A theorem on cycle–wheel Ramsey number

Yaojun Chena,b,*, T.C. Edwin Chengc, C.T. Ngc, Yunqing Zhanga

a Department of Mathematics, Nanjing University, Nanjing 210093, PR China
b State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, PR China
c Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Kom, Kowloon, Hong Kong, China

\textbf{A R T I C L E I N F O}

Article history:
Received 11 August 2010
Received in revised form 22 November 2011
Accepted 23 November 2011
Available online 15 December 2011

Keywords:
Ramsey number
Cycle
Wheel

\textbf{A B S T R A C T}

For two given graphs G_1 and G_2, the Ramsey number $R(G_1, G_2)$ is the smallest integer N such that for any graph G of order N, either G contains G_1 or the complement of G contains G_2. Let C_n denote a cycle of order n and W_m a wheel of order $m + 1$. In this paper, we show that $R(C_n, W_m) = 3n − 2$ for m odd, $n \geq m \geq 3$ and $(n, m) \neq (3, 3)$, which was conjectured by Surahmat, Baskoro and Tomescu.

\textcopyright{} 2011 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite simple graphs without loops. Let $G = (V(G), E(G))$ be a graph. For $S \subseteq V(G)$, we use $N_S(v)$ to denote the set of the neighbors of a vertex v contained in S and $d_S(v) = |N_S(v)|$. If $S = V(G)$, we write $N(v) = N_G(v)$, $N[v] = N(v) \cup \{v\}$ and $d(v) = d_G(v)$. If H is a subgraph of G, we write $N_H(v) = N_{H[v]}(v)$. The minimum degree of G is denoted by $\delta(G)$ and $\varepsilon(G) = |E(G)|$. Let G_1, G_2 be two graphs; we use $G_1 + G_2$ to denote a graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2) \cup \{uv \mid u \in V(G_1) \text{ and } v \in V(G_2)\}$. For $S \subseteq V(G)$, $G[S]$ denotes the subgraph induced by S in G. We use C_n and mK_n to denote a cycle of order n and the union of m vertex disjoint complete graph K_n, respectively. A Wheel $W_m = K_1 + C_m$ is a graph of $m + 1$ vertices. The lengths of the longest and shortest cycles of G are denoted by $\chi(G)$ and $g(G)$, respectively. We say G is weakly pancyclic if it contains cycles of every length $1, g(G) \leq l \leq \chi(G)$.

For two given graphs G_1 and G_2, the Ramsey number $R(G_1, G_2)$ is the smallest integer N such that for any graph G of order N, either G contains G_1 or the complement of G contains G_2. For a connected graph G of order n, it is well known that $R(G, F)$ satisfies $R(G, F) \geq (n − 1)(\chi(F) − 1) + s(F)$, if $n \geq s(F)$, where $\chi(F)$ is the chromatic number of F and $s(F)$ the minimum number of vertices in some color class under all vertex colorings by $\chi(F)$ colors. A graph G of order n is said to be F-good if $R(G, F) = (n − 1)(\chi(F) − 1) + s(F)$. The classical result on F-goodness is due to Chvátal [5] that $R(T_n, mK_m) = (n − 1)(m − 1) + 1$, where T_n is a tree of order n. For W_m-good graphs, it was shown in [4,3] that a star S_n and a path P_n are W_m-good when m is odd and $n \geq m − 1 \geq 2$, and P_n is W_m-good when m is even and $n \geq m − 1 \geq 3$. Surahmat et al. [13] considered the Ramsey number involving a cycle versus a wheel and established the following.

Theorem 1 (Surahmat et al. [13]). $R(C_n, W_m) = 2n − 1$ for m even and $n \geq 5m/2 − 1$.

Obviously, the result above says that C_n is W_m-good when m is even and $n \geq 5m/2 − 1$. In the same paper, they [13] conjectured that C_n is also W_m-good when m is odd and posed the following.
Conjecture 1 (Surahmat et al. [13]). \(R(C_n, W_m) = 3n - 2 \) for \(m \) odd, \(n \geq m \geq 3 \) and \((n, m) \neq (3, 3) \).

For \(m = 3, 5 \), Conjecture 1 was confirmed by Yang et al. [15] and Surahmat et al. [12], respectively. Surahmat et al. [14] proved that Conjecture 1 is true if \(m \geq 5 \) is odd and \(n \geq \frac{5m - 9}{2} \). Shi [11] showed that Conjecture 1 is true in the case when \(n > 70 \) or \(n \geq 3m/2 + 1 \). Recently, Zhang et al. [16] showed that Conjecture 1 is true for \(n \geq 20 \) by discussing the longest cycle in a subgraph of order \(3n - 6 \). In this paper, by considering the relations between the size and the circumference, the size and weakly pancyclic property of a graph, we give a complete proof of Conjecture 1. The main result of this paper is the following.

