varphi((f, g))$, that is φ is surjective. Let \mathcal{D} be a Stanley decomposition of $Q \cap K\left[x_{1}, \ldots, x_{r}\right]$,

$$
\mathcal{D}: \quad Q \cap K\left[x_{1}, \ldots, x_{r}\right]=\bigoplus_{i=1}^{s} u_{i} K\left[Z_{i}\right]
$$

with sdepth $\mathcal{D}=\operatorname{sdepth}\left(Q \cap K\left[x_{1}, \ldots, x_{r}\right]\right)$ and \mathcal{D}^{\prime} a Stanley decomposition of $Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{n}\right]$,

$$
\mathcal{D}^{\prime}: \quad Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{n}\right]=\bigoplus_{j=1}^{e} v_{j} K\left[T_{j}\right]
$$

with sdepth $\mathcal{D}^{\prime}=\operatorname{sdepth}\left(Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{n}\right]\right)$. They induce a Stanley decomposition

$$
\mathcal{D}^{\prime \prime}: \quad Q \cap Q^{\prime}=\bigoplus_{j=1}^{e} \bigoplus_{i=1}^{s} u_{i} v_{j} K\left[Z_{i} \cup T_{j}\right]
$$

because of the bijection φ. Thus

$$
\begin{aligned}
\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) & \geqslant \operatorname{sdepth} \mathcal{D}^{\prime \prime}=\min _{i, j}\left(\left|Z_{i}\right|+\left|T_{j}\right|\right) \geqslant \min _{i}\left|Z_{i}\right|+\min _{j}\left|T_{j}\right| \\
& =\operatorname{sdepth} \mathcal{D}+\operatorname{sdepth} \mathcal{D}^{\prime} \\
& =\operatorname{sdepth}\left(Q \cap K\left[x_{1}, \ldots, x_{r}\right]\right)+\operatorname{sdepth}\left(Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{n}\right]\right) \\
& =\left(r-\left\lfloor\frac{r}{2}\right\rfloor\right)+\left(n-r-\left\lfloor\frac{n-r}{2}\right\rfloor\right)=\left\lceil\frac{r}{2}\right\rceil+\left\lceil\frac{n-r}{2}\right\rceil \geqslant n / 2
\end{aligned}
$$

Remark 4.2. Suppose that $n=8, r=1$. Then by the above lemma we get $\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) \geqslant$ $\left\lceil\frac{1}{2}\right\rceil+\left\lceil\frac{7}{2}\right\rceil=5$. Since $\left|G\left(Q \cap Q^{\prime}\right)\right|=7$ we get by $[10,11]$ the same lower bound $\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) \geqslant$ $8-\left\lfloor\frac{7}{2}\right\rfloor=5$. If $n=8, r=2$ then by $[10,11]$ we have $\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) \geqslant 8-\left\lfloor\frac{12}{2}\right\rfloor=2$ but our previous lemma gives sdepth $\left(Q \cap Q^{\prime}\right) \geqslant\left\lceil\frac{2}{2}\right\rceil+\left\lceil\frac{6}{2}\right\rceil=4$.

Lemma 4.3. Suppose that $p=n$. Then

$$
\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) \geqslant\left\lceil\frac{r}{2}\right\rceil+\left\lceil\frac{n-t}{2}\right\rceil .
$$

Proof. We show that

$$
\begin{aligned}
Q \cap Q^{\prime}= & \left(Q \cap Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{t}\right]\right) S \\
& \oplus\left(\bigoplus_{w} w\left(\left(\left(Q \cap Q^{\prime}\right): w\right) \cap K\left[x_{1}, \ldots, x_{r}, x_{t+1}, \ldots, x_{n}\right]\right)\right),
\end{aligned}
$$

where w runs in the monomials of $K\left[x_{r+1}, \ldots, x_{t}\right] \backslash\left(Q \cap Q^{\prime}\right)$. Indeed, a monomial h of S has the form $h=f g$ for some monomials $f \in K\left[x_{r+1}, \ldots, x_{t}\right], g \in K\left[x_{1}, \ldots, x_{r}, x_{t+1}, \ldots, x_{n}\right]$. Since Q, Q^{\prime} are
irreducible we see that $h \in Q \cap Q^{\prime}$ either when f is a multiple of a minimal generator of $Q \cap Q^{\prime} \cap$ $K\left[x_{r+1}, \ldots, x_{t}\right]$, or $f \notin\left(Q \cap Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{t}\right]\right)$ and then

$$
h \in f\left(\left(\left(Q \cap Q^{\prime}\right): f\right) \cap K\left[x_{1}, \ldots, x_{r}, x_{t+1}, \ldots, x_{n}\right]\right) .
$$

