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The paper mostly deals with the questions of closedness and essential selfadjoint-
ness of Toeplitz operators in the Segal-Bargmann space. General criteria for their
closedness are formulated. Examples of unclosed Toeplitz operators are given.
Explicit formulas for their adjoints are shown for various classes of symbols. The
problem of whether polynomials and exponents form cores for Toeplitz operators
is investigated. The results presented here improve and extend the ones from an
earlier paper. #1994 Academic Press, Inc.

INTRODUCTION

The theory of unbounded Toeplitz operators in the Segal-Bargmann
space #, has been initiated by Berezin [3, 4] and Shapiro and Newman
[13]. These operators seem to be interesting in view of their unitary
equivalence to some pseudo-differential operators in L*(R") (see
[1 and 9]).

In the present paper we study three main topics: the explicit form of the
adjoint, the closedness, and the (essential) selfadjointness of Toeplitz
operators T, in %,. The problem of computing the adjoint of T, is
nontrivial; in particular, the equality T} = T, does not hold even for very
simple (antiholomorphic) symbols ¢ (see Example 6.3). The first explicit
description of T ¥ has been given by Newman and Shapiro in the case in
which ¢ is an exponential polynomial (cf. [13]). In this paper we add a few

* The research was supported by a grand of the Komitet Badan Naukowych, Warsaw.

418

0022-1236/94 $6.00

Copyright € 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



UNBOUNDED TOEPLITZ OPERATORS 419

contributions to this problem, considering not necessarily entire functions
@; roughly speaking, they are either holomorphic in z and z or r-radially
symmetric (1€ R" ). We obtain especially satisfactory resuits in the case of
one variable. Applying the formula for 7} we are able to answer the
related question: when do polynomials or exponents form a core for T,?

According to our knowledge of the subject, the question of the
closedness of Toeplitz operators T, in %, has not been studied yet. Here
we present the general criteria for their closedness, which turn out to be
especially effective for r-radially symmetric symbols ¢. In particular, we
give examples of z-radially symmetric symbols ¢ inducing unclosed 7,. To
our surprise the above criteria enable us to prove that T, is unclosed for
¢(z)=Re(z?), ze C (see Example 6.2). In the case of one variable we also
apply the method of Fourier coefficients to solve the question of closedness
of T, for ¢’s which are holomorphic in variables z and Z.

The first attempt to find criteria which guarantee the selfadjointness
of T, has been made by Berezin in [4] for ¢ bounded from below. The
first-named author has also considered this question in [11] for ¢ not
necessarily bounded from below. In the present paper we show that the
class of symbols inducing (essentially) seifadjoint Toeplitz operators
contains r-radially symmetric functions with te R” and squares of moduli
of polynomials in one complex variable. Unfortunately we do not know
whether T ,. is (essentially) selfadjoint for any polynomial p in several
complex variables. Some partial solutions of this problem are presented in
Section 5. As a byproduct we obtain examples of selfadjoint Jacobi
matrices which do not satisfy known criteria for selfadjointness due to
Carleman and Berezanskii [2].

1. PRELIMINARIES

Let s# and X be Hilbert spaces. Throughout this paper, by a flinear
operator from # into A" we understand a linear mapping 7: Z(T) - X
defined on a linear subspace Z(7T) of #. Z(T) is called the domain of T.
As usual, T and T* stand for the closure and the adjoint of 7, respectively.
We say that a linear subspace 2 of # is a core for T if 2= 2(T) and
T<(T|.,)”. An operator T in & is said to be essentially selfadjoint if its
closure is selfadjoint.

In what follows we will use the standard multiindex notations:

kl=k\ kL kl=k + -k, X=20 R

D*=D%.....D*  (k=(ky,..k,)eN" z=(z,,..,2,)eC"),

5807126 2-12



420 JANAS AND STOCHEL

where D;=0/dz; and N={0, 1, 2, ..}. Given a polynomial p(z)=Y a,z*,
we write p*(z)=Y a,z* and p(D)=7Y a, D*. The translation operator E,
acts on functions f: C” — C as follows:

(E.f)w)=f(z+w), zweC"

Let L*(u) be the Hilbert space of all complex Borel functions on C”
which are square integrable with respect to the Gaussian measure u defined
by du(z)=n""e """ qV(z), where ||z|?>=]|z,/>+ --- +]z,|> and V is the
Lebesgue measure on C”. L*(u) is equipped with the usual norm | f)|?=
{1f1?du. Denote by #=2%, the Segal-Bargmann space of all entire
functions, which belong to LZ2(u). The canonical orthonormal basis
{fi:keN"} of # is given by

flzy=25//k!, zeC" ke N"

The function e, (z)=e‘"*’, where {z,ad=z,a,+ --- +z,a,, is the

reproducing kernel for #. Let & be the linear span of {¢.:ze C"}. Denote

by # =2, the set of all holomorphic polynomials in n complex variables

and by 7 the algebra generated by v &. It is clear that # < .o/ = &.
The following lemma will be useful in the sequel.

LEMMa 1.1, If r:C" > C is a Borel function such that re.e L'(u) for
every ze C", then the function ¢ defined by

p(z)= f re.dp, zeC’,

is entire and

DXo(z)= J r{w) whe_(w) du(w), zeC"

Proof. First we show that for every ke N” and for every R> 0, there
exist ¢>0 and «a,, ..., a,€ C" such that

[whe(w)l < . le, (Wl wel” [z <R (1.1)

i=1

Since the linear span of {|e,|: ae C"} is an algebra, we can assume without
loss of generality that n=1. Then we have

[w* exp(zw)| < (|Re w| + |Im w|)* exp(Re z Re w + Im z Im w)
k

k ) '
=) (j) |Re w|’ exp(Re z Re w) [Im w|*~/

j=0

x exp(Im z Im w), w, zeC.
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If |z| <R, then

|Re wi’ exp(Re z Re w) < j! exp(|Re w| + Re z Re w)
<jlexp((1 + R) |Re w|)

_{j! lexp((1 + R) w)| if Rew>0

s(]::,
jllexp(—(1+ R)w)| if Rews<0, " °

SO
|Re w|’ exp(Re z Re w) < j1{Je , g(w)l + le_ 1+ g)(W)) wel, |z] <R,

which proves (1.1).
For our r define f(z, w) :=e.(w) r(w), z, we C". Then, by (1.1), we have

D fiz, wil = liv¥e,(m) riwl < 3. [r(w) e, (w)l,  weT”, 2l < R.

i=1
Since the right hand side of the z{bove inequality belongs to L'(u), the
conclusion follows from the theorem on differentiation under the integral
sign. This completes the proof. |

Given a Borel function ¢:C"— C, we denote by M, the operator of
multiplication by ¢ in L*(u) (ie, 2(M,)={feL*(u):¢-feL*(x)} and
M,f=¢-f for fe2(M,)). By Toeplitz (resp., Hankel) operator with
symbol ¢ we mean the operator T, (resp., H,) defined in # by 2(T,)=
ZH,)=#n2D(M,) and T,f=PM,f (resp., H,f=(I~P)M,[f) for
fe%(T,), where P is the orthogonal projection of L*(u) onto # and I is
the identity operator.