Theorem 2. \(R(C_n, W_m) = 3n - 2 \) for \(m \) odd, \(n \geq m \geq 3 \) and \((n, m) \neq (3, 3) \).

2. Several lemmas

In order to prove Theorem 2, we need the following lemmas.

Lemma 1 (Erdős and Gallai [7]). Let \(G \) be a graph of order \(n \) and \(3 \leq c \leq n \). If \(e(G) \geq (c - 1)(n - 1)/2 + 1 \), then \(c(G) \geq c \).

Lemma 2 (Brandt [1]). Every nonbipartite graph \(G \) of order \(n \) and \(e(G) > (n - 1)^2/4 + 1 \) is weakly pancyclic with \(g(G) = 3 \).

Lemma 3 (Brandt et al. [2]). Every nonbipartite graph \(G \) of order \(n \) with \(\delta(G) \geq (n + 2)/3 \) is weakly pancyclic with \(g(G) = 3 \) or 4.

Lemma 4 (Dirac [6]). Let \(G \) be a connected graph of order \(n \geq 3 \) with \(\delta(G) = \delta \geq 2 \). Then \(c(G) \geq \delta + 1 \).

Lemma 5 (Faudree and Schelp [9], Rosta [10]). \(R(C_n, C_m) = 2n - 1 \) for \(n \geq m \geq 3 \), \(m \) is odd and \((n, m) \neq (3, 3) \).

Lemma 6 (Faudree et al. [8]). Let \(G \) be a graph of order \(n \geq 6 \). Then \(\max\{c(G), c(G)\} \geq \lceil 2n/3 \rceil \).

3. Proof of Theorem 2

Proof of Theorem 2. Let \(G \) be a graph of order \(3n - 2 \) with \(n \geq 4 \), \(m \) is odd and \(n \geq m \geq 3 \). Since \(G = K_{m-1}n \) contains no \(C_3 \) and \(G \) contains no \(W_m \) for odd \(m \), we have \(R(C_n, W_m) \geq 3n - 2 \). In the following, we need only to show that \(R(C_n, W_m) \leq 3n - 2 \).

Suppose to the contrary neither \(G \) contains a \(C_n \) nor \(G \) contains a \(W_m \).

If there is some vertex \(x \) such that \(d(v) \leq n - 2 \), then \(G - [v] \) is a graph of order at least \(2n - 1 \). By Lemma 5, \(\delta(G) = n - 1 \). If \(G \) is bipartite, then \(\alpha(G) \geq (3n - 3)/2 \geq m + 1 \) and hence \(G \) contains a \(W_m \), a contradiction. Thus, we may assume \(G \) is nonbipartite. If \(\delta(G) \geq n \), then \(G \) contains a \(C_n \), by Lemmas 3 and 4. Therefore, we have \(\delta(G) = n - 1 \).

Let \(v \in V(G) \) with \(d(v) = \delta(G) = n - 1 \). Set \(H = G - [v] \). Obviously, \(H \) is a graph of order \(2n - 2 \).

If \(H \) is bipartite, say \(H = (X, Y) \), then \(|X| = |Y| = n - 1 \) for otherwise \(\overline{G}[X \cup \{v\}] \) or \(\overline{G}[Y \cup \{v\}] \) contains a \(W_m \). If \(n \) is even, then \(n \geq m + 1 \), and hence \(G[X \cup \{v\}] \) contains a \(W_m \), a contradiction. Thus, \(n \) is odd. If there is some \(v_i \in N(v) \) such that \(d_X(v_i) \leq n - 4 \) or \(d_Y(v_i) \leq n - 4 \), then \(G[X \cup \{v, v_i\}] \) or \(G[Y \cup \{v, v_i\}] \) contains a \(W_m \), a contradiction. Hence \(d_X(v_i) \geq n - 3 \) and \(d_Y(v_i) \geq n - 3 \) for any \(v_i \in N(v) \). If \(d_X(y) \leq n - 3 \) for some \(y \in Y \), then \(G[X \cup \{v, y\}] \) contains a \(W_m \) with the hub \(v \), and hence \(d_X(y) \geq n - 2 \) for any \(y \). By the symmetry of \(X \) and \(Y \), \(d_Y(x) \geq n - 2 \) for any \(x \in X \). Since for any \(v_i, v_j \in N(v) \), we can choose \(x \in N_C(v_i) \) and \(y \in N_C(v_j) \) such that \(xy \notin E(G) \), which implies that \(v_i, v_j, v_x, v_y \) is a \(C_4 \) in \(G \), we have \(n \geq 7 \). Now, let \(v_1 \in N(v) \). By the similar arguments as above, \(H[N_H(v_1)] \) contains a subgraph \(K_{n-3,n-3} \), where \(K_{n-3,n-3} \) denotes a complete bipartite graph \(K_{n-3,n-3} \) minus a perfect matching. Since \(K_{n-3,n-3} \) has a Hamilton cycle for \(n \geq 6 \), we see that \(v_1 + K_{n-3,n-3} \) has a \(C_4 \). Hence \(H \) is nonbipartite.