Let \mathcal{D} be a Stanley decomposition of $\left(Q \cap Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{t}\right]\right) S$,

$$
\mathcal{D}: \quad\left(Q \cap Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{t}\right]\right) S=\bigoplus_{i=1}^{s} u_{i} K\left[Z_{i}\right]
$$

with sdepth $\mathcal{D}=\operatorname{sdepth}\left(Q \cap Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{t}\right]\right) S$ and for all $w \in\left(K\left[x_{r+1}, \ldots, x_{t}\right] \backslash\left(Q \cap Q^{\prime}\right)\right)$, let \mathcal{D}_{w} be a Stanley decomposition of $\left(\left(Q \cap Q^{\prime}\right): w\right) \cap K\left[x_{1}, \ldots, x_{r}, x_{t+1}, \ldots, x_{n}\right]$,

$$
\mathcal{D}_{w}: \quad\left(\left(Q \cap Q^{\prime}\right): w\right) \cap K\left[x_{1}, \ldots, x_{r}, x_{t+1}, \ldots, x_{n}\right]=\bigoplus_{w} \bigoplus_{j} v_{w j} K\left[T_{w j}\right]
$$

with sdepth $\mathcal{D}_{w}=\operatorname{sdepth}\left(\left(\left(Q \cap Q^{\prime}\right): w\right) \cap K\left[x_{1}, \ldots, x_{r}, x_{t+1}, \ldots, x_{n}\right]\right)$. Since $K\left[x_{r+1}, \ldots, x_{t}\right] \backslash\left(Q \cap Q^{\prime}\right)$ contains just a finite set of monomials we get a Stanley decomposition of $Q \cap Q^{\prime}$,

$$
\mathcal{D}^{\prime}: \quad Q \cap Q^{\prime}=\left(\bigoplus_{i=1}^{s} u_{i} K\left[Z_{i}\right]\right) \oplus\left(\bigoplus_{w} \bigoplus_{j} w v_{w j} K\left[T_{w j}\right]\right),
$$

where w runs in the monomials of $K\left[x_{r+1}, \ldots, x_{t}\right] \backslash\left(Q \cap Q^{\prime}\right)$. Then

$$
\begin{aligned}
\text { sdepth } \mathcal{D}^{\prime}= & \min _{w}\left\{\operatorname{sdepth} \mathcal{D} \text {, sdepth } \mathcal{D}_{w}\right\} \\
= & \min _{w}\left\{\operatorname{sdepth}\left(Q \cap Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{t}\right]\right) S,\right. \\
& \left.\operatorname{sdepth}\left(\left(\left(Q \cap Q^{\prime}\right): w\right) \cap K\left[x_{1}, \ldots, x_{r}, x_{t+1}, \ldots, x_{n}\right]\right)\right\} .
\end{aligned}
$$

But $\left(\left(Q \cap Q^{\prime}\right): w\right) \cap K\left[x_{1}, \ldots, x_{r}, x_{t+1}, \ldots, x_{n}\right]$ is still an intersection of two irreducible ideals and

$$
\operatorname{sdepth}\left(\left(\left(Q \cap Q^{\prime}\right): w\right) \cap K\left[x_{1}, \ldots, x_{r}, x_{t+1}, \ldots, x_{n}\right]\right) \geqslant\left\lceil\frac{r}{2}\right\rceil+\left\lceil\frac{n-t}{2}\right\rceil
$$

by Lemma 4.1. We have $\operatorname{sdepth}\left(Q \cap Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{t}\right]\right) \geqslant 1$ and so

$$
\operatorname{sdepth}\left(Q \cap Q^{\prime} \cap K\left[x_{r+1}, \ldots, x_{t}\right]\right) S \geqslant 1+n-t+r
$$

by [9, Lemma 3.6]. Thus

$$
\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) \geqslant \operatorname{sdepth} \mathcal{D}^{\prime} \geqslant\left\lceil\frac{r}{2}\right\rceil+\left\lceil\frac{n-t}{2}\right\rceil .
$$

Note that the proof goes even when $0 \leqslant r<t \leqslant n$ (anyway sdepth $Q \cap Q^{\prime} \geqslant 1$ if $n=t, r=0$).

Lemma 4.4.

$$
\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) \geqslant n-p+\left\lceil\frac{r}{2}\right\rceil+\left\lceil\frac{p-t}{2}\right\rceil
$$

Proof. As usual we see that there are now ($n-p$) free variables and it is enough to apply [9, Lemma 3.6] and Lemma 4.3.

Theorem 4.5. Let Q and Q^{\prime} be two non-zero irreducible monomial ideals of S. Then

$$
\begin{aligned}
\operatorname{sdepth}_{S}\left(Q \cap Q^{\prime}\right) \geqslant & \operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)+\left\lceil\frac{\operatorname{dim}\left(S / Q^{\prime}\right)-\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)}{2}\right\rceil \\
& +\left\lceil\frac{\operatorname{dim}(S / Q)-\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)}{2}\right\rceil \\
\geqslant & \left\lceil\frac{\operatorname{dim}\left(S / Q^{\prime}\right)+\operatorname{dim}(S / Q)}{2}\right\rceil
\end{aligned}
$$

Proof. After renumbering of variables, we may suppose as above that $\sqrt{Q}=\left(x_{1}, \ldots, x_{t}\right), \sqrt{Q^{\prime}}=$ $\left(x_{r+1}, \ldots, x_{p}\right)$ for some integers r, t, p with $1 \leqslant r \leqslant t<p \leqslant n$, or $0=r<t<p \leqslant n$, or $1 \leqslant r \leqslant$ $t=p \leqslant n$. If $n=p, r=0$ then $\sqrt{Q} \subset \sqrt{Q^{\prime}}$ and the inequality is trivial. It is enough to apply Lemma 4.4 because $n-p=\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right), r=\operatorname{dim}\left(S / Q^{\prime}\right)-\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right), p-t=$ $\operatorname{dim}(S / Q)-\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)$.