Recall definitions of related operators 77, and Tq, (cf. [11]). The domain
of 11, consists of all fe# such that the integral II,f(z):=
{ @(a) f(a) e**> du(a) exists for each zeC” and I1,fe . In turn, the
domain of T, is defined as the set of all fe # for which there exist he &
and a Borel function r such that ¢ - f =k + r, the integral j'rﬁ du exists and
vanishes for every p e #; then we put 7,/ :=h.

The following two basic facts concerning Toeplitz operators will be used
several times in this paper.

THEOREM 1.A. [13, Theorem 3]. If pe P and fe Y(T,), then
1 .
IT,f1I7=73 m [(D’p*)(D) f|°.
Jj=0J"

ProposiTioN 1.B. [11, Prop. 14]. If #<=2(T,) (resp., §<2(T,)),
then (T, |,)* =T, (resp., (T, | )*=11;).
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Observe that # = P(T,) (resp., £ = 2Z(T,)) if and only if ¢(-) I-I1*e
L*(p) for every k=1 (resp. o(-)explal-|)eL¥*u). for every a>0). It
may happen that 2(7,) contains # but not & (e.g., ¢(z) =exp((|z]® —
IRe z] — |Im z|)/2), ze C).

As in the case of bounded Toeplitz operators [7], unbounded ones are
preserved by the action of the unitary group {W, ,}:

Wo.f =exp(—llall’/2)-e,-E_,(f <U*),  felL*(n),

where ae C"” and U is a unitary operator on C”. Below W, also stands
for the restriction of W, to #.

PROPOSITION 1.2, Assume that ¢:C"—C is a Borel function, U is a
unitary operator on C", aeC", and A= U+ a. Then

Wﬁ',aTgo WU,u = Trp A (l)

If §=2(T,), then (i) holds for operators of the form (T,| )~ and I1,. If
P<AT,) and a=0, then (i) holds for operators of the form (T,|,)"
and Tp.

Proof. Note that Wjf =W, , and W¥o=W,.,. Since W ,=
W,.W,oand W (#)< B, the space # reduces W, , and consequently
PW, =W, ,P. This and the equality

Wt",uM(p WU.u = M(p‘ A

imply (i) (a simple verification is left for the reader).

Assume now that & < 2(T,,). Then & < 2(T,, ,). Since W, ,(§) =& and
(i) holds for @, we have W (T;1,) Wy ,=T,. 41, Hence taking closures
(resp., taking adjoints and applying Proposition 1.B), we obtain (i) with
(T,|4)" (resp., I1,) in place of T,. Since W, o(#)=#, similar arguments
apply to the case # < 2(T,) and a=0. This completes the proof. |

It has been proved in [11] that if ¢ is~entire, then T, =1 ,= Tq,. In
general we have only inclusions T, = /1, < T,. Below we show that the last
inclusion turns into the equality for a large class of ¢’s containing «/. On
the other hand, (contrary to the bounded case) we have only the inclusion
T,< T} which can be strict even for very simple symbols.

THEOREM 1.3. Ler ¢ be a complex Borel function on C”.

(i) If 8<% T,), then 4 =2(T,), I,=T,, and (T,|,) =(T,l,) =
(Tyl )

Gi)y If 2<T,) and T,=T,, then T¥=T,=(T;|,)" and
T*=T

@ @
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(i) If 2= 2(T,) and |p(e?z)|<c+d-|o(z)| for all 3€R and |z|
sufficiently large (¢, d20), then T, = (T, |,) .
Proof. (i) Assume that £<Z(T,). It follows from (I1.1) that
A < P(T,). To prove the equality T,=17, take fe2(T,) and put
g = T‘w /- Then there exists a Borel function r: C* — C such that

of=g+r (1.2)

'[r(w) W du(w)=0,  keN". (1.3)

Multiplying both sides of (1.2) by e, we get re, = pé_ f — gé. e L'(u). Define
the function 4 on C” by h(z)={ré. du, ze C". It follows from Lemma 1.1
and (1.3) that

th(0)=.fr(w) WF du(w)=0,  keN".
Since h is holomorphic, # must vanish. Consequently,
fre_:dﬂ=0, zeCn (1.4)

Combining (1.2) and (1.4) we obtain that fe Z(I1,)and 11, f=g= wa
Consequently T, =11,,.

Now we show that /7,=(T,|_)*. Take fe 2(Il;). Then of =11, f +r,
where | ré, du=0 for all ze C". Differentiating under the integral sign the
last equality (apply Lemma 1.1), we infer that jrﬁ du=0 for all hes.
Thus

(Toh, )= [ hef du= [ KT, Fdu+ [ W du=(h, IT,f),  hes.

This implies that fe2((T,|)*) and (T,|)*f=1;f Hence
n,=(T,| )"

The reverse inclusion follows from Proposition 1.B. Finally, taking
adjoints in the equalities T}, =I;=(T,|,)* and applying Proposi-
tion 1.B, we obtain the remaining part of (i).

(ii) Assume that 2< 2(T,) and T, =T,. Then, by Proposition 1.B,
we have
TX=Tr=(T;l,)**=(T;ls) cT;=TxX

@
so T} =T,. The equality T} =T, follows by taking adjoints.

(iii) Put Y =1+|p|% By Theorem 7.2 in [4], any entire function
f €Ly du) can be approximated by polynomials in the L*(y du)-norm.
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This is equivalent to M| ,=(M,|,) . However, 2(T,)=2(M,|,) and
N7,/ <IM,fll,so T,=(T,|,) . This completes the proof. ||

Shapiro and Newman have proved in [13] that the equality T} =17,
holds for @ e.o/. Our next goal is to show that it holds for some
nonholomorphic symbols ¢ and that /7, can be described in terms of
differentiation and translation operations for ¢ € «/.

Below, >, p¥(D) E, (p, are polynomials vanishing for all but a finite
number of ’s in C") is understood as a linear operator in # with the domain

2 (S p:D)E)={re 3 p2i0) Euse ).

THEOREM 14. (i) If @ is an entire function on C" and # < %(T,,), then
Tr=T,=(T;|,) and T¥=T,.
(i) If ¢=yj, where Y, e, then T¥=10,=T, and T,6=
(Tylg) =(Ty,l,) .
(i) If ¢=3,p.e,cs, thn T¥=1I1,=%,pHD)E, and T}=
T,=(T,l|,) .

Proof. (i) MNotice first that T, is closed and T,=T, (cf [I1,

]

Prop. 1.27). So (i) follows from Theorem 1.3(ii).

(i) Note that p :=ye.o/. It has been proved in [13, p. 369] that
fILf-E.pl e P2 gV(w) < oo for every fe Z(T,)=2(T,). By repeating
the first part of the proof of Theorem 2.2 in [11] (see also [13, p.367]),
we have

(T, f,8)=(f1,8), [fedT,),gezl,)

This gives us the desired equality 7 = I1;. The equality 11, = Tq-, follows
from Theorem 1.3(i).
Taking adjoints in the equalities TJ)=11,= 7’,;, and applying
Proposition 1.B, we obtain the remaining equalities in (ii).
(iii) The relation T} = I7; follows from (ii). On the other hand, the
equality I1,=3", p¥(D) E, can be derived from the following identities

ff@e"du pru crudp= ZP(D)JI&Hdu

= (Z pX(D) Euf>(z), zeC", feA.

