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a b s t r a c t

A vertex x in a connected graph G is said to resolve a pair {u, v} of vertices of G if the
distance from u to x is not equal to the distance from v to x. A set S of vertices of G is a
resolving set for G if every pair of vertices is resolved by some vertex of S. The smallest
cardinality of a resolving set for G, denoted by dim(G), is called the metric dimension of
G. For the pair {u, v} of vertices of G the collection of all vertices which resolve the pair
{u, v} is denoted by R{u, v} and is called the resolving neighbourhood of the pair {u, v}. A
real valued function g : V (G) → [0, 1] is a resolving function of G if g(R{u, v}) ≥ 1 for
any two distinct vertices u, v ∈ V (G). The fractional metric dimension of G is defined as
dimf (G) = min{|g| : g is a minimal resolving function of G}, where |g| =


v∈V g(v). In

this paper we study this parameter.
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

By a graphG = (V , E), wemean a finite, undirected and connected graphwith neither loops normultiple edges. The order
and size of G are denoted by n and m respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [4].

The distance d(u, v) between two vertices u and v in G is the length of a shortest u−v path in G. By an ordered set of ver-
tices we mean a setW = {w1, w2, . . . , wk} on which the ordering (w1, w2, . . . , wk) has been imposed. For an ordered sub-
setW = {w1, w2, . . . , wk} of V (G), we refer to the k-vector (ordered k-tuple) r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk))
as the (metric) representation of v with respect to W . The set W is called a resolving set for G if r(u|W ) = r(v|W ) im-
plies that u = v for all u, v ∈ V (G). Hence, if W is a resolving set of cardinality k for a graph G of order n, then the set
{r(v|W ) : v ∈ V (G)} consists of n distinct k-vectors. A resolving set of minimum cardinality for a graph G is called a basis
for G and the metric dimension of G is defined to be the cardinality of a basis of G and is denoted by dim(G). A resolving set
W of G is a minimal resolving set if no proper subset of W is a resolving set. The upper dimension of G is defined to be the
maximum cardinality of a minimal resolving set of G and is denoted by dim+(G).

A vertex x ∈ V (G) is said to resolve a pair of vertices {u, v} in G if d(u, x) ≠ d(v, x). Let Vp denote the collection of
all

 n
2


pairs of vertices of G. For u, v ∈ V (G), we define the resolving neighbourhood of the pair {u, v} as R{u, v} =

{x ∈ V (G) : d(u, x) ≠ d(v, x)}. Also, for each vertex x ∈ V (G), we define the resolvent neighbourhood of x as
R{x} = {{u, v} ∈ Vp : d(u, x) ≠ d(v, x)}. The resolving graph [8,9] R(G) of a connected graph G = (V , E) is a bipartite
graph with bipartition (V , Vp) where a vertex x ∈ V is joined to a pair {u, v} ∈ Vp if and only if x resolves {u, v} in G. Then
the minimum cardinality of a subset S of V such that N(S) = Vp in R(G) is the metric dimension of G.

Currie and Oellermann [8] have introduced the concept of metric independence numbermi(G) of a graph Gwhich is the
dual concept of metric dimension dim(G) of G. A collection of pairs of vertices of G, no two of which are resolved by the same
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vertex, is called an independent resolvent set of G. The metric independence numbermi(G) of G is the maximum cardinality
of an independent resolvent set of G.

The minimum metric dimension problem is to find a basis of G. Garey and Johnson [10] noted that the minimum
metric dimension problem is NP-complete for general graphs by a reduction from three-dimensional matching. An explicit
reduction from 3 − SAT was given by Khuller et al. [12]. Recently, Manuel et al. [13] proved that the minimum metric
dimension problem is NP-complete for bipartite graphs by a reduction from 3 − SAT .

The idea of resolving sets has appeared in the literature previously. In [17] and later in [18], Slater introduced the concept
of a resolving set for a connected graph G under the term locating set. He referred to a minimum resolving set as a reference
set for G. He called the cardinality of a minimum resolving set (reference set) the location number of G. Independently,
Harary and Melter [11], discovered these concepts as well but used the term metric dimension.