Remark 4.6. If Q, Q^{\prime} are non-zero irreducible monomial ideals of S with $\sqrt{Q}=\sqrt{Q^{\prime}}$ then we have $\operatorname{sdepth}_{S}\left(Q \cap Q^{\prime}\right) \geqslant 1+\operatorname{dim} S / Q$.

Example 4.7. Let $S=K\left[x_{1}, x_{2}\right], Q=\left(x_{1}\right), Q^{\prime}=\left(x_{1}^{2}, x_{2}\right)$. We have

$$
\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) \geqslant\left\lceil\frac{\operatorname{dim}\left(S / Q^{\prime}\right)+\operatorname{dim}(S / Q)}{2}\right\rceil=\left\lceil\frac{1+0}{2}\right\rceil=1
$$

by the above theorem. As $Q \cap Q^{\prime}$ is not a principle ideal its Stanley depth is <2. Thus

$$
\operatorname{sdepth}\left(Q \cap Q^{\prime}\right)=1
$$

Example 4.8. Let $S=K\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right], Q=\left(x_{1}, x_{2}, x_{3}^{2}\right), Q^{\prime}=\left(x_{3}, x_{4}, x_{5}\right)$. As $\operatorname{dim}\left(S /\left(Q+Q^{\prime}\right)\right)=0$, $\operatorname{dim} S / Q=2$ and $\operatorname{dim} S / Q^{\prime}=2$ we get

$$
\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) \geqslant\left\lceil\frac{\operatorname{dim}\left(S / Q^{\prime}\right)+\operatorname{dim}(S / Q)}{2}\right\rceil=\left\lceil\frac{2+2}{2}\right\rceil=2
$$

by the above theorem. Note also that

$$
\operatorname{sdepth}\left(Q \cap Q^{\prime} \cap K\left[x_{1}, x_{2}, x_{4}, x_{5}\right]\right)=\operatorname{sdepth}\left(x_{1} x_{4}, x_{1} x_{5}, x_{2} x_{4}, x_{2} x_{5}\right) K\left[x_{1}, x_{2}, x_{4}, x_{5}\right]=3,
$$

and

$$
\begin{aligned}
\operatorname{sdepth}\left(\left(\left(Q \cap Q^{\prime}\right): x_{3}\right) \cap K\left[x_{1}, x_{2}, x_{4}, x_{5}\right]\right) & =\operatorname{sdepth}\left(\left(x_{1}, x_{2}\right) K\left[x_{1}, x_{2}, x_{4}, x_{5}\right]\right) \\
& =4-\left\lfloor\frac{2}{2}\right\rfloor=3,
\end{aligned}
$$

by [15]. But sdepth $\left(Q \cap Q^{\prime}\right) \geqslant 3$ because of the following Stanley decomposition

$$
\begin{aligned}
Q \cap Q^{\prime}= & x_{1} x_{4} K\left[x_{1}, x_{4}, x_{5}\right] \oplus x_{1} x_{5} K\left[x_{1}, x_{2}, x_{5}\right] \oplus x_{2} x_{4} K\left[x_{1}, x_{2}, x_{4}\right] \oplus x_{2} x_{5} K\left[x_{2}, x_{4}, x_{5}\right] \\
& \oplus x_{3}^{2} K\left[x_{3}, x_{4}, x_{5}\right] \oplus x_{2} x_{3} K\left[x_{2}, x_{3}, x_{4}\right] \oplus x_{1} x_{3} K\left[x_{1}, x_{2}, x_{3}\right] \oplus x_{1} x_{3} x_{4} K\left[x_{1}, x_{2}, x_{4}, x_{5}\right] \\
& \oplus x_{1} x_{3} x_{5} K\left[x_{1}, x_{3}, x_{5}\right] \oplus x_{2} x_{3} x_{5} K\left[x_{2}, x_{3}, x_{4}, x_{5}\right] \oplus x_{1} x_{2} x_{4} x_{5} K\left[x_{1}, x_{2}, x_{4}, x_{5}\right] \\
& \oplus x_{1} x_{3}^{2} x_{4} K\left[x_{1}, x_{3}, x_{4}, x_{5}\right] \oplus x_{1} x_{2} x_{3} x_{5} K\left[x_{1}, x_{2}, x_{3}, x_{5}\right] \oplus x_{1} x_{2} x_{3}^{2} x_{4} K\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right] .
\end{aligned}
$$

5. Applications

Let $I \subset S$ be a non-zero monomial ideal. A. Rauf presented in [14] the following:
Question 5.1. Does it hold the inequality

$$
\text { sdepth } I \geqslant 1+\text { sdepth } S / I ?
$$

The importance of this question is given by the following:
Proposition 5.2. Suppose that Stanley's Conjecture holds for cyclic S-modules and the above question has a positive answer for all monomial ideals of S. Then Stanley's Conjecture holds for all monomial ideals of S.