The rest of (iii) is an immediate consequence of (i) and (i1). This completes
the proof. |
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2. CLOSEDNESS

It follows from Proposition 1.B that operators of the form /7, and T,
are closed provided their domains contain reproducing kernels and
polynomials, respectively. As we will see below, the criteria for closedness
of T, are quite involved, even in the case of a single variable. Our main
interest in this section is to find necessary and sufficient conditions for T,
to be closed.

To begin with, let us consider the abstract situation. Suppose we are
given a linear operator 4 from a Hilbert space # into another space 4.
Let ||| , be the graph norm of 4 given by

WA =1L+ 14012, fe2(A).

It is well-known that A is closed if and only if (2(A), ||-]|,) is a Hilbert
space.
The following lemma plays the crucial role in this paper.

LEMMA 2.1. Let #, A", and & be Hilbert spaces and let A: (A)—> X,
B: Z(B) — &£ be linear operators defined in #. Assume that 4 is a core for
A, Z(A)y=2(B), and B is closed. Then A is closed iff there are o, B =20 such
that

If1e<Blfllan fe2, (2.1)
Ifllasaliflls fe2 (2.2)

If A is closed, then 2 is a core for B. If additionally
lAfI<IBfl, fe2, (2.3)

then A is closed iff (2.1) holds with some = 0.

Proof. Put I :=2(A)=2(B). Note that the identity operator on & is
closed as an operator from (&, || -|| 4) into (&, || -|| ) as well as the one from
(Z, -1l ) into (X, ||-|| 4) Thus if 4 is closed, then (&, {|-|| ,) and (Z, ||-{ 5)
are Hilbert spaces and consequently—by the closed graph theorem—(2.1)
and (2.2) hold.

Assume now that (2.1) and (2.2) hold. We claim that the inequalities in
(2.1) and (2.2) hold for every fe Z. Indeed, if fe %, then there exists a
sequence {f,}y_,S 2 convergent to fin the norm |- ,. By (2.1) and the
completeness of (&, |||l z), {fi}r_, converges to fin the norm | -| 5. Thus
I fla=lim_ Il fil x and [ flz=1im; |l fills, which—in virtue of
(2.1) and (2.2}-proves our claim. This in turn implies that the identity
operator on & is a linear homeomorphism from (%, | -] 4) onto (Z, | -] 5)-
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Since (Z, |||l g) is complete, so is (Z, ||| ) and consequently A is closed.
Moreover &, being ||-|| ,-dense in 4, is also ||| ;-dense in Z. This means
that & is a core for B.

If (2.3) holds, then the inequality (2.2) is satisfied with a=1, which
completes the proof. |

There are several possibilities of applying Lemma 2.1 to Toeplitz
operators. We start with one of them.

PrOPOSITION 2.2. Let ¢ be a complex Borel function on C" and let 2 be
a linear subspace of (T,). If T, and T, are closed, then T,=(T,|,)" iff
T,=(Tsl,)". If @ is entire, = Z(T,) and T is closed, then 2 is a core
for T,.

Proof. The first part follows by applying Lemma 2.1 to A=T7; and
B=T, or vice versa. The other is a consequence of the first part and the
equality T,=(T,|,) (see Theorem 1.4(i)). §

The next application plays an essential role in our paper.
PROPOSITION 2.3. If ¢ is a complex Borel function on C" and % is a core
for T, then the following conditions are equivalent,
(i) T, is closed,

(i1) there exists ¢ =0 such that

lef IP< e fIP+IT, f1%)  fe2,

(i)  there exists d 20 such that
IH, S IP<d(I S 1P+ 1T, f1%),  fe2.

Proof. Since M, |, is closed, equivalence (i) <+ (ii) follows by applying
Lemma2l to A=T, and B=M_|, (note that |7,/ ><|¢f|* for
S€2(T,)). On the other hand, equivalence (ii) < (iii) is a consequence of
the equality

lof 1P =T, fI*+1H, fI  fe2(T,)

This completes the proof. |
Note that by interchanging the operators H, and T, in Proposition 2.3,
we get an analogous criterion for the closedness of Hankel operators.

CoROLLARY 24. [If H, is bounded, then T, is closed. In particular, this
is the case when there exists a constant ¢ =0 such that

lp(2) — @(w)] < cel* =14, z,we C".
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Proof. 1t follows from Proposition 6 in [10] and Proposition 2.3. |}

Let ¢ be a polynomial in z(, .., z, and Z,, ..., Z,. It is clear that if ¢ is of
degree 1, then the inequality in Corollary 2.4 holds and consequently T, is
closed. In general, T, is not closed when ¢ is of degree greater than or
equal to 2 (see Example 6.3). The question of closedness of T, is open even
for ¢ =|p|? where pe Z,, n> 1. In the sequel we will need the following
general criterion for closedness of such T’s.

PROPOSITION 2.5. If @ = |p|% where pe P, then the following conditions
are equivalent:

(i) T, is closed,
(11) there exists ¢ >0 such that

1P 12 <cllp*D)pNI%  fe2,

(i) there exists d >0 such that
WDp* DU pMHI><d |p*(D)p )P fe?, jeN"

Proof. Assume that p#0. By Theorem 1.4 and Proposition 2.3
(@ =), the operator T, is closed if and only if

1P 12 <ell 12+ 1p*(DYRMP),  fe, (2.4)

for some ¢>0. On the other hand (cf. [15, Lemma 4 and corollary on
p. 5237 and also [12]), there exists d >0 such that

Ip*(DYpON 28 I f1%  fe? (2.5)

Combining (2.4) and (2.5) we get equivalence (i)<> (ii). The other one,
(it) <> (iii), follows from the equality (apply Theorem 1.A)

I\ .
1P’fi= % 7 1D P*NDURAIP e

Jj=z0/"

This completes the proof. ||

3. ToepLITZ OPERATORS IN %,

In Section 3 we investigate the case of one variable. This enables us to
obtain the results which are stronger and not extendable to several
variables. We start with the description of T Y.
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ProOPOSITION 3.1. If p is a polynomial in one complex variable, then
TY=7T,=H,=T,.

Proof. Since T} =1II,= 7’,, (use Theorem 1.4(ii)), we only have to
prove the equality 7} =7T7,.

Using the induction procedure we will show that Z(T ) = 2(D™), where
m is the degree of p. This is obvious for m =0, 1. Assume that it holds for
m—1 (mz2). Take fe 2(T))=2(T}_ ,0)) There exists a polynomial
g such that p(z)— p(0)==z¢q(z), zeC. Since D(¢*(D)f)=(p*(D)—
p*(0)) f=T} 0/ €% (use Theorem 1.4(iii)), g*(D) f must belong to &,
(this is because Dhe #, implies he #, for any entire k). Therefore, by the
induction assumption, we have feZ(¢g*(D))=TF)=2(D" ') In
particular, Dfe #,. Since ¢*(D) Df =D(q*(D) f)e #,, we obtain Dfe
FZ(g*(D))=2(D" "), ie, feZ(D™). Thus Z(T})< Z(D™). The reverse
inclusion is a consequence of the equality T,f= p*(D). By a direct
computation one can check that %(D*)=%(T,) for keN. Hence
DT,) =% T,)2 Y (Tym)=2(D")y=2(T})=22(T,) and consequently
7} =T,. This completes the proof. |

We are now in a position to state one of the main results of this section.
Note that it cannot be extended to the case of several variables (see
Example 6.3).