Applications of resolving sets arise in various areas including coin weighing problem [16], drug discovery [3], robot
navigation [12], network discovery and verification [1], connected joins in graphs [15] and strategies for the mastermind
game [6]. For a survey of results in metric dimension, we refer to Chartrand and Zhang [5].

Chartrand et al. [3], and independently Currie and Oellermann [8] formulated the problem of finding the metric
dimension of a graph as an integer programming problem. Further Currie and Oellermann [8] defined fractional metric
dimension as the optimal solution of the linear relaxation of the integer programming problem. Fehr et al. [9] proposed the
following equivalent formulation of fractional metric dimension.

Suppose V = {v1, v2, . . . , vn} and Vp = {s1, s2, . . . , s( n
2 )

}. Let A = (aij) be the
 n
2


×nmatrixwith aij = 1 if sivj ∈ E(R(G))

and 0 otherwise, where 1 ≤ i ≤
 n
2


and 1 ≤ j ≤ n. The integer programming formulation of the metric dimension is given

by

Minimize f (x1, x2, . . . , xn) = x1 + x2 + · · · + xn
Subject to Ax ≥ 1

where x = (x1, x2, . . . , xn)T , xi ∈ {0, 1} and 1 is the
 n
2


× 1 column vector all of whose entries are 1.

The optimal solution of the linear programming relaxation of the above I.P.P, where we replace xi ∈ {0, 1} by 0 ≤ xi ≤ 1,
gives the fractional metric dimension of G, which we denote by dimf (G). The optimal solution of the dual of this L.P.P is
the fractional independence number of G, which we denote by mif (G). Hence, it follows from the duality and weak duality
theorem in linear programming thatmi(G) ≤ mif (G) = dimf (G) ≤ dim(G).

For a detailed study of fractional graph theory and fractionalization of various graph parameters, we refer to Scheinerman
and Ullman [14]. In this paper, we present several fundamental results on fractional metric dimension.

2. Graphs with dimf (G) =
|V (G)|

2

We start with the formulation of the fractional metric dimension, the upper fractional metric dimension, the lower
fractional metric independence number and the fractional metric independence number in terms of minimal resolving
functions and maximal metric independence functions.

Definition 2.1. Let G = (V , E) be a connected graph of order n. A function f : V → [0, 1] is called a resolving function (RF)
of G if f (R{u, v}) ≥ 1 for any two distinct vertices u, v ∈ V , where f (R{u, v}) =


x∈R{u,v}

f (x).
A resolving function g of a graph G is minimal (MRF) if any function f : V → [0, 1] such that f ≤ g and f (v) ≠ g(v) for

at least one v ∈ V is not a resolving function of G.
The fractional metric dimension dimf (G) and the upper fractional metric dimension dim+

f (G) are given by

dimf (G) = min{|g| : g is a minimal resolving function of G} and

dim+

f (G) = max{|g| : g is a minimal resolving function of G}.

Definition 2.2. Let G = (V , E) be a connected graph of order n. A function f : Vp → [0, 1] is called a metric independence
function (MIF) of G if f (R{v}) ≤ 1 for all v ∈ V .

A metric independence function g of a graph G is maximal (MMIF) if any function f : Vp → [0, 1] such that f ≥ g and
f (s) ≠ g(s) for at least one s ∈ Vp is not a metric independence function of G.

The lower fractional metric independence number mi−f (G) and the fractional metric independence number, mif (G) are
given by

mi−f (G) = min{|g| : g is a maximal metric independence function of G} and

mif (G) = max{|g| : g is a maximal metric independence function of G}.

Observation 2.3. If there exists a minimal resolving function g and a maximal metric independence function h of a graph G with
|g| = |h|, then dimf (G) = |g| = |h| = mif (G).

This observation is very useful in computing the fractional metric dimension dimf (G) of any connected graph G.
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Observation 2.4. Since the characteristic function of a minimal resolving set is an MRF of G, it follows that 1 ≤ dimf (G) ≤

dim(G) ≤ dim+(G) ≤ dim+

f (G) ≤ n − 1.

Observation 2.5. Since dim(G) = 1 if and only if G = Pn where Pn is the path on n vertices [17,12], it follows that dimf (Pn) = 1
and dim(G) ≥ 2 for all G ≠ Pn.

