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The main subject of this paper is the proof of the following observations
(Theorems A and B are contained in the authors dissertation [Wo] written
at the University of Mainz in 1994 under the direction of Professor Dr. K.
Doerk.)

THEOREM A. Let P be a p-group of maximal class with |P| = p", n > 4,
and p an odd prime. Let H be a Hall p'-subgroup of the automorphism group
of P. Then

(i) Cu(Z(P)) is cyclic.
(i) |C,(Z(P))| divides p — 1 and if |H| = (p — 1)?, then |C,(Z(P))|
=p—1

THEOREM B. Let P be a p-group of maximal class with |P| = p", n > 4,
and p an odd prime. Let q be an odd prime with q |(p — 1) and let R be a
Sylow g-subgroup of the automorphism group of P. Then

(i) Cr(Z(P)) is cyclic.
(i) Cr(Z(P)) acts regularly on P/Z(P)) if and only if |P| <p?+™.
(The use of regularly is as in [DH, A.4.23].)
163

0021-8693 /97 $25.00

Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.


https://core.ac.uk/display/81928182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

164 BARDO WOLF

Remark C. (a) The interest in this subject stems from an application of
these theorems in the theory of Fitting classes. In a variation of a result of
Trevor Hawkes (see [DH, 1X.6.19)), the following is shown in [Wo]:

Let P be a p-group of maximal class with |P| < p9*?!
and ¢ an odd prime such that ¢|(p — 1). If « is an
automorphism of P of order g with [Z(P), ] = 1 and
G= P{a) denotes the semidirect product, then the
smallest Fitting class containing G consists only of
supersoluble groups, but is not contained in the class of
nilpotent groups.

(b) It is known, that p-groups P of maximal class need not have any
p’-automorphism (see, for example, [CaSco90)]), so it is no surprise that
usually C,(Z(P)) is not too big, where H is a Hall p'-subgroup of the
automorphism group of P. However, there are two families of p-groups of
maximal class with |H| = (p — 1), such that for Theorems A and B and
part (a) of this remark, nontrivial examples exist:

(i) the p-groups of maximal class of exponent p with an abelian
maximal subgroup (see, for instance, [BaWoe76));

(i) the p-groups of maximal class constructed by Blackburn (see
[Hu, 111.14.24] and [Hart84]), which are extensions of an extraspecial
p-group by a group of order p (that |[H| = (p — 1)? in this case is shown in
[Wa)).

PRELIMINARIES

A p-group P of order p” with n > 2 and nilpotency class n — 1 is said
to be of maximal class. The cornerstone in the theory of p-groups of
maximal class is the paper by Blackburn [Bb58] (see also Huppert's book
[Hu, 111.14].

Consider a p-group P of maximal class with p > 3 and n > 4. Let
1=P,<P,_, - 4P, <P be the lower central series of P. It is custom-
ary to set P, = C,(P,/P,). This subgroup of index p plays a fundamental
role in the study of these groups. The degree of commutativity of P is the
largest integer /, such that [P, P] < P, ., for all i,j > 1, unless P, is
abelian, in which case [ = n — 3. If P, is not abelian, then the degree of
commutativity of P is >/ ifand onlyif [P,, P] < P, , , forall i > 1 (see
[Hart84]).

A p-group P of maximal class is called exceptional if the degree of
commutativity is zero. One of the main results of Blackburn’s paper is the
following.
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THeorReM D (Blackburn [Hu, 111.14.6]). Let P be a p-group of maximal
class with |P| = p™ and n > 5. Then

(i) P/P,_, is not exceptional and P, = Cp(P,/P,,,) fori <n — 3.
(i) If P is exceptional, then p > 3 and 6 <n < p + 1; also n is even

and Py, = Cp(P,_,) is a characteristic subgroup of index p in P different from
P,.

The following elementary lemma is fundamental:

LEMMA E. Let P be a p-group of maximal class with |P| =p", n > 4.
Then the automorphism group of P is soluble. If H is a Hall p'-subgroup of
Aut(P), then one can choose elements, s, s, € P with the following properties:

(i) P = {s,Py). If Pis exceptional, so P, = Cp(P,_,) = (s, P,) and
P, = (s, Py). Sets; =1[s,_y,s] fori=2,....,n — 2 and

| [su-2. 8] if P is not exceptional,

Sp_1 = . . .
nl [s,-5,8], if P is exceptional.

Then
P={s,s;) and P, = {s;, P ) fori=1,...,n—1,
Z(P) = s,
(i) For o € H there exists a, ¢ € GF(p) with
sa=s“modP, and s,a=s;modP,
such that

un: H— D,

a=(a,c),

is a monomorphism, where D is a direct product of two copies of the
multiplicative group of GF(p). |[H||(p — 1)*. Furthermore,

s.a=st c mod P, , fori=2,3,....,n — 2.