THEOREM 3.2. Let p be a polynomial in one complex variable and let ¢
be an entire function on C. Then

(i) Tﬁw:nﬁszﬁszﬁTw'
(it) If 2= 2(T;,), then T, is closed and
Tr=Th=(Tpsls)
(ii1) If @ is a polynomial in one complex variable, then
Tre=To=(Tyl,) -

Proof. (i) First we show that 2(T,,) < 2(T,). Take fe %(T;,). Then
there exists a Borel function r such that

pof=g+r (g=T,,/) {3.1)

Jr(z)z’”’ du(z)=0, meN. (3.2)
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Let g=X7"ocf; (@N2)=2[_odfi(2), and p(z)=X]7_,p;z’ for
zeC(c;, d;, p;eC,py#0, N2 1) Denote by By the disc ’*eC lz] < R}.
Then for all j, me N, we have

| PO duz) =3 pi [ T dutz)
R =0 Br

1 .
=~ By | 121 dul)

NG

Since pf,.of = (gf,, + rf,,) € L'(x), the above equalities imply
J((Pf)( ) plz) 27 du(z) = lme (¢f Nz) plz) 2" du(z)

=lim Y djL £(2) p(z) =" dulz)

R~ ~x =0

m+ N d

=1 __' 2% du(z
Jlim ,Zm m P mfkll du(z)

N
d, _
Ly | 121 du(z)

- ,;Zm 7

= dp,_mJjs meN. (3.3)

+

On the other hand, equalities (3.1} and (3.2) lead to

[ (0)2) P 2" dutz) = [ gtz) 27 du(2)

= /mlc,, meN, (3.4)

Combining (3.3) and (3.4) we have
m+ N
Y dp mil=mle,. meN.
ji=m

It follows that

N1
dponPr/(m+N)N=me,— Y d,, p;/(m+j), meN.
ji=0



430 JANAS AND STOCHEL
Hence

max Id,,,“l:l, meN,
1

|1m+Nl l:ICI"|+( I[’, )
( IX \/m N L

(3.5)

Put I':=py| ' (llc H,+Z""|p,l) where |c|.. =sup{lc,]: j=0}. Let
v c=max{l, \d |, |d, . il 1d, . ~v_1l} for meN. Then (3.5) can be
rewritten as follows

r
|dm+N]< ’}'m’ MEN- (36)
\/m + N
Choose m, such that I"<./m+ N for m>m,. Then (3.6) implies that
’dm+h"<}7rrl’ n7>n10' (37)

Now we show, using the induction procedure, that

I

‘drrt+s+N| S Tmo
Vm+s+N

The case s =0 is a consequence of (3.6). Assume that (3.8) holds for a fixed
520 and for all m 2 m,. The induction assumption and the inequality (3.7)
give us

seN, m=zm,. (3.8)

r r
b m=mg,

\dm ¥ 1 N m ”1 <————-——)m,
ST AN S It s LAN

which proves (3.8). In particular, we have

r
|dml<_\/—_- m;m()+N,
where I :=7,, I'. Thus
r
max |d,, ;| <—=, mzmy+ N. (3.9)
O<j<N—1 \/m

Choose m, = my+ N such that |py|/m+ N=1 for m=m,. Combining
{(3.5) and (3.9) we get

N-—1 I
dm+N Y =
e T A5, ) 7

<|Cm|+f|leA](Z |p’j|>mil’ m>m1.
Jj=0
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Therefore the sequence {d,}7°, is square summable, so ¢f €A or
equivalently fe2(T, ). This completes the proof of the inclusion Q( )_
2(T,). Since T,T,=T,,1., where 7 =(T;,)n2(T,), we have T, T =

T However by Proposmon 31 T,=T,, so
Ty, ST, =T,T,=T,,,

which completes the proof of (i).

(ii) The closedness of T, follows from (i) and Proposition 1.B while
the equalities of (ii) are simple consequences of (i) and Theorem 1.3(ii).

Finally, (iii) can be easily derived from (i1). This completes the
proof. ||

Now we show that if ¢ = p +¢, where p and ¢ are polynomials of one
complex variable and deg p<degg, then T =T, (consequently, T, is
closed). This is no longer true for polynomials p and ¢ of the same degree

as well as for polynomials of several variables (even if p=0).

THEOREM 3.3. If p and q are polynomials in one complex variable and
deg p < deg q, then

~

i 7, '=T+T¢)=Hp =T,y
(1) T;+q (,-:(T,ii+ql‘y)'~

Proof. First note that (i1) follows from (1). Indeed, taking adjoints in
(i), we obtain T} ,=(T,,,1,) . On the other hand, (T;,,[,) <
T,,hl; Tx, ;, so (ii) holds.

Since obviously 7,4+ T,<7,, < Hp+q_ T,,W, we have only to show
that T, ., =T,+7,. Let p(z2)=3"_,p,2* and g(z)=3% ,q,z°, zeC,
where N =deg p and M =deg g. Without loss of generality we may assume
that g, = 1.

Take f=3%.,50d /€ Z( ,,+q) The main step of the proof is based on

the inequality

m!
d,| < ——— 0, N, .10
| <5 o B me (3.10)

where «>0 and {d,,}_,€/,. Its proof is divided into a few steps.
Since f € 2( p+q) there exists a Borel function r: C — C such that

(p+q) f=g+r (g=T,,,/) (3.11)

frf;,,du=0, meN. (3.12)
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Let g=3,.¢¢,f;- Then the following equality holds for any me N:

m! d m!
dy o= [—2 (e, - dpm_ |
m+ M (m+M)' (Cm jzgzi . jpm J _]'
m+ M —1 j'
S d.q.m\/_;), (3.13)
v m!

Indeed, using (3.11) and (3.12) we get

en=[ &hndu=[(p+@) fdu=lim T d| (p+d)fifmdn

RZ% 30

N 7+ o) -
=lim ) d, <Z P.y\/(jts)'J‘ Fivofondu
s=0 J: Br

R jz0

M
[(m+ s)!
; y j ffm+\d#>
= lim ) d(pm,\/* |fonl > A+ G, / f | fI? du
R~ i>0
. - m! 5
= lim (,-:mZNd”’” ,f,/j—!JBRIfm| dy
m+ M Y
- J!
+ Y dg;_, /WL Ifj|2d,u>
f=m N R
m my m+ M ~ ]—‘
:. Z djpm—j ’J—Y+ Z djqj m\/%’ mEN.

j=m-—N j=

This proves (3.13).
Let Pm :=max{|dm NI’ Idm N+ lls At |dm+M— 1‘ } Since M>N, one can
deduce from (3.13) that the inequality

m! '
d, < — |, | + = |, N, 3.14
o+ a‘(\/(m+M)! o \/m+M) me (3.14)

with oo, =5 o 1p,| + 3% 5" 1g,/ + 1, holds. This in turn implies that

\d,| <a, m=M, (3.15)

1
'

with a, =a,(fcll . + lidll . )-
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Now we show that for any s=1, 2, ..., M, there exists a constant §,>0
such that

B,
Jm+)m+2) - (m+s)

ld,| < meN. (3.16)