For the proof note that sdepth $I \geqslant 1+$ sdepth $S / I \geqslant 1+\operatorname{depth} S / I=\operatorname{depth} I$.
Remark 5.3. In [12] it is proved that Stanley's Conjecture holds for all multigraded cycle modules over $S=K\left[x_{1}, \ldots, x_{5}\right]$. If the above question has a positive answer then Stanley's Conjecture holds for all monomial ideals of S. Actually this is true for all square free monomial ideals of S as [13] shows.

We show that the above question holds for the intersection of two non-zero irreducible monomial ideals.

Proposition 5.4. Question 5.1 has a positive answer for intersections of two non-zero irreducible monomial ideals.

Proof. First suppose that Q, Q^{\prime} have different associated prime ideals. After renumbering of variables we may suppose as above that $\sqrt{Q}=\left(x_{1}, \ldots, x_{t}\right), \sqrt{Q^{\prime}}=\left(x_{r+1}, \ldots, x_{p}\right)$ for some integers r, t, p with $1 \leqslant r \leqslant t<p \leqslant n$, or $0=r<t<p \leqslant n$, or $1 \leqslant r \leqslant t=p \leqslant n$. Then

$$
\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) \geqslant n-p+\left\lceil\frac{r}{2}\right\rceil+\left\lceil\frac{p-t}{2}\right\rceil
$$

by Lemma 4.4. Note that

$$
\operatorname{sdepth}\left(S /\left(Q \cap Q^{\prime}\right)\right)=n-p+\max \left\{\min \left\{r,\left\lceil\frac{p-t}{2}\right\rceil\right\}, \min \left\{p-t,\left\lceil\frac{r}{2}\right\rceil\right\}\right\}
$$

by Corollary 2.4. Thus

$$
1+\operatorname{sdepth}\left(S /\left(Q \cap Q^{\prime}\right)\right) \leqslant n-p+\left\lceil\frac{r}{2}\right\rceil+\left\lceil\frac{p-t}{2}\right\rceil \leqslant \operatorname{sdepth}\left(Q \cap Q^{\prime}\right)
$$

Finally, if Q, Q^{\prime} have the same associated prime ideal then $\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) \geqslant 1+\operatorname{dim} S / Q$ by Remark 4.6 and so $\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) \geqslant 1+$ sdepth $S /\left(Q \cap Q^{\prime}\right)$.

Next we will show that Stanley's Conjecture holds for intersections of two primary monomial ideals. We start with a simple lemma.

Lemma 5.5. Let Q, Q^{\prime} be two primary ideals in $S=K\left[x_{1}, \ldots, x_{n}\right]$. Suppose $\sqrt{Q}=\left(x_{1}, \ldots, x_{t}\right)$ and $\sqrt{Q}=$ $\left(x_{r+1}, \ldots, x_{p}\right)$ for integers $0 \leqslant r \leqslant t \leqslant p \leqslant n$. Then $\operatorname{sdepth}\left(S /\left(Q \cap Q^{\prime}\right)\right) \geqslant \operatorname{depth}\left(S /\left(Q \cap Q^{\prime}\right)\right)$, that is Stanley's Conjecture holds for $S /\left(Q \cap Q^{\prime}\right)$.

Proof. If either $r=0$, or $t=p$ then depth $S /\left(Q \cap Q^{\prime}\right) \leqslant n-p \leqslant \operatorname{sdepth}\left(S /\left(Q \cap Q^{\prime}\right)\right)$ by [9, Lemma 3.6]. Now suppose that $r>0, t<p$ and let $S^{\prime}=K\left[x_{1}, \ldots, x_{p}\right]$ and $q=Q \cap S^{\prime}, q^{\prime}=Q^{\prime} \cap S^{\prime}$. Consider the following exact sequence of S^{\prime}-modules

$$
0 \rightarrow S^{\prime} /\left(q \cap q^{\prime}\right) \rightarrow S^{\prime} / q \oplus S^{\prime} / q^{\prime} \rightarrow S^{\prime} /\left(q+q^{\prime}\right) \rightarrow 0
$$

By Lemma 1.2

$$
\begin{aligned}
\operatorname{depth}\left(S^{\prime} / q \oplus S^{\prime} / q^{\prime}\right) & =\min \left\{\operatorname{depth}\left(S^{\prime} / q\right), \operatorname{depth}\left(S^{\prime} / q^{\prime}\right)\right\} \\
& =\min \left\{\operatorname{dim}\left(S^{\prime} / q\right), \operatorname{dim}\left(S^{\prime} / q^{\prime}\right)\right\} \\
& =\min \{r, p-t\} \geqslant 1>0 \\
& =\operatorname{depth}\left(S^{\prime} /\left(q+q^{\prime}\right)\right)
\end{aligned}
$$