1 L

The operation on Z(P) depends on whether P is exceptional or not:

(Z -) If Pis not exceptional, then

n-2.
(Sp—)a=s,_,1°
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[Z(P), a]l = 1 ifand only ifa"~?-c = 1 € GF(p).
(Z - - ) If Pis exceptional, then

n c?

(8,-1)a= 53—713' :
[Z(P), a] = 1 if and only if a" 3 - c? = 1 € GF(p).

Remark. In other contexts it is convenient to choose s € P \ {P, U
Cp(P,_,)}. It should be clear that in dealing with p’-automorphisms the
choice in (i) is appropriate.

Proof of Lemma E. |P/P,|=|P/®(P)| = p? since P is of maximal
class. S0 Cpyyp)(P/P,) is a p-group (see [Hu, 111.3.18]). P, is a character-
istic subgroup of P. Therefore P,/P, is invariant under Aut(P) and
Aut(P) /Cpy py(P/P,) is isomorphic to a subgroup of the upper triangular
matrices in GL(2, p). This shows the solubility of Aut(P). Let H be a Hall
p'-subgroup of Aut(P). Obviously |H||(p — 1)?. P,/P, is H-invariant. By
Maschke’s theorem there exists an H-invariant one-dimensional comple-
ment S/P, to P,/P,. Choose s,s, € P such that S = (s, P,) and P, =
(s,, P,). With this choice in mind the rest of (i) and (ii) are easy
consequences. |

Proof of Theorem A. Assume that P is exceptional (the other case, i.e.,
P is not exceptional, can be treated in a similar way). Let s, s, € P and u:
H — D be as in the last Lemma. Let D operate on a cyclic group
X = {x) of order p following (Z - - ) from Lemma E:

x> xd=x""""" ford=(a,c)eD.

Notice that » is even and 6 < n < p + 1 since P is exceptional.
Then (C,(Z(P))p < Cp(Kx)) and so it suffices to prove |Cp(X)| =

p—1
Because D is abelian, one only needs to show that each Sylow g-sub-
group Q of C,(X) is a cyclic group of order g*, where g* || (p — 1).

g odd: Let g be an odd prime dividing p — 1 with ¢*||(p — 1) and
let Q be a Sylow g-subgroup of D. Let y denote a primitive g“th root of
unity in GF(p). Let

d=(y"y")€Q
Assume d € Cp(X). This is equivalent to
xOTROMT = xor yri=3*2v = 1 e GF( p)
and
(n—=3)-v+2-w=0modg*.
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Especially with v = 1, w, = 3(¢* — n + 3) it follows that
dy = (y,y") € Co(X).
The order of d, is ¢* and so (d,) = Q; < C,(X).
With v, =1, w, = (4 — n)/2, and
dy = (y,y"?),
it follows that

(n—=3)v,+ 2w, =1mod g*.

Therefore x% = x¥ and x% =x”' for i = 1,...,¢*. So the cyclic group
Q, = {d,) is of order g*. As a consequence of the construction of Q,,

0, N Cp(X) = 1.

Howevei, Q is abelian and so Q = Q, X Q,. This shows Q, = C,(X) and
|Q1| =q.

g =2:Nowgq = 2and 2*||(p — 1). Let Q be a Sylow 2-subgroup of the
abelian group D. Set S := Soc,(Q). The first step is to show that the group
C(X) is a cyclic group of order 2. This has as an immediate consequence,
that C,(X) is cyclic, since Q is abelian.

For d = (a,c) € S with a,c € {1, —1},

. . n—-3,.2
x¢ = x is equivalent to x*" ¢ =x

Since n is even and (n — 3) is odd it follows that the only nontrivial
solution of this equation for a,c¢ € {1, —1} is given with ¢« =1 and
¢ = —1. Therefore, |Cs(X)| = 2. It remains to show, that |C,(X)| = 2*.

Let y € GF(p) denote a primitive 2*th root of unity in GF(p). Let
d:=(y",y')eQ with integers v, w.
Count the number of different solutions of

. vyn—3,
x?=x,  respectively, x0"" "0

wy2
= x.

This is equivalent to
yv(n73)+2w =1e GF(p)
and

2-w= —(n—3)-v mod2*
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Count for each v with 0 < v < 2* the number of different solutions of this
linear congruence. It is (n — 3) odd. Therefore, if v is odd, this congru-
ence has no solution; otherwise, if v is even, it has exactly. (2,2%) = 2
different solutions. So the number of different solutions of this linear
congruence is 2*. This shows |C,(X)| = 2*. 1

LEMMA F.  Let P be a p-group of maximal class with |P| = p", n > 4. Let
H be a Hall p'-subgroup of the automorphism group of P. Let s, s, € P and
w: H — D be as in Lemma E. If a € C,(Z(P)) is of odd order and

(a)p=(a,c)

sae=s“mod P, and s,a=s;modP,,

then the multiplicative order of a in GF(p) is the same as the order of . In
particular, if |a| = q for an odd prime q, then a is a primitive qth root of unity
in GF(p) and ¢ = a” for an integer r.