We follow the induction procedure. The case s=1 is an immediate
consequence of (3.15). Assume that (3.16) holds for s< M — 1. Based on
(3.14) and the induction assumption, we get for m>= N

ml
Vm
d, <oy [———lc,| + o, ———=
sl S0 Jo ol + o — e

< oy flell o
\\/(m+1)- s (m4s+1)
;B
\/(m N+1)- - - (m—N+s+1)

Thus there exists a constant f§,,, > 0 such that

ﬂs+l
d,| < ,
1 Jm+1) o (mts+1)

In particular, (3.16) holds for s = M. Thus (x,:=f,,)

me N.

o3

|d,.| < \ meN., (3.17)
Jm+1)m+2)- - (m+ M)
Applying (3.14) and (3.17) we can find o, > 0 such that
m! y
|d,, <o, [———=lc,| + o, ———
+M] 1 (m+M)' 1 /—"—_m+M
<a\/ m! o, s
SN (m+ M) \/(m N+1) - (m=N+M)m+M)

m! 1
< —— ml +——, > N.
““\/(m+M)!('C '*./m+M'> "

Hence for some a5 >0 we have

m! 1
<oy | (el =), m2m
ol 55 e (Jew sl + =)
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This in turn implies that there exists a constant x, > 0 such that

P S s _(’l?——N)'___ (max{lc,,,, Nty e € 1”’*“'—1&)
Vim—N+ M) /'m—N
[ m! 1
<a6 (m+M)' <maX{l('m V—NfM[’ (At} lcmll}+\/‘n—1)s (318)

for m sufficiently large. Using again (3.14) and (3.18) we can find a con-
stant %, > 0 such that

el < (/( +M)' [l m+M>
@(I J+16maxll(m—Nle,..., lew 1}
(M) § \/m+M

X
*  m(m+ M))

; m 1
<a7 m(lcm/!\f—f\l;+'“+lcml|+lcml+m+M>’

for m sufficiently large. Since {c,,} 7 _,€l,, (3.10) follows easily.
Now we show that fe (T ,»). Using Taylor’s expansion of / we obtain

md, Mz\/(m—M)!f_f'(z)z“z‘"’du(z), m=M. (319

On the other hand, basing on the Taylor expansion ¥ ;. a,f;(z) of the
entire function f(z) z™, we have

a, \/m! = ff Mimdu(z),  meN. (3.20)

Combinig (3.19) and (3.20), we conclude that

m!
a,=dp_ m, m>=M.

This and (3.10) implies that {a,}>_,€l, and consequently fe Z(T ).
Since Z(Tom)= 2(T;) and L(T,u) S X(Tx) S 2(T,), we infer that
fe@(T,yn2(T,)=2(T,+ T,). This completes the proof. ||
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4. TOEPLITZ OPERATORS WITH RADIALLY SYMMETRIC SYMBOLS

Though it seems to be hopeless to find an explicit form of T} for general
symbols ¢, we distinguish a class of nonholomorphic symbols for which
this can be done. The class consists of z-radially symmetric functions, where
teR” (R, :=(0, +0}). The notion of rradial symmetry has been
inspired by an old paper by Fischer [8] in which he has defined
t-homogeneous polynomials for e R”, .

Let r=(ty,..,t,)eR™{0}. Recall that a nonzero polynomial p(z)=
S .25 is said to be r-homogeneous of t-degree d if i 1 tk;=d for
every k€ N” such that ¢, # 0. Denote by Z(¢) the set of all real numbers of
the form 37_, t;k; with keN”" and by #;,, de Z(z), the linear space
generated by r-homogeneous polynomials of t-degree d. It is easy to see
that the set Z(¢) is countable. Moreover, Z(t)=mN for teN", where
m is the greatest common divisor of ¢, .., If t=(1,..,1), then
r-homogeneous polynomials are homogeneous in the usual sense. In this
case we simply write J#; instead of .

A complex Borel function ¢ on C” is said to be t-radially symmetric, if

(R1) for each 3eR, ¢(e®'z,,.. e""z,)=¢(z) for almost every
Z2=(2y, . 2,)€C" (w.r.t. [V ])

We say that ¢ is polyradially symmetric, if
(R2) e@(z)=¢(]z4, .., |z,]) for almost every ze C" (w.r.t. [V]).

Note that any polyradially symmetric function is automatically r-radially
symmetric.

In some cases, the r-radial symmetric coincides with the polyradial one.
It depends on whether ¢,, ..., t, are algebraically independent over the field
Q of rational numbers. For simplicity we consider only the case n=2. Let
us assume that 7, and ¢, are algebraically independent over Q. Without loss
of generality we can assume that 1= (1, s) with se R\Q. Take a t-radially
symmetric function ¢ on C2 We claim that ¢ is polyradially symmetric.
Without loss of generality we can assume that ¢ € L?(u). Note that the set
T2={zeT* U(z) p=¢} forms a closed subgroup of the muitiplicative
group T°, where T={zeC:|z|=1} and {U(z):zeT?} is a strongly
continuous group of unitary operators on L*(u) defined by

(U2) W)= flziwi, 2aw3), z=(21,2), w=(w;, wy) e C2.

It follows from the t-radial symmetry of ¢ that (e®, e"*)e T}, for 3¢ R. In
particular, (1, e?™)e T for ke Z. Because se R\Q, the set {¢™™ :keZ}
is dense in T, so {1} xT<T. Since (e?, &)= (e”, e**)(1, e "**)(1, e")
for (9, w)e R* and T is a subgroup of T?, we have T =T? This proves
our claim.

580:/126;2-13
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Note that for any re R"\{0}, 2 is a direct sum of linear subspaces #;,,
de Z(t). Moreover, {#,,:deZ(t)} are pairwise orthogonal. Indeed, if
pe#,,, ge X,  and u#w, then—by the rotation invariance of y—we have

(P )= [ (p-a)e™z,, o e®z,) dutz) =™ ¥(p, q), SR,
so (p, q) =0. Hence we have the orthogonal decomposition

B= 5 S, te R"™\{0}. 4.1)
de Z(1)
In the case te R” , the subspaces ., , being finite dimensional are closed.
The decomposition (4.1) forces the corresponding one for Toeplitz
operators with z-radially symmetric symbols.

THEOREM 4.1. Let ¢ be a t-radially symmetric function on C" such that
P<DT,), teR"\{0}. Then

() (Typ) = Y @(T,lu,) and T,= Y @(Tylx )"

de Z(1) de Z(1)

Moreover, if te R, , then each A reduces T, and

(i) T$=Tw=nw:Tw=(Tw|J)7: Z ®Tw|9fd,:'
de Z{(1)
Proof. (i) First note that T, (#, )<= #, ,. Indeed, if pe 5, ,, ge #, ,,
and u # w, then by the rotation invariance of u and (R1), we have

(T,p,q)=e"“"""*T,p,q), IJeR,

so (T,p, ¢)=0. This and (4.1) imply that T,(#, ,)< #, ,. Denote by 2,
the closed operator 3, ., ® (T,lx,,) . Note that X', =(Z,|,) . Since
T, »=2,ls, the first equality in (i) holds. The other follows by taking
adjoints and applying Proposition 1.B.