Thus by Depth Lemma (see e.g. [4])

$$
\operatorname{depth}\left(S^{\prime} / q \cap q^{\prime}\right)=\operatorname{depth}\left(S^{\prime} /\left(q+q^{\prime}\right)\right)+1=1
$$

But $\operatorname{sdepth}\left(S^{\prime} /\left(q \cap q^{\prime}\right)\right) \geqslant 1$ by [5, Corollary 1.6$]$ and so

$$
\begin{aligned}
\operatorname{sdepth}\left(S /\left(Q \cap Q^{\prime}\right)\right) & =\operatorname{sdepth}\left(S^{\prime} /\left(q \cap q^{\prime}\right)\right)+n-p \geqslant 1+n-p \\
& =n-p+\operatorname{depth}\left(S^{\prime} /\left(q \cap q^{\prime}\right)\right) \\
& =\operatorname{depth}\left(S /\left(Q \cap Q^{\prime}\right)\right)
\end{aligned}
$$

by [9, Lemma 3.6].
Theorem 5.6. Let Q, Q^{\prime} be two non-zero irreducible ideals of S. Then $\operatorname{sdepth}\left(Q \cap Q^{\prime}\right) \geqslant \operatorname{depth}\left(Q \cap Q^{\prime}\right)$, that is Stanley's Conjecture holds for $Q \cap Q^{\prime}$.

Proof. By Proposition 5.4, Question 5.1 has a positive answer, so by the proof of Proposition 5.2 it is enough to know that Stanley's Conjecture holds for $S /\left(Q \cap Q^{\prime}\right)$. This is given by the above lemma.

Next we consider the cycle module given by an irredundant intersection of 3 irreducible ideals.
Lemma 5.7. Let Q_{1}, Q_{2}, Q_{3} be three non-zero irreducible monomial ideals of $S=K\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
\begin{aligned}
& \operatorname{sdepth}\left(\left(Q_{2} \cap Q_{3}\right) /\left(Q_{1} \cap Q_{2} \cap Q_{3}\right)\right) \\
& \quad \geqslant \operatorname{dim}\left(S /\left(Q_{1}+Q_{2}+Q_{3}\right)\right)+\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}\right)\right)-\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}+Q_{3}\right)\right)}{2}\right\rceil
\end{aligned}
$$

$$
\begin{aligned}
& +\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{3}\right)\right)-\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}+Q_{3}\right)\right)}{2}\right\rceil \\
\geqslant & \left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}\right)\right)+\operatorname{dim}\left(S /\left(Q_{1}+Q_{3}\right)\right)}{2}\right\rceil
\end{aligned}
$$

If $Q_{3} \subset Q_{1}+Q_{2}$ then

$$
\operatorname{sdepth}\left(\left(Q_{2} \cap Q_{3}\right) /\left(Q_{1} \cap Q_{2} \cap Q_{3}\right)\right) \geqslant\left\lceil\frac{\operatorname{dim}\left(S / Q_{1}\right)+\operatorname{dim}\left(S /\left(Q_{1}+Q_{3}\right)\right)}{2}\right\rceil
$$

Proof. Renumbering the variables we may assume that $\sqrt{Q_{1}}=\left(x_{1}, \ldots, x_{t}\right)$ and $\sqrt{Q_{2}+Q_{3}}=$ $\left(x_{r+1}, \ldots, x_{p}\right)$, where $0 \leqslant r \leqslant t<p \leqslant n$. If $t=p$ then $\sqrt{Q_{1}+Q_{2}}=\sqrt{Q_{1}+Q_{3}}$ and the inequality is trivial by [9, Lemma 3.6]. Let $S^{\prime}=K\left[x_{1}, \ldots, x_{p}\right]$ and $q_{1}=Q_{1} \cap S^{\prime}, q_{2}=Q_{2} \cap S^{\prime}, q_{3}=Q_{3} \cap S^{\prime}$. We have a canonical injective map $\left(q_{2} \cap q_{3}\right) /\left(q_{1} \cap q_{2} \cap q_{3}\right) \rightarrow S^{\prime} / q_{1}$. Now by Lemma 1.1, we have

$$
S^{\prime} / q_{1}=\bigoplus u K\left[x_{t+1}, \ldots, x_{p}\right]
$$

and so

$$
\left(q_{2} \cap q_{3}\right) /\left(q_{1} \cap q_{2} \cap q_{3}\right)=\bigoplus\left(\left(q_{2} \cap q_{3}\right) \cap u K\left[x_{t+1}, \ldots, x_{p}\right]\right)
$$

where u runs in the monomials of $K\left[x_{1}, \ldots, x_{t}\right] \backslash\left(q_{1} \cap K\left[x_{1}, \ldots, x_{t}\right]\right)$. If $u \in K\left[x_{1}, \ldots, x_{r}\right]$ then

$$
\left(q_{2} \cap q_{3}\right) \cap u K\left[x_{t+1}, \ldots, x_{p}\right]=u\left(q_{2} \cap q_{3} \cap K\left[x_{t+1}, \ldots, x_{p}\right]\right)
$$

and if $u \notin K\left[x_{1}, \ldots, x_{r}\right]$ then

$$
\left(q_{2} \cap q_{3}\right) \cap u K\left[x_{t+1}, \ldots, x_{p}\right]=u\left(\left(\left(q_{2} \cap q_{3}\right): u\right) \cap K\left[x_{t+1}, \ldots, x_{p}\right]\right) .
$$