Theorem 2.6. Let G be a connected graph of order n. Then dimf (G) ≤
n
2 . Further dimf (G) =

n
2 if and only if there exists a

bijection α : V (G) → V (G) such that α(v) ≠ v and |R{v, α(v)}| = 2 for all v ∈ V (G).
Proof. Let k = min{|R{u, v}| : u, v ∈ V (G), u ≠ v}. Then the constant function g defined on V (G) by g(v) =

1
k for all v ∈ V

is a resolving function, so that dimf (G) ≤
n
k . Since k ≥ 2, we get dimf (G) ≤

n
2 .

Now, suppose there exists a bijection α : V (G) → V (G) such that α(v) ≠ v and |R{v, α(v)}| = 2 for all v ∈ V (G). Let
h be any resolving function of G. Then h(R{u, v}) ≥ 1 for all u, v ∈ V (G). In particular, we have h(R{u, α(u)}) ≥ 1 for all
u ∈ V (G). Adding these n inequalities we get 2|h| ≥ n and so dimf (G) ≥

n
2 . Hence dimf (G) =

n
2 .

Conversely, suppose that dimf (G) =
n
2 . If there exists a vertex v ∈ V such that |R{v, w}| ≥ 3 for allw ∈ V −{v}, then the

function f : V → [0, 1] defined by f (v) = 0 and f (w) =
1
2 for all w ∈ V − {v} is a resolving function of G with |f | =

n−1
2 ,

which is a contradiction. Hence for each v ∈ V (G), there exists a vertex α(v) ≠ v such that |R{v, α(v)}| = 2. We now claim
that α : V → V is a bijection. If there exists a vertex vi ∈ V such that |α−1(vi)| ≥ 2, let α−1(vi) = {vi1 , vi2 , . . . , vir }, r ≥ 2.
Then f : V (G) → [0, 1] defined by

f (u) =



1
4

if u = vij , j = 1, 2, . . . , r

3
4

if u = vi

1
2

otherwise

is a resolving function of G and |f | =
n
2 +

1
4 −

r
4 < n

2 , which is a contradiction. Thus α: V → V is the required bijection. �

Corollary 2.7. dimf (G) =
|V (G)|

2 for each of the following graphs
(i) G = Kn, n ≥ 2.
(ii) G = Kn − e, n ≥ 4.
(iii) G = K2t − M, t ≥ 2 and M is a perfect matching in K2t .
(iv) G is the complete k-partite graph Kn1,n2,...,nk , where k ≥ 2 and ni ≥ 2.
Proof. We prove the result by exhibiting a bijection α : V (G) → V (G) satisfying the conditions stated in Theorem 2.6.

If G = Kn and V (G) = {v1, v2, . . . , vn}, then α : V (G) → V (G) defined by α(vi) = vi+1, where vn+1 = v1 is the required
bijection.

If G = Kn − e and e = v1v2, then α : V (G) → V (G) defined by

α(vi) =


v2 if i = 1
v1 if i = 2
vi+1 if 3 ≤ i ≤ n − 1
v3 if i = n

is the required bijection.
If G = K2t − M with V (G) = {v1, v2, . . . , v2t} and M = {v1v2, v3v4, v5v6, . . . , v2t−1v2t}, then α : V (G) → V (G) defined

by

α(vi) =


vi+1 if i ≡ 1(mod 2)
vi−1 if i ≡ 0(mod 2)

is the required bijection.
If G = Kn1,n2,...,nk with V (G) =

k
i=1 Vi where Vi = {vi

1, v
i
2, . . . , v

i
ni}, then α : V (G) → V (G) defined by α(vi

j) = vi
j+1, j =

1, 2, . . . , ni and i = 1, 2, . . . , k, vi
ni+1 = vi

1 is the required bijection. �

Corollary 2.8. Let G denote the collection of all connected graphs G with dimf (G) =
|V (G)|

2 . If G1,G2 ∈ G, then G1 + G2 ∈ G,
where G1 + G2 is the graph obtained from G1 and G2 by joining every vertex of G1 with every vertex of G2.
Proof. If α1 : V (G1) → V (G1) and α2 : V (G2) → V (G2) are bijections satisfying the conditions stated in Theorem 2.6, then
β : V (G1 + G2) → V (G1 + G2) defined by

β(v) =


α1(v) if v ∈ V (G1)
α2(v) if v ∈ V (G2)

is the required bijection. �
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Corollary 2.9. If dimf (G) =
n
2 , then dimf (G + Kk) =

n+k
2 .