(ii) Let reR" . First we show that for every ue Z(¢), 0, 7,<7,0,,
where Q, is the orthogonal projection of # onto J#, ,. Since each J, , is
finite dimensional, T, (%, ,) S 4, .. By the same reason T (X, )= #, ,.
Both these inclusions imply

(QuT(pf;g)=(f; T(ﬁg)=(Quf; T¢g)=(TwQuj;g)’ feg(T(a)v gE%‘,,

which proves Q,T,=7,Q,. This means that 3, , reduces T, and T,
(because ¢ also satisfies (R1)). Thus we have

(Tolo, V* =Tl w, =Tyly,,,  deZ(). (4.2)
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It follows from (i) that ;< T, and consequently 7% < X*. This and (4.2)
imply
Zo=(T,lp) €T, cTEcZt= Y @(Tyly, )*=2,.
de Z(1)
Thus we have proved that 2, =T,=T%*=(T,|,) . Taking adjoints in the
last equality and using Proposition 1.B, we get 7,=T,. Since ¢ also
satisfies (R1), T, = T - This completes the proof. |

Theorem 4.1(i1) is no longer true if te R*"\R", (see Example 6.7). The
reason is that in this case the spaces #, , are not finite dimensional.

It turns out that unbounded Toeplitz operators 7, may be closed or
unclosed; this depends on the choice of ¢. In Section 6 we shall see that
even for polyradially symmetric symbols both possibilities may appear.

To begin with, we strengthen the general criterion for the closedness of

Toeplitz operators with t-radially symmetric symbols.

LemMMa 4.2, If ¢ is a t-radially symmetric function on C", teR", , and
P T,), then T, is closed iff there exists ¢ =0 such that

(i) lopl?<clpl>+ 1 T,pll*),  peity, deZ().

Proof. The necessity is obvious by Proposition 2.3. To prove the
sufficiency note first that {J#, ,: ue Z(t)} are pairwise orthogonal in L*(v),
where dv=(1+|¢|?)du (see the proof of the decomposition (4.1)).
Applying Theorem 4.1(i1) and Proposition 2.3(ii) with 2 =2, we get the
conclusion. ||

The criterion for closedness of T, given in Lemma 4.2 becomes more
efficient for polyradially symmetric functions.

THEOREM 4.3. If ¢ is a polyradially symmetric function on C" and

P X (T,), then T, is closed iff there exists ¢ >0 such that

lofil?<c(l+ (@ fis fi)l®),  keN" (4.3)

If moreover either Re p=¢ ae. [V] or Im @ >¢ ae. [V] for some ¢ >0,
then T, is closed iff there exists ¢ 20 such that

lofill*<cl(@fio fi)l®,  keN™ (4.4)

Proof. Take pes#, (seN) of the form p=3,,_.,4 /. Since
monomials are pairwise orthogonal in L2(]¢|? du), we have

lopl?= 3 1412 o fill* (4.5)

tkl=s
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Now we show that

(Twp’fk)zik((pkafk)s kENn’ |k|=S. (46)

Indeed, since

f[o‘ 2n 7 pre®ye %0 qV ()= Q2r)y r* A,/ k), reR”,
and ¢ has the property (R2), we can write

(Typ, fi)=(n" \m) ! jﬂn o(r) re* eIl

x| plretye i avydvi(r)
[0, 271"

2,
Tk

[ o) r=1e " av(r) = 4 (0 fic i)
RY

It follows from Theorem 4.1 that T,pe #,. Thus by (4.6) we have

1P+ 0 Tpl2 = 3 1l (L4 1@ fis fiI). (4.7)

k] =s

In virtue of Lemma 4.2 and the equalities (4.5) and (4.7), T, is closed if
and only if there exists ¢ = 0 such that (4.3) holds. This proves the first part
of the conclusion.

To prove the other one, assume that Rep >cae [V] (thecase Imp =¢
a.e. [ V'] can be proved similarly). Then we have

He fio 2 = ((Re @) fie, fi ¥+ ((Im @) fi, i 2 (i, fu ) =87, keN".
Now if (4.3) holds, then the above inequality yields
lo fil*<e(l+ (@ fi. f)IP) Sele 2+ D@ fi, /i)’ keN™

The converse implication (4.4) = (4.3} is obvious. This completes the proof.

5. SELFADJOINTNESS

In this section we apply our earlier results to discuss the question of
(essential) selfadjointness of Toeplitz operators.

Let ¢ be a real-valued Borel function on C” such 2 < %(T,, ). It is clear
that T, is symmetric. Moreover, if ¢(zZ)=¢(z) ae., then the deficiency
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indices of T, (resp., T,| 5 ) are equal (cf. [11, Prop. 3.1]). In particular, one
can check that the deficiency indices of (T,| )~ are equal to (3,3)if n=1,
o(z)=Re(z*), and (o0, ) if n=2, @(z, w) = Re(zw?).

Similarly, the deficiency indices of (T,|»)~ are equal, provided ¢ is
bounded from below (cf. [16]). In this case Berezin has described the
Friedrichs extension F, of (T,l5)~ for ¢ € L”(u), p>2 ([4, Theorem 7]).
Applying our approach we can assume less, namely & € 2(T, ), preserving
his description of F,. Note that if ¢(z) =exp((|zII> = }z||")/2), then
&< 9(T,), though ¢ does not belong to L?(u) for any p>2 (1 <r<2)

PROPOSITION 5.1.  Assume that ¢ > 1 and § = (T, ). Then
(i) F,c1, and P(F,)=2(1,)n F,

where F is the closure of P in L*(¢ du). If moreover there exist c, r = 0 such
that p(e’z)<c-@(z) for all 3¢ R and |z|| = r, then

(ii) f:{u:u is entire and‘[golulzdu<oo}

and F, is the Friedrichs extension of T,,.

Proof. Put A=(T,|») . Then by Proposition 1.B and Theorem 1.3(i)
we have A*=T =11, Hence (i) follows from the definition of the
Friedrichs extension (cf. [16]).

For the proof of the equality (ii) see ([4, Th. 7.2]). Let G, denote
the Friedrichs extension of T,. Note that T,< F,,. Indeed, if fe 2(T,),
then [o|f1?du<|@?|fI*du<oo, so fe D(F,). Thus T,< F,. Since the
Friedrichs extension is the greatest nonnegative selfadjoint extension of a
given symmetric operator [16, Exercise 7.30(b), p. 200], we have
Z(F)=2(G)?) and |F> fll=|G*fIl for fe 2(F;?). Consequently,
F,=G, [16, Exercise 7.30(a), p. 200], which completes the proof. ||

In general it is quite difficult to decide when T, is essentially selfadjoint.
In some cases it is easier to prove the selfadjointness of (T,|, )™, which in
turn forces the essential selfadjointness of T,.

PrOPOSITION 5.2. If @: C" — R is a Borel function, # < 2(T ), and & is
a linear subspace of # such that P<2<=2(T,), then the following
conditions are equivalent: (1) (T,|, )" is selfadjoint, (i) T » is selfadjoint,
(1ii) Tw is symmetric and, (iv) T‘w =(T,l,)". In either of these cases T, is
selfadjoint.