Since $\left(q_{2} \cap q_{3}\right): u$ is still an intersection of irreducible monomial ideals we get by Lemma 4.3 that

$$
\begin{aligned}
& \operatorname{sdepth}\left(\left(\left(q_{2} \cap q_{3}\right): u\right) \cap K\left[x_{t+1}, \ldots, x_{p}\right]\right) \\
& \quad \geqslant\left\lceil\frac{\operatorname{dim} K\left[x_{t+1}, \ldots, x_{p}\right] / q_{2} \cap K\left[x_{t+1}, \ldots, x_{p}\right]}{2}\right\rceil+\left\lceil\frac{\operatorname{dim} K\left[x_{t+1}, \ldots, x_{p}\right] / q_{3} \cap K\left[x_{t+1}, \ldots, x_{p}\right]}{2}\right\rceil .
\end{aligned}
$$

Also we have

$$
q_{2} /\left(q_{1} \cap q_{2}\right)=\bigoplus u\left(q_{2} \cap K\left[x_{t+1}, \ldots, x_{p}\right]\right)
$$

and it follows

$$
S^{\prime} /\left(q_{1}+q_{2}\right) \cong\left(S^{\prime} / q_{1}\right) /\left(q_{2} /\left(q_{1} \cap q_{2}\right)\right)=\bigoplus u\left(K\left[x_{t+1}, \ldots, x_{p}\right] / q_{2} \cap K\left[x_{t+1}, \ldots, x_{p}\right]\right)
$$

Thus $\operatorname{dim} S^{\prime} /\left(q_{1}+q_{2}\right)=\operatorname{dim} K\left[x_{t+1}, \ldots, x_{p}\right] / q_{2} \cap K\left[x_{t+1}, \ldots, x_{p}\right]$ and similarly

$$
\operatorname{dim} S^{\prime} /\left(q_{1}+q_{3}\right)=\operatorname{dim} K\left[x_{t+1}, \ldots, x_{p}\right] / q_{3} \cap K\left[x_{t+1}, \ldots, x_{p}\right] .
$$

Hence

$$
\begin{aligned}
\operatorname{sdepth}\left(\left(q_{2} \cap q_{3}\right) /\left(q_{1} \cap q_{2} \cap q_{3}\right)\right) \geqslant & \left\lceil\frac{\operatorname{dim}\left(S^{\prime} /\left(q_{1}+q_{2}\right)\right)}{2}\right\rceil+\left\lceil\frac{\operatorname{dim}\left(S^{\prime} /\left(q_{1}+q_{3}\right)\right)}{2}\right\rceil \\
= & \left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}\right)\right)-\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}+Q_{3}\right)\right)}{2}\right\rceil \\
& +\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{3}\right)\right)-\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}+Q_{3}\right)\right)}{2}\right\rceil .
\end{aligned}
$$

If $Q_{3} \subset Q_{1}+Q_{2}$ then $\left(q_{2} \cap q_{3}\right) \cap K\left[x_{t+1}, \ldots, x_{p}\right]=q_{3} \cap K\left[x_{t+1}, \ldots, x_{p}\right]$ and so

$$
\begin{aligned}
\operatorname{sdepth}_{S^{\prime}}\left(q_{2} \cap q_{3}\right) /\left(q_{1} \cap q_{2} \cap q_{3}\right) & \geqslant \operatorname{sdepth}\left(\left(q_{2} \cap q_{3}\right) \cap K\left[x_{t+1}, \ldots, x_{p}\right]\right) \\
& =p-t-\left\lfloor\left.\frac{h t\left(q_{3} \cap K\left[x_{t+1}, \ldots, x_{p}\right]\right)}{2} \right\rvert\,\right. \\
& =\left\lceil\frac{p-t+\operatorname{dim} K\left[x_{t+1}, \ldots, x_{p}\right] / q_{3} \cap K\left[x_{t+1}, \ldots, x_{p}\right]}{2}\right\rceil \\
& =\left\lceil\frac{\operatorname{dim}\left(S^{\prime} / q_{1}\right)+\operatorname{dim}\left(S^{\prime} /\left(q_{1}+q_{3}\right)\right)}{2}\right\rceil .
\end{aligned}
$$