Theorem 2.10. Any connected graph H can be embedded as an induced subgraph of a connected graph G with dimf (G) =
|V (G)|

2 .

Proof. Let V (H) = {v1, v2, . . . , vn}. Let H1,H2, . . . ,Hn be n disjoint graphs with dimf (Hi) =
|V (Hi)|

2 . Consider the
composition graph G = H[H1,H2, . . . ,Hn], which is formed from H by replacing each vertex vi of H by Hi and joining
each vertex of Hi to each vertex of Hj whenever vi and vj are adjacent in H . By Theorem 2.6, there exists a bijection
αi : V (Hi) → V (Hi) such that αi(v) ≠ v and |R{v, αi(v)}| = 2 for all v ∈ V (Hi). Now the function β : V (G) → V (G) defined
by β(v) = αi(v) if v ∈ V (Hi) is a bijection with β(v) ≠ v and |R{v, β(v)}| = 2 for all v ∈ V (G). Hence dimf (G) =

|V (G)|

2 and
H is an induced subgraph of G. �

3. Fractional metric dimension of some standard graphs

In this section we determine the fractional metric dimension of several families of graphs.

Theorem 3.1. For the Petersen graph P, we have dimf (P) =
5
3 .

Proof. The vertex set of P is the set of all 2-element subsets of {1, 2, . . . , 5} and two vertices x, y are adjacent if x ∩ y = ∅.
We know that P is a 3-regular graph with diam(P) = 2. Let u, v ∈ V (P). If d(u, v) = 1, then N(u) ∩ N(v) = ∅, R{u, v} =

N(u) ∪N(v) and hence |R{u, v}| = 6. Also, if d(u, v) = 2 then |N(u) ∩N(v)| = 1, R{u, v} = (N[u] ∪N[v]) − (N[u] ∩N[v])
and hence |R{u, v}| = 6. Thus, |R{u, v}| = 6 for all u, v ∈ V (P). Hence the function g : V → [0, 1] defined by g(v) =

1
6 for

all v ∈ V , is a minimal resolving function with |g| =
10
6 =

5
3 .

Now let v ∈ V (P). Since diam(P) = 2, it follows that R{v} = {{x, y} : x = v} ∪ {{x, y} : x ∈ N(v) and y ∈ V − N[v]}.
Hence |R{v}| = 27. Now the function h : Vp → [0, 1] defined by h({x, y}) =

1
27 for all {x, y} ∈ Vp is a maximal metric

independence function with |h| =


10
2


27 =

5
3 . Hence it follows from Observation 2.3 that dimf (P) =

5
3 . �

Theorem 3.2. For the cycle Cn, we have

dimf (Cn) =


n

n − 1
if n is odd

n
n − 2

if n is even.

Proof. Let Cn = (u1u2u3 . . . unu1).
Case 1. n is odd.

For any two distinct vertices {ui, uj}, we have R{ui, uj} = V − {uk}, where uk is the middle vertex of the ui − uj section of
Cn having even length. Hence |R{ui, uj}| = n − 1. Now the function g : V → [0, 1] defined by g(v) =

1
n−1 for all v ∈ V is a

minimal resolving function with |g| =
n

n−1 .
Also for any vertex ui, there exist exactly n−1

2 pairs of vertices which are not resolved by ui and hence |R{ui}| = n
2


−

n−1
2 =

(n−1)2

2 . Hence the function h : Vp → [0, 1] defined by h(s) =
2

(n−1)2
for all s ∈ Vp is a maximal metric

independence function with |h| =
 n
2

 2
(n−1)2

=
n

n−1 . Hence by Observation 2.3, dimf (Cn) =
n

n−1 .

Case 2. n is even.
For any two distinct vertices ui and uj the length of both the ui − uj sections of Cn have the same parity and hence it

follows that

|R{ui, uj}| =


n if d(ui, uj) is odd
n − 2 if d(ui, uj) is even.