440 JANAS AND STOCHEL

Proof. The equivalence (i) <> (ii) can be deduced from Proposition 1.B.
In turn, (iii) = (ii) because both T, and T} =(T,|,)~ are symmetric. To
prove (i) =>(iv) note that if (T|,) is selfadjoint, then

Tw=(Twl:?)*=(T(p$W)7 g(T(pIE/)i (;ngTwa

80 T"q,= T,=(T,l,) . The converse implication follows from Theorem
1.3(i1) and Proposition 1.B. ||

It turns out that Toeplitz operators with z-radially symmetric symbols
are always essentially selfadjoint. More precisely, if te R, 2= 2(T,),
and ¢ is t-radially symmetric, then T, is essentially selfadjoint and

T,=1,= 7‘(,, (use Theorem 4.1). In particular, if p, and ¢, are
t-homogeneous polynomials such that r-degp,=t-degq;, and s5,eR,
(j=1,..,k), then Re} p;g; and 3 |p,|” are t-radially symmetric
functions. Therefore, if ¢ =|p|?, then T, is essentially selfadjoint for any
t-homogeneous polynomial p with 7€ R" . Moreover, T,=T}T,. Indeed,
by Theorem 1.4(iii), we have T}T,=11,11,<II,. Since T;T,and I1,=T,
are selfadjoint (use Theorem 4.1), they must coincide.

The question of whether T, ¢ = | p|? is (essentially) selfadjoint for all
pe, is open for n>1. However, if pe %, then T, is selfadjoint! (This
follows from Theorem 3.2.) We now introduce a class of symbols inducing
seifadjoint Toeplitz operators, closed under the operations of tensor
products ¢ @y and “tensor sums” @@ 1 + 1 @Y.

We say that a real-valued Borel function ¢ on C” satisfies the condtion
(C)if = @(T,), T,(P)= 2, T,|, is essentially selfadjoint, and [ f|° <
d,|T,f|? for fe ?, where d, is a constant independent on f.

Note that if ¢ satisfies (C), then 2 is a core for T, and consequently, by
Proposition 2.3, T, is selfadjoint.

LEMMA 5.3 Let ¢ and  be real-valued Borel functions on C™ and C",
respectively, satisfying (C). Then
(1) @&y satisfies (C),
(i) @® 1+ 1®y satisfies (C), provided ¢, Y =0.

Proof. Since 2,8 #,=2, ,, and polynomials are preserved by both T,
and T,, we have, for any he 2, , ,,

Toe1h=(T,®I)k and T,g,h=(IQT,)h (5.1)
T,(h(-,w)=(T,g.h),w), weC", (5.2)
T,(h(z, ))=(Tiguh)z-),  zeC™, (5.3)
T,ohe?,., and Tig,he?, . (5.4)
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(i) Applying (5.1), (5.2), (5.3), and (5.4) we can write

lo@whl2= [ 19(-) -, w) Y(w)I1> du, ()

<d, [ 1T, (h, w) YOI dp, ()

=d, [ IYOOTygr ), W)l iy ()
=d, [ WO T 1)z )2 dit(2)
<dydy [ 1Ty (Togih)z ) di(2)

=dydy [ I(Tigy Ty h)z )11 dit(2)

=d,d,|IT,e,.hl> heP,  n

It is clear that T, gyls,,,=(T,ls,) ® (Tl ) Since both operators T |,

and T,|, are essentially selfadjoint, so is 7,4,

VIIL337).

(cf. [14, Theorem

Pmtn

(i1) Using (i) and the positiveness of ¢ ® iy we have

e®1+1®Y)A|?

S2le@ ) A+ (1@ ) AlI*)
<d(|Toe k1 + 1 Ti gy hl?)
Sd(1Tye1hl* + 2Ty uh, 1) + 1T gy hl%)
=d(|T,e1h1?+ 2T ,g.h T1guh) + 1 T g, hl?)
=d|T,g1+10¢hl% he?,, d=2d,+d,)).

Note that T,g,104la,., = (T,ls,)®I+TI®(T,|5), so the essential
selfadjointness of 7,5, 4 10 ula,,, follows once more from Theorem VIIL33
in [14]. This completes the proof.

It follows from Theorem 3.2(iii) and Proposition 2.5 that any function of

the form |p|% ped,
enables us to produce
operators. Below we
procedure.

Call nonconstant

satisfies (C). Repeated application of Lemma 5.3
new classes of symbols inducing selfadjoint Toeplitz
present only two possible applications of this

polynomials {&;}5_, 2 of degree 1 strongly

independent if the vectors ((6/0z,) ¢, ..., (8/0z,) &;), 1< j<s, are pairwise
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orthogonal in C” (equivalently, the Gaussian variables {&;—&;(0)};_, are
stochastically independent).

ProposiTION 54. If s=1, =|p, (&) - p(ENNE and Y=
[P (ENDNP+ - +1p(E)2 where {C }1_1_9 are strongly independent
polynomials of degree 1 and {p;}:_, <P, then T, and T, are selfadjoint.

j=1=

Proof. Modifying polynomials ¢; and p; if necessary we can assume that
&(-)=<-,a;), where {a;}i_, are orthonormal vectors in C". Let {a,}]_,
be the completnon of {a,;};_, to an orthonormal basis in C" and let U be
the unitary matrix with rows a,, ..., a,. If p,=1 (resp., p;=0) for j> 5 and
qj(zl,. b Zy)= p,(z ) for all j, then ¢=|q, .. q,|*~U (resp., Y=
(lg |4 --- +1¢,1?)» U). Hence (by Proposition 1.2) we can assume that
Eilzy, o z,,)=zj.

Now the conclusion follows from Lemma 5.3, because each |p;
satisfies (C). |

I 2

6. EXAMPLES

In this section we present several examples concerning the questions of
closedness and selfadjointness of Toeplitz operators. We begin with
unclosed T, whose symbol is radially symmetric.

ExampLE 6.1. If 0<a<1/2 and ¢,(z)=exp(alz|*), zeC, then T, is
not closed. Indeed otherwise there would exist (by Theorem 4.3) some ¢ >0
such that

(1=2a)"“*V=lo, fil*<c(@ufe, fi P =c((1—a)’)"“* D, keN,

which is impossible.

Note that 2(7T,,)= {0} for a>1/2, 2(T, )=%, for a<0, and T, is
essentially selfadjoint for ae (0, 1/2) (see Theorem 4.1). Moreover, one can
show that, for any fe?, T, (f)—f as a—»0+ and T, (f)— A(f) as
a— 31—, where 4 is a selfadjoint diagonal operator in &, with diagonal
elements 25*! (ie. A(f,)=2%""f, for keN). |

As was shown in Section 3, Toeplitz operators T, in %, with symbols of
the form ¢ =p+ 4, p, ge A, are closed provided deg p < deg g. This is no
longer true if deg p=degq.

ExampLE 6.2. If seN and ¢(z)=2Re(z*), zeC, then T, is closed for
s <2 and unclosed for s>2. Moreover, T, is strictly contamed in T for
s=3 (this follows from Proposition 5.2 and the nonselfadjomtness of
(T,l») ; see Example 3.6 in [11]). If s<2, then the closedness of T,
follows from Corollary 2.4.
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Let 5> 2. Suppose, contrary to our claim, that T, is closed. Then, by
Proposition 2.3, there exists ¢ 2 | such that

lopl?<clpl®+I1T,pII*),  pe. (6.1)
Applying Theorem 1.A we get
Iz*p+ 21 = z°pl* + [12° HZ+2Re(zz°‘ . p)
-1 s—k+1))?
s+ z Lo Bk DLy peipy2

+1D°p)* + HZ pll* +2 Re(z%p, p)

s—1 — D fs—k+1 2
—stipy4 y bk )

x| D*~*pl* + ||z°p + D*pl|*.