Now it is enough to apply [9, Lemma 3.6].
Proposition 5.8. Let Q_{1}, Q_{2}, Q_{3} be three non-zero irreducible ideals of S and $R=S / Q_{1} \cap Q_{2} \cap Q_{3}$. Suppose that $\operatorname{dim} S /\left(Q_{1}+Q_{2}+Q_{3}\right)=0$. Then

$$
\begin{aligned}
\text { sdepth } R \geqslant & \max \left\{\min \left\{\operatorname{sdepth} S /\left(Q_{2} \cap Q_{3}\right),\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}\right)\right)}{2}\right\rceil+\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{3}\right)\right)}{2}\right\rceil\right\},\right. \\
& \min \left\{\operatorname{sdepth} S /\left(Q_{1} \cap Q_{3}\right),\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}\right)\right)}{2}\right\rceil+\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{2}+Q_{3}\right)\right)}{2}\right\rceil\right\}, \\
& \left.\min \left\{\operatorname{sdepth} S /\left(Q_{1} \cap Q_{2}\right),\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{3}+Q_{2}\right)\right)}{2}\right\rceil+\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{3}\right)\right)}{2}\right\rceil\right\}\right\} .
\end{aligned}
$$

For the proof apply Lemma 1.3 and Lemma 5.7.
Theorem 5.9. Let Q_{1}, Q_{2}, Q_{3} be three non-zero irreducible ideals of S and $R=S /\left(Q_{1} \cap Q_{2} \cap Q_{3}\right)$. Then sdepth $R \geqslant$ depth R, that is Stanley's Conjecture holds for R.

Proof. Applying [9, Lemma 3.6] we may reduce the problem to the case when

$$
\operatorname{dim} S /\left(Q_{1}+Q_{2}+Q_{3}\right)=0
$$

If one of the Q_{i} has dimension 0 then depth $R=0$ and there exists nothing to show. Assume that all Q_{i} have dimension >0. If one of the Q_{i} has dimension 1 then depth $R=1$ and by [5] (or [7]) we get sdepth $R \geqslant 1=$ depth R. From now on we assume that all Q_{i} have dimension >1.

If $Q_{1}+Q_{2}$ has dimension 0 and $Q_{3} \not \subset Q_{1}+Q_{2}$ then from the exact sequence

$$
0 \rightarrow R \rightarrow S / Q_{1} \oplus S / Q_{2} \cap Q_{3} \rightarrow S /\left(Q_{1}+Q_{2}\right) \cap\left(Q_{1}+Q_{3}\right) \rightarrow 0
$$

we get depth $R=1$ by Depth Lemma and we may apply [5] (or [7]) to get as above sdepth $R \geqslant 1=$ depth R. If $Q_{3} \subset Q_{1}+Q_{2}$ then by Lemma 1.3, Theorem 5.6 and Lemma 5.7 we have

$$
\text { sdepth } \begin{aligned}
R & \geqslant \min \left\{\operatorname{depth} S /\left(Q_{2} \cap Q_{3}\right),\left\lceil\frac{\operatorname{dim}\left(S / Q_{1}\right)+\operatorname{dim}\left(S /\left(Q_{1}+Q_{3}\right)\right)}{2}\right\rceil\right\} \\
& \geqslant 1+\min \left\{\operatorname{dim} S /\left(Q_{2}+Q_{3}\right), \operatorname{dim} S /\left(Q_{1}+Q_{3}\right)\right\} \\
& =\operatorname{depth} R
\end{aligned}
$$

from the above exact sequence and a similar one. Thus we may suppose that $Q_{1}+Q_{2}, Q_{2}+Q_{3}$, $Q_{1}+Q_{3}$ have dimension $\geqslant 1$. Then from the exact sequence

$$
0 \rightarrow S /\left(Q_{1}+Q_{2}\right) \cap\left(Q_{1}+Q_{3}\right) \rightarrow S /\left(Q_{1}+Q_{2}\right) \oplus S /\left(Q_{1}+Q_{3}\right) \rightarrow S /\left(Q_{1}+Q_{2}+Q_{3}\right) \rightarrow 0
$$

we get by Depth Lemma depth $S /\left(Q_{1}+Q_{2}\right) \cap\left(Q_{1}+Q_{3}\right)=1$. Renumbering Q_{i} we may suppose that $\operatorname{dim}\left(Q_{2}+Q_{3}\right) \geqslant \max \left\{\operatorname{dim}\left(Q_{1}+Q_{3}\right), \operatorname{dim}\left(Q_{2}+Q_{1}\right)\right\}$. Using Proposition 5.8 we have

$$
\text { sdepth } R \geqslant \min \left\{\text { sdepth } S / Q_{2} \cap Q_{3},\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}\right)\right)}{2}\right\rceil+\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{3}\right)\right)}{2}\right\rceil\right\} .
$$

We may suppose that sdepth $R<\operatorname{dim} S / Q_{i}$ because otherwise sdepth $R \geqslant \operatorname{dim} S / Q_{i} \geqslant \operatorname{depth} R$. Thus using Theorem 1.5 we get

$$
\begin{aligned}
\text { sdepth } R \geqslant & \min \left\{\left\lceil\frac{\operatorname{dim} S / Q_{3}+\operatorname{dim} S /\left(Q_{2}+Q_{3}\right)}{2}\right\rceil\right. \\
& \left.\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}\right)\right)}{2}\right\rceil+\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{3}\right)\right)}{2}\right\rceil\right\} .
\end{aligned}
$$