Hence the function g : V → [0, 1] defined by g(v) =
1

n−2 for all v ∈ V is a minimal resolving function with |g| =
n

n−2 .

Now let S = {{ur , uk} : d(ur , uk) is even}. We claim that any vertex ui resolves
 n
2 − 1

2 elements of S. Let Sj denote the
set of elements in S which contain uj and which are resolved by ui. Then

|Sj| =


n
2

− 1 if j = i or j =
n
2

+ i(mod n)

n
2

− 2 otherwise.

Hence the number of elements in S which are resolved by ui is 1
2

n
l=1 |Sl| =

1
2


2

 n
2 − 1


+ (n − 2)

 n
2 − 2


=

 n
2 − 1

2.
Hence the function h : Vp → [0, 1] defined by
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h(x) =


1 n

2 − 1
2 if x ∈ S

0 otherwise

is a maximal metric independence function with |h| =
n
2 (

n
2 −1)

( n
2 −1)

2 =
n

n−2 . Hence by Observation 2.3, dimf (Cn) =
n

n−2 . �

While trying to establish the result mi(Qn) = 2, Fehr et al. [9] have proved that dimf (Qn) ≤ 2. In the following theorem
we prove that dimf (Qn) = 2.

Theorem 3.3. For the hypercube G = Qn, n ≥ 2, we have dimf (Qn) = 2.

Proof. Consider the 4-cycle (u1, u2, u3, u4, u1) inGwhereu1 = (0, 0, . . . , 0), u2 = (1, 0, 0, . . . , 0), u3 = (1, 1, 0, 0, . . . , 0)
and u4 = (0, 1, 0, 0, . . . , 0). We have R{u1, u3} = {(0, 0, x3 . . . , xn) : xi ∈ {0, 1}} ∪ {(1, 1, x3 . . . , xn) : xi ∈ {0, 1}} and
R{u2, u4} = {(1, 0, x3, . . . , xn) : xi ∈ {0, 1}} ∪ {(0, 1, x3, . . . , xn) : xi ∈ {0, 1}}. Thus R{u1, u3} ∪ R{u2, u4} = V (G) and
R{u1, u3} ∩ R{u2, u4} = ∅. Now, let h be any minimal resolving function of G. Then h(R{u1, u3}) ≥ 1 and h(R{u2, u4}) ≥ 1.
Adding these two inequalities we get |h| ≥ 2 and hence dimf (G) ≥ 2. Therefore dimf (G) = 2. �

Theorem 3.4. Let G = (V , E) be a connected graph of order n. Suppose there exists a subset S of V satisfying the following
conditions.
(i) There exists a bijection α : V − S → V − S such that α(v) ≠ v and |R{v, α(v)}| = 2 for all v ∈ V − S.
(ii) For every {x, y} ∈ Vp, there exists v ∈ V − S such that R{v, α(v)} ⊆ R{x, y}.

Then dimf (G) =
n−|S|

2 .

Proof. The function g : V → [0, 1] defined by

g(v) =


0 if v ∈ S
1
2

if v ∈ V − S

is a minimal resolving function of G with |g| =
n−|S|

2 and hence dimf (G) ≤
n−|S|

2 . Now, let h be any MRF of G. Then
h(R{v, α(v)}) ≥ 1 for all v ∈ V − S. Hence


v∈V−S h(R{v, α(v)}) ≥ |V − S| and so dimf (G) ≥ |h| ≥


v∈V−S h(v) ≥

n−|S|
2 .

Thus dimf (G) =
n−|S|

2 . �

Remark 3.5. For the star G = K1,n, n ≥ 2, we take S = {v} where v is the centre of K1,n, and applying Theorem 3.4, we get
dimf (G) =

n
2 . Similarly, for the bistar G = B(r, s), we take S = {u, v} where u and v are the non-pendant vertices of G and

Theorem 3.4 gives dimf (G) =
r+s
2 .

Theorem 3.6. For the wheel Wn, n ≥ 5, we have

dimf (Wn) =


2 if n = 5
3
2

if n = 6

n − 1
4

if n ≥ 7.

Proof. Let V (Wn) = {u0, u1, . . . , un−2, u} where u is the centre of the wheel and Cn−1 = (u0u1 . . . un−2u0), n ≥ 4, is the
rim.
Case 1. n = 5.