This and (6.1) gives us constants o, ..., %,_, ¢; > 0 such that
s—1

L allDplP<e (lpl?+lz’p+D°pI?),  pe?. (6.2)

k=1

Suppose that p=%"_, 4;f,, N>2s. Because ij=\/j_'fi_1 (with f_,=0)
and zf;=./j+1f;,,, we have

s—1

Zp+DP= T dye UG0S,

Z o S=s+ 1))
+i,+m/(1+1) (J+8)) ]

N+s
+ Y A JU=s+) -t
J=N—-s+1

Hence

s—1

izp+Dpl?= 3 1A PG+ 1) (j+5)

J=0
N—2s

+ Z LU+ 1) - (j+s)

+Aj+2s\/ (J+s+1)---(j+25)°

+ L2 G+1) - (+s) (6.3)

J=N—-25s+1
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Suppose that N is divisible by 2s. Define the sequence {4}, by 4,=0,
4;=01f j is not divisible by 2s and 4,= (—1)7%j ~*?if j is a multiple of 2s.
In what follows 3, stands for the sum over the multiples of 2s. Using (6.3)
and the definition of {4,}_, we can write

N -2y

iz*p+ D'pll*= | " AT+ (N+1)-(N+s)N e, (6.4)

J=

where A, :=(2s) " ** /(s +1)---(2s5) and

‘_\/(j+1)...(j-+-s) \/(j+_§'+])...(j+2s)
4, = _
s jsJZ (j+2s)s,/2 s

jz 1
Note that 4,>0. Applying the identity

a '?—b a, b>0,

LI —
RNENCN
we can estimate 4; as follows
4,5 \ﬂj'*‘5+ 1} (J+28) (7= (j+25) %)
S+ 25)72 (P =(j+25) %)

_ Ut2p—f
[(]+ 2s)5,f2 +jmjf2 ]jxyZ

e 2 S‘ >y
<(J—+2j+i<c’zj*', izl (6.5)

where the constant ¢, is independent of j. Combining (6.4) and (6.5) we get

lz°p+ D'p|* < ¢y (1 + ) j*2)< + o0,
i=1
where the constant ¢; does not depend on N=degp. Since
p)? :Z';V=]j‘-‘<2f=lj”*‘< +oc, the right-hand side of (6.2) is
uniformly bounded as the function of N. On the other hand, the left-hand
side of (6.2) tends to infinity, as N — oo because

§—=1 N oo .

. < J=1) (542
S a D'l a, (1D =, ¥ - )
k=1 J=s5—1

N
Zaxflﬁ Z‘ j‘la
j=s5-1

where f is a constant independent of N. This contradiction proves our
claim. |
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The next two examples show that in general Toeplitz operators with
simple antiholomorphic symbols are not closed for n> 1.

ExampLE 6.3. Let n=2 and ¢(z,, z,) =Z,z,. We claim that T, is not
closed. If not, then—by Proposition 2.3-—there would exist a constant ¢ >0
such that

lopl?<c(ipl*+IT,pl*),  pe?.

In particular, taking p(z,,z,)=z%, ke N, and applying Theorem 1.4(iii),
we would have

2

621622

2
p )=ck!, keN.

(k+1)!=||(pp{[2<6<k!+“

This contradiction proves the claim. J

ExaMpLE 64. If p =e,, zeC", then T, is closed. However, if z, we C”
are linearly independent, A C\{0} and y =e,+ Je,, then Ty is unclosed.
To prove the closedness of T; note that

[112le.P du=e" [IEf 12 du s,

so 9(T;)=2(E,) and consequently T; = E_ (see Theorem 1.4(iii)).

Now we show that T ; is not closed. Indeed, since 4 # 0, there exists ce C
such that A = —e°. Suppose, contrary to our claim, that T is closed. Thus,
according to Proposition 2.3, there exists M > 0 such that

WP <MUSIP+IES+AESI?),  feé.

Take an arbitrary ¢ > 0. Since z and w are linearly independent, there exists
xeC” such that (z,x)=t and {(w,x>=t—c. Put f=e,. Then
E, f=e< " ffor any ae C" and consequently

e Ve lle.—e, I’ = W SIS MUSI? + N E.f+ 2E, f|?) = Me"™",

which is impossible because ¢, —e, #0. |

Now we turn to selfadjointness. First we give examples of selfadjoint
Jacobi matrices whose selfadjointness does not follow from general theory.

ExaMPLE 6.5. Consider the polynomial p(z) =az + z2, ze C, with a> 0.
Then the matrix representation of T ,:|, (with respect to the canonical
basis {f,}) is given by the symmetric Jacobi matrix J with the main
diagonal (d,, d,,..) and the subdiagonal (c,,c,,..), where c¢,=

alk +2)/k+1 and d, = (k+ 1)(a®* + k + 2). Applying Theorem 3.2(iii) we
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conclude that J is selfadjoint. Note that we cannot apply the Carleman
criterion for sefadjointness of Jacobi matrices (cf. [2, Theorem VII.1.3]),
because the series ¥ ¢, ' is convergent. Though in this case ¢, ¢y, < ¢}
for all ke N, our result does not contradict Theorem VIL1.5 in [2],
because the main diagonal of J is unbounded. |

It is worthwhile to emphasize that some (but not all) ¢-radially
symmetric functions ¢ induce essentially selfadjoint T,’s even for re R"
R” . A sample of such ¢ is given below.

ExaMPLE 6.6. If ¢(z, w)=Re(zw) for z, we C, then Tq, is selfadjoint.
Indeed, since ¢ is r-radially symmetric with r=(1, —1), it is enough to
show (by Theorem 4.1(i) and Proposition 5.2) that (T,,,lm_')* is selfadjoint
for every de Z. Fix deZ and put h,, :=f,, ,_,for mzd* :=max{0,d}
and h,,:=0 for m<d*. Then {h, :m=d*} is the orthonormal basis of
H#, , and T,|x,, s represented in this basis by a symmetric Jacobi matrix,
Le.,

2T hyy=/mm—d)h, |+ /(m+Dm—d+1)h,,,, mzd*.

Thus, by the Carleman criterion (cf. [2, Theorem VIL1.37), (T} 4, ) is
selfadjoint. ||

We conclude the paper with an example of a non-selfadjoint operator of
the form (T,| )™, where ¢ is a real-valued t-radially symmetric function.

ExaMPLE 6.7. Let ¢(z, w)=Re(zw?) for z, we C. Then ¢ is t-radially
symmetric with = (2, —1). We show that (T,|,) " is not selfadjoint. Due
to Theorem 4.1(i) it is enough to prove that (7,],,, )" is not selfadjoint
for at least one de Z(r). We claim that this is the case for 4=0. Let us
denote by #4,, the vector f,, »,, for me N. In a way to Example 6.6 one can
check that {4, :m >0} forms the orthonormal basis of #, , and

2Tq)hmzcmflhmfl+thm+l’ mZO,

where c,,=./(m+1)2m+1)(2m+2). In this case c,, (c,,,<c2 for
meN and the series 377, ¢! is convergent, so the Berezanskii theorem

(cf. [2, Theorem VIL1.5]) proves the claim. Since (7,{,) is not
selfadjoint, Proposition 5.2 implies that T,#T,. |
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