If $Q_{1} \not \subset \sqrt{Q_{3}}$ then $\operatorname{dim} S / Q_{3}>\operatorname{dim} S /\left(Q_{1}+Q_{3}\right)$ and we get

$$
\operatorname{dim} S / Q_{3}+\operatorname{dim} S /\left(Q_{2}+Q_{3}\right)>\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}\right)\right)+\operatorname{dim}\left(S /\left(Q_{1}+Q_{3}\right)\right)
$$

because $\operatorname{dim} S /\left(Q_{2}+Q_{3}\right)$ is maxim by our choice. It follows that

$$
\text { sdepth } R \geqslant\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}\right)\right)}{2}\right\rceil+\left\lceil\frac{\operatorname{dim}\left(S /\left(Q_{1}+Q_{3}\right)\right)}{2}\right\rceil \geqslant 2 \text {. }
$$

But from the first above exact sequence we get depth $R=2$ with Depth Lemma, that is sdepth $R \geqslant$ depth R.

If $Q_{1} \not \subset \sqrt{Q_{2}}$ we note that $\operatorname{dim} S / Q_{2}+\operatorname{dim} S /\left(Q_{2}+Q_{3}\right)>\operatorname{dim}\left(S /\left(Q_{1}+Q_{2}\right)\right)+\operatorname{dim}\left(S /\left(Q_{1}+Q_{3}\right)\right)$ and we proceed similarly as above with Q_{2} instead Q_{3}. Note also that if $Q_{1} \subset \sqrt{Q_{2}}$ and $Q_{1} \subset$ $\sqrt{Q_{3}}$ we get $\operatorname{dim} S /\left(Q_{2}+Q_{3}\right) \geqslant \operatorname{dim} S /\left(Q_{2}+Q_{1}\right)=\operatorname{dim} S / Q_{2}$, respectively $\operatorname{dim} S /\left(Q_{2}+Q_{3}\right) \geqslant$ $\operatorname{dim} S /\left(Q_{3}+Q_{1}\right)=\operatorname{dim} S / Q_{3}$. Thus $Q_{1} \subset \sqrt{Q_{3}}=\sqrt{Q_{2}}$ and it follows sdepth $R \geqslant \operatorname{dim} S / Q_{2}$, which is a contradiction.

References

[1] J. Apel, On a conjecture of R.P. Stanley, Part I - Monomial ideals, J. Algebraic Combin. 17 (2003) 39-56.
[2] I. Anwar, D. Popescu, Stanley conjecture in small embedding dimension, J. Algebra 318 (2007) 1027-1031.
[3] C. Biro, D.M. Howard, M.T. Keller, W.T. Trotter, S.J. Young, Interval partitions and Stanley depth, J. Combin. Theory Ser. A (2009), in press, doi:10.1016/j.jcta.2009.07.008.
[4] W. Bruns, J. Herzog, Cohen Macaulay Rings, revised edition, Cambridge University Press, Cambridge, 1996.
[5] M. Cimpoeas, Stanley depth of monomial ideals in three variables, preprint, arXiv:math.AC/0807.2166, 2008.
[6] M. Cimpoeas, Stanley depth of complete intersection monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie 51 (99) (2008) 205-211.
[7] M. Cimpoeas, Some remarks on the Stanley depth for multigraded modules, Le Mathematiche LXIII (II) (2008) $165-171$.
[8] J. Herzog, A. Soleyman Jahan, S. Yassemi, Stanley decompositions and partitionable simplicial complexes, J. Algebraic Combin. 27 (2008) 113-125.
[9] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra 322 (9) (2009) 31513169.
[10] M.T. Keller, S.J. Young, Stanley depth of squarefree monomial ideals, J. Algebra 322 (10) (2009) 3789-3792.
[11] R. Okazaki, A lower bound of Stanley depth of monomial ideals, preprint, 2009.
[12] D. Popescu, Stanley depth of multigraded modules, J. Algebra 321 (2009) 2782-2797.
[13] D. Popescu, An inequality between depth and Stanley depth, Bull. Math. Soc. Sci. Math. Roumanie 52 (100) (2009) $377-382$.
[14] A. Rauf, Depth and Stanley depth of multigraded modules, Comm. Algebra, in press.
[15] Y. Shen, Stanley depth of complete intersection monomial ideals and upper-discrete partitions, J. Algebra 321 (2009) 12851292.
[16] A. Soleyman Jahan, Prime filtrations of monomial ideals and polarizations, J. Algebra 312 (2007) 1011-1032.
[17] R.P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982) 175-193.
[18] R.H. Villarreal, Monomial Algebras, Marcel Dekker Inc., New York, 2001.

[^0]: the authors would like to express their gratitude to ASSMS of GC University Lahore for creating a very appropriate atmosphere for research work. This research is partially supported by HEC Pakistan. The first author was mainly supported by CNCSIS Grant ID-PCE no. 51/2007.

 * Corresponding author.

 E-mail addresses: dorin.popescu@imar.ro (D. Popescu), imranqureshi18@gmail.com (M.I. Qureshi).