In this case R{u0, u2} = {u0, u2} and R{u1, u3} = {u1, u3}. Now let S = {u}. Then the function α : V − S → V − S defined
by α(u0) = u2, α(u1) = u3, α(u2) = u0 and α(u3) = u1 is a bijection which satisfies the conditions of Theorem 3.4 and
hence dimf (W5) =

|V (W5)|−|S|
2 = 2.

Case 2. n = 6.
In this case |R{x, y}| = 4 for all {x, y} ∈ Vp and hence the constant function g : V → [0, 1] defined by g(v) =

1
4 is a min-

imal resolving function with |g| =
3
2 . Now, R{u0} = {{u0, u1}, {u0, u2}, {u0, u3}, {u0, u4}, {u0, u}, {u1, u2}, {u1, u3}, {u2, u4},

{u2, u}, {u3, u4}, {u3, u}} and R{u} = {{u0, u}, {u1, u}, {u2, u}, {u3, u}, {u4, u}}. Clearly, R{u} ∩ R{u0} = {{u0, u}, {u2, u},
{u3, u}}. By symmetry we get |R{ui}| = 11 and |R{u}∩R{ui}| = 3 for i = 0, 1, . . . , 4. Therefore, the function h : Vp → [0, 1]
defined by

h({x, y}) =


1
5

if x = ui, y = u, 0 ≤ i ≤ 4

1
20

otherwise
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is a maximal metric independence function with |h| =
3
2 . Hence by Observation 2.3, dimf (W6) =

3
2 .

Case 3. n ≥ 7.
In this case R{ui, ui+1} = {ui−1, ui, ui+1, ui+2}, R{ui, ui+2} = {ui−1, ui, ui+2, ui+3} where the addition in the suffix is

modulo n − 2. Also, |R{x, y} ∩ V (Cn−1)| ≥ 4 for all x, y ∈ V (Wn) and u ∉ R{ui, uj}, 0 ≤ i < j ≤ n − 2. Hence the function
g : V → [0, 1] defined by

g(ui) =


1
4

if 0 ≤ i ≤ n − 2

0 if ui = u

is a minimal resolving function ofWn with |g| =
n−1
4 so that dimf (Wn) ≤

n−1
4 .

Now, let h be any resolving function ofWn. Then h(R{ui, ui+1}) = h(ui−1)+h(ui)+h(ui+1)+h(ui+2) ≥ 1, 0 ≤ i ≤ n−2.
Adding these (n−1) inequalities we get 4

n−2
i=0 h(ui) ≥ n−1. Hence dimf (Wn) ≥ |h| = h(u)+

n−2
i=1 h(ui) ≥

n−2
i=1 h(ui) ≥

n−1
4 . Thus dimf (Wn) =

n−1
4 for n ≥ 7. �

4. Graphs with dimf (G) = dim(G)

In this section we present several families of graphs for which dimf (G) = dim(G).
For the wheel G = W5 = K1 + C4 and for the graph G = K1 + P3 we have dimf (G) = dim(G) = 2. Also, for the path

Pn, n ≥ 2, we have dimf (Pn) = dim(Pn) = 1. A graph G with exactly one cut vertex in which each block is K3 is called a
friendship graph.

Theorem 4.1. Let G be the friendship graph consisting of k blocks, where k ≥ 2. Then dimf (G) = k = dim(G).

Proof. For 1 ≤ i ≤ k, let Gi = (u, vi, wi, u) be the k blocks of G. Then R{vi, wi} = {vi, wi}, R{u, vi} = V (G) − {wi} and
R{u, wi} = V (G) − {vi}, 1 ≤ i ≤ k. Let S = {u}. Then the function α : V (G) − S → V (G) − S defined by α(vi) = wi and
α(wi) = vi, 1 ≤ i ≤ k is a bijection which satisfies the conditions of Theorem 3.4 and hence dimf (G) =

|V (G)|−|S|
2 = k.

ClearlyW = {v1, v2, . . . , vk} is a minimum resolving set of G so that dim(G) = k. �

Theorem 4.2. For the grid graph G = Pm�Pn, we have dimf (G) = 2 = dim(G).