Proof. Let a € H be an element of order g for an odd prime g with

[Z(P),a]l=1 and sa =s* mod P,. Then a # 1 € GF(p). Assume not.
Then ¢ # 1, since « is a nontrivial p’-automorphism.

(i) If P is not exceptional it follows from Lemma E with (Z - ) that
(Sp-)a=s,_1%5, 1,

since ¢ # 1. However, this contradicts [Z(P), «] = 1.
(i) If P is exceptional it follows from (Z - - ) in Lemma E that

2
(Spp)@=s8,_1%#58,_1,

since ¢ # 1 and « is of odd order. Again this contradicts [Z(P), a] = 1.

Therefore o # 1. The same argument for each i € {1,...,q — 1} yields
a' #+ 1 and so a is a primitive gth root of unity in GF(p), since the order
of « is g. Therefore ¢ = a" for some integer r.

Now let a € C,(Z(P)) be an element of odd order m. Assume sa = s*
mod P, and the multiplicative order of a in GF(p) is ¢t <m. Then ¢
divides m and a' € Cpyp)(sP,). As a consequence an odd prime ¢
dividing m /¢t exists, such that 8 := «™/7 is a nontrivial automorphism of
P of order g centralizing the center of P. From ¢|(m /q) it follows with an
appropriate integer k that

m k
B=a"1=a"=(a') € Caup(sP2)-
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However, this is a contradiction. This shows that the multiplicative order
of ain GF(p)is m. |

Proof of Theorem B. Part (i) of this theorem is an immediate conse-
guence of Theorem A.

Assume |[Cr(Z(P))|=gq in a first step for part (ii). Let 1 # a €
Cx(Z(P)). With Lemmata E and F one has

sa=s"modP, and s,a=s} modP,,
where y is an gth root of unity and w € {0,...,¢ — 1}. From Lemma E

one gets, fori = 2,...,n — 2,

i—1+w

s;a =) mod P, ;.

14

(@ If n>¢qg+1, then a has a fixed point on P/Z(P) and so
Cx(Z(P)) does not act regularly on P/Z(P): Itis n — 2 > g — 1. There-
fore, ip € {1,...,n — 2} exists with i; —1 = —w mod g and so s; @ =,
mod P, . ;. This essentially shows with [Hu, 1.18.6] that « has a fixed point
on P/Z(P).

(b) If n <g+ 1, then « has no fixed points on P/Z(P) and so
Cxr(Z(P)) acts regularly on P/Z(P): There are two cases to examine.

(i) Let P be not exceptional. From (Z - ) (Lemma E) one gets
YT =1 € GF(p).
This is equivalent to
n—2+w=0modgqg

and this congruence determines w.
For i e({1,2,...,n — 2} it follows that
i—-1+w=—(n—-1-i)modg.
Itis
n—1-ie{1,2,....,.n—-2} c{1,2,...,q — 1},
since n < g + 1. Therefore i —1+w # 0 modg for i =1,2,...,n—2
and

i—1+w

s =] #s;, mod P, , fori=1,2,...,n— 2.

1

Furthermore, sa =s” #s mod P,. So « has no fixed points on every
section of the lower central series of P/Z(P) and as an immediate
consequence no fix points on P/Z(P).
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(ii) Let P be exceptional. From Blackburn’s Theorem D it follows
that n > 6 and n is even. With Lemma E (Z - - ) one gets
yiotY = 1 e GF(p).
This is equivalent to
n—3+2w=0modgqg

and this congruence determines w.
Assume
n—i,—2+w=0modg
for an appropriate i, €{1,2,...,n —2}. Therefore w= —n + i, + 2
mod g. Since a € CRx(Z(P)) it follows from (Z - - ) in Lemma E that
n—3+ 2w =0mod g
and

(%) n—3+2(—-n+i,+2)=-n+1+2i,=0modg.
Itis n — 3 < g, since n < g + 1. Therefore one gets, with1 <i; <n — 2,
—g<-n+3<-n+1+2ij<-n+1+2(n-2)=n-3<gq.

To fulfill (%) it is necessary that —n + 2i, + 1 = 0. However, n is even
and so —n + 2i, + 1 # 0. This contradicts (). This contradiction shows

n—i,—2+w#0modg.

Therefore a has no fixed points on every section of the lower central
series of P/Z(P) and as an immediate consequence no fixed points on
P/Z(P).

Now it remains to prove in the case n < g + 1 and |Cr(Z(P))| > g that
Cr(Z(P)) acts regularly on P/Z(P). By (i), Cx(Z(P)) is cyclic. From the
first part of the proof it follows that Soc(Cr(Z(P))) acts regularly on
P/Z(P).

Let Cx(Z(P)) = (a) with Ka)| = ¢' > q. Assume, that m # 0 mod(g")
exists, such that a™ has a fixed point x,Z(P) # Z(P) on P/Z(P). Then
1 # (a™) € Cx(Z(P)) is an element of order g for some appropriate r
with fixed point x,Z(P) # Z(P). However, this is a contradiction |
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