If \(H \) is bipartite, say \(H = (X, Y) \), then \(|X| = |Y| = n - 1 \) for otherwise \(G[X] \) or \(G[Y] \) contains a \(C_n \). If there is some \(v_i \in N(v) \) such that \(d_X(v_i) \geq 2 \) or \(d_Y(v_i) \geq 2 \), then \(G[X \cup \{v\}] \) or \(G[Y \cup \{v\}] \) contains a \(C_n \), and hence \(d_X(v_i) \leq 1 \) and \(d_Y(v_i) \leq 1 \) for any \(v_i \in N(v) \). If \(H \) has two edges between \(X \) and \(Y \), then \(H[X] = H[Y] = K_{n-1} \) and \(n \geq 4 \), we see that \(H \) contains a \(C_n \) and hence \(G \) contains a \(C_n \), a contradiction. Thus, noting that \(\delta(G) = n - 1 \), we can see that there exist \(v_1, v_2 \in N(v) \) and \(x_1, x_2 \in X \) such that \(v_1x_1, v_2x_2 \in E(G) \), which implies that \(G \) has a \(C_n \) if \(n \geq 5 \) and hence we have \(n = 4 \). In this case, \(m = 3 \). Assume that \(N(v) = \{v_1, v_2, v_3\} \), \(X = \{x_1, x_2, x_3\} \), \(Y = \{y_1, y_2, y_3\} \) and \(v_1x_1, v_2x_2 \in E(G) \). Since \(G \) has no \(C_4 \), \(v_1v_2 \notin E(G) \). Because \(d_X(v_i) \leq 1 \) and \(d_Y(v_i) \leq 1 \) for any \(v_i \in N(v) \), we may assume \(x_3y_3 \notin N(v_1) \cup N(v_2) \). If \(x_3y_3 \notin E(G) \), then \(G[v_1, v_2, x_3, y_3] = K_4 = W_3 \), which implies that \(x_3y_3 \notin E(G) \). If \(y_1 \notin N(v_1) \cup N(v_2) \) for some \(i \in \{1, 2\} \), then \(G[v_1, v_2, x_3, y_1] = K_4 = W_3 \) and hence we may assume that \(v_1y_1, v_2y_2 \in E(G) \). By the arguments above. If \(v_1, v_2 \in N(v_3) \), then \(v_1v_2 \notin E(G) \) since \(G \) has no \(C_4 \) again a contradiction. Therefore, \(H \) is nonbipartite.
If \(n = 4 \), then \(m = 3 \). If \(\overline{H} \) contains a \(C_3 \), then \(\overline{G} \) has a \(W_4 \) with the hub \(v \), a contradiction. Thus, since \(\overline{H} \) is a nonpartite graph of order \(2n - 2 = 6 \), \(\overline{H} \) has a \(C_5 \) with no diagonal and the only vertex not in \(C_5 \) has at most two neighbors in \(C_5 \). In this case, it is easy to check that \(H \) contains a \(C_4 \), a contradiction. Thus, since \(H \) is a nonpartite graph of order \(2n - 2 = 6 \), \(H \) has a \(C_5 \) with no diagonal and the only vertex not in \(C_5 \) has at most two neighbors in \(C_5 \).

We first note that, for \(\|H\| = 2n - 2 \geq 8 \), \(\|H\|\frac{\|H\| - 1}{4} > \frac{\|H\| - 1}{2} + 1 \). Now, if \(e(H) \geq (2n - 2)(2n - 2 - 1)/4 + 1 \), then \(c(H) \geq n \) by Lemma 1. By Lemma 2, \(H \) contains a \(C_n \), a contradiction. Thus we have \(e(H) \leq \frac{(2n - 2)(2n - 2 - 1)}{4} \), which implies that \(e(\overline{H}) \geq \frac{1}{2}(2n - 2)(2n - 2 - 1)/4 \). By symmetry, we have \(e(H) \geq \frac{1}{2}(2n - 2)(2n - 2 - 1)/4 \). By Lemma 6, \(\max\{c(H), c(\overline{H})\} \geq 2\frac{2n - 2}{3} \geq n \). Thus, by Lemma 2, either \(H \) has a \(C_n \) or \(\overline{H} \) contains a \(C_m \) which together with \(v \) form a \(W_m \) in \(G \), a final contradiction.

The proof of Theorem 2 is completed. \(\square \)

Acknowledgments

We are grateful to the referees for their careful comments on our earlier version of this paper. This research was supported by NSFC under grant numbers 11071115 and 11101207, and in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Research Grants Council of Hong Kong under grant number PolyU5136/08E.

References