Proof. Let V (G) = {ui,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}where ui,j is the vertex in the ith row and jth column. Since dim(G) = 2 [12],
it follows that dimf (G) ≤ 2. We now proceed to prove that dimf (G) ≥ 2.

We observe that R{u1,1, u2,2} = {u1,1} ∪ {ui,j : i ≥ 2 and j ≥ 2} and R{u1,2, u2,1} = {ui,j : i = 1 or j = 1 but not both}.
Thus R{u1,1, u2,2} ∩ R{u1,2, u2,1} = ∅ and R{u1,1, u2,2} ∪ R{u1,2, u2,1} = V (G).

Let h be any minimal resolving function of G. Then h(R{u1,1, u2,2}) ≥ 1 and h(R{u1,2, u2,1}) ≥ 1. Adding these two
inequalities we get |h| ≥ 2 and hence dimf (G) ≥ 2. Therefore dimf (G) = 2. �

Conclusion and Scope. The following are some interesting problems for further investigation.

1. Characterize graphs G for which dimf (G) =
n
2 .

2. Characterize graphs for which dimf (G) = dim(G).
3. Cáceres et al. [2] have proved that dim(G�H) ≥ max{dim(G), dim(H)}. Is a similar result true for dimf (G)?

In the study of fractional domination Cockayne et al. [7] have obtained several results about the convexity of the set of
all minimal dominating functions of a graph. Similar results regarding the convexity of minimal resolving functions of a
connected graph will be reported in a subsequent paper.

Acknowledgements

We are thankful to the National Board for Higher Mathematics, Mumbai, for its support through the project
48/5/2008/R&D-II/561, awarded to the first author. The second author is thankful to the UGC, New Delhi, India for having
been awarded to him, FIP teacher fellowship during the XIth plan period. We are thankful to the referees for their helpful
suggestions.

References

[1] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffman,M.Mihalak, L. Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24 (2006)
2168–2181.

[2] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, D.R. Wood, On the metric dimension of Cartesian products of graphs, SIAM J.
Discrete Math. 21 (2) (2007) 423–441.

[3] G. Chartrand, L. Eroh, M. Johnson, O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000)
99–113.

[4] G. Chartrand, L. Lesniak, Graphs & Digraphs, fourth ed., Chapman & Hall, CRC, 2005.



1590 S. Arumugam, V. Mathew / Discrete Mathematics 312 (2012) 1584–1590

[5] G. Chartrand, P. Zhang, The theory and applications of resolvability in graphs: a survey, Congr. Numer. 160 (2003) 47–68.
[6] V. Chvátal, Mastermind, Combinatorica 3 (1983) 325–329.
[7] E.J. Cockayne, G. Fricke, S.T. Hedetniemi, C.M. Mynhardt, Properties of minimal dominating functions of graphs, Ars Combin. 41 (1995) 107–115.
[8] J. Currie, O.R. Oellermann, The metric dimension and metric independence of a graph, J. Combin. Math. Combin. Comput. 39 (2001) 157–167.
[9] M. Fehr, S. Gosselin, O.R. Oellermann, The metric dimension of Cayley digraphs, Discrete Math. 306 (2006) 31–41.

[10] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.
[11] F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191–195.
[12] S. Khuller, B. Raghavachari, A. Rosenfield, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217–229.
[13] P.Manuel, B. Rajan, I. Rajasingh, J.A. Cynthia, NP-completeness ofminimummetric dimensionproblem for directed graphs, in: Proc. of the International

Conference on Computer and Communication Engineering, Malaysia, vol. 1, 2006, pp. 601–605.
[14] E.R. Scheinerman, D.H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs, John Wiley & Sons, New York, 1997.
[15] A. Sebö, E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2004) 383–393.
[16] H. Shapiro, S. Soderberg, A combinatory detection problem, Amer. Math. Monthly 70 (1963) 1066–1070.
[17] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549–559.
[18] P.J. Slater, Domination and location in acyclic graphs, Networks 17 (1987) 55–64.


	The fractional metric dimension of graphs
	Introduction
	Graphs with  d i mf (G) = |V(G)|2 
	Fractional metric dimension of some standard graphs
	Graphs with  d i mf (G) = d i m (G) 
	Acknowledgements
	References


