A Note on p^{\prime}-A utomorphism of p-G roups P of M aximal Class Centralizing the Center of P

Bardo W olf

The main subject of this paper is the proof of the following observations (Theorems A and B are contained in the authors dissertation [W o] written at the U niversity of M ainz in 1994 under the direction of Professor Dr. K. D oerk.)

Theorem A. Let P be a p-group of maximal class with $|P|=p^{n}, n \geq 4$, and p an odd prime. Let H be a Hall p^{\prime}-subgroup of the automorphism group of P. Then
(i) $C_{H}(Z(P))$ is cyclic.
(ii) $\left|C_{H}(Z(P))\right|$ divides $p-1$ and if $|H|=(p-1)^{2}$, then $\left|C_{H}(Z(P))\right|$ $=p-1$.

Theorem B. Let P be a p-group of maximal class with $|P|=p^{n}, n \geq 4$, and p an odd prime. Let q be an odd prime with $q \mid(p-1)$ and let R be a Sylow q-subgroup of the automorphism group of P. Then
(i) $C_{R}(Z(P))$ is cyclic.
(ii) $C_{R}(Z(P))$ acts regularly on $\left.P / Z(P)\right)$ if and only if $|P| \leq p^{q+1}$. (The use of regularly is as in [DH, A.4.23].)

Remark C. (a) The interest in this subject stems from an application of these theorems in the theory of Fitting classes. In a variation of a result of Trevor H awkes (see [D H , IX .6.19]), the following is shown in [W o]:

Let P be a p-group of maximal class with $|P| \leq p^{q+1}$ and q an odd prime such that $q \mid(p-1)$. If α is an automorphism of P of order q with $[Z(P), \alpha]=1$ and $G=P\langle\alpha\rangle$ denotes the semidirect product, then the smallest Fitting class containing G consists only of supersoluble groups, but is not contained in the class of nilpotent groups.
(b) It is known, that p-groups P of maximal class need not have any p^{\prime}-automorphism (see, for example, [CaSco90]), so it is no surprise that usually $C_{H}(Z(P))$ is not too big, where H is a Hall p^{\prime}-subgroup of the automorphism group of P. However, there are two families of p-groups of maximal class with $|H|=(p-1)^{2}$, such that for Theorems A and B and part (a) of this remark, nontrivial examples exist:
(i) the p-groups of maximal class of exponent p with an abelian maximal subgroup (see, for instance, [BaW oe76]);
(ii) the p-groups of maximal class constructed by Blackburn (see [$\mathrm{Hu}, \mathrm{III} .14 .24$] and [H art84]), which are extensions of an extraspecial p-group by a group of order p (that $|H|=(p-1)^{2}$ in this case is shown in [Wol).

PRELIMINARIES

A p-group P of order p^{n} with $n \geq 2$ and nilpotency class $n-1$ is said to be of maximal class. The cornerstone in the theory of p-groups of maximal class is the paper by Blackburn [Bb58] (see also H uppert's book [$\mathrm{Hu}, \mathrm{III} .14]$).

Consider a p-group P of maximal class with $p \geq 3$ and $n \geq 4$. Let $1=P_{n} \triangleleft P_{n-1} \triangleleft \cdots \triangleleft P_{2} \triangleleft P$ be the lower central series of P. It is customary to set $P_{1}=C_{P}\left(P_{2} / P_{4}\right)$. This subgroup of index p plays a fundamental role in the study of these groups. The degree of commutativity of P is the largest integer l, such that $\left[P_{i}, P_{j}\right] \leq P_{i+j+l}$ for all $i, j \geq 1$, unless P_{1} is abelian, in which case $l=n-3$. If P_{1} is not abelian, then the degree of commutativity of P is $\geq l$ if and only if $\left[P_{1}, P_{i}\right.$] $\leq P_{i+1+l}$ for all $i \geq 1$ (see [H art84]).
A p-group P of maximal class is called exceptional if the degree of commutativity is zero. One of the main results of Blackburn's paper is the following.

Theorem D (Blackburn [Hu, III.14.6]). Let P be a p-group of maximal class with $|P|=p^{n}$ and $n \geq 5$. Then
(i) P / P_{n-1} is not exceptional and $P_{1}=C_{P}\left(P_{i} / P_{i+2}\right)$ for $i \leq n-3$.
(ii) If P is exceptional, then $p>3$ and $6 \leq n \leq p+1$; also n is even and $P_{E}=C_{P}\left(P_{n-2}\right)$ is a characteristic subgroup of index p in P different from P_{1}.

The following elementary lemma is fundamental:
Lemma E. Let P be a p-group of maximal class with $|P|=p^{n}, n \geq 4$. Then the automorphism group of P is soluble. If H is a Hall p^{\prime}-subgroup of $\mathrm{A} u \mathrm{t}(P)$, then one can choose elements, $s, s_{1} \in P$ with the following properties:
(i) $P=\left\langle s, P_{1}\right\rangle$. If P is exceptional, so $P_{E}=C_{P}\left(P_{n-2}\right)=\left\langle s, P_{2}\right\rangle$ and $P_{1}=\left\langle s_{1}, P_{2}\right\rangle$. Set $s_{i}=\left[s_{i-1}, s\right]$ for $i=2, \ldots, n-2$ and

$$
s_{n-1}:= \begin{cases}{\left[s_{n-2}, s\right],} & \text { if } P \text { is not exceptional, }, \\ {\left[s_{n-2}, s_{1}\right],} & \text { if } P \text { is exceptional } .\end{cases}
$$

Then

$$
\begin{gathered}
P=\left\langle s, s_{1}\right\rangle \quad \text { and } \quad P_{i}=\left\langle s_{i}, P_{i+1}\right\rangle \quad \text { for } i=1, \ldots, n-1, \\
Z(P)=\left\langle s_{n-1}\right\rangle .
\end{gathered}
$$

(ii) For $\alpha \in H$ there exists $a, c \in G F(p)$ with

$$
s \alpha=s^{a} \bmod P_{2} \quad \text { and } \quad s_{1} \alpha \equiv s_{1}^{c} \bmod P_{2}
$$

such that

$$
\begin{aligned}
& \mu: H \rightarrow D, \\
& \alpha \mapsto(a, c),
\end{aligned}
$$

is a monomorphism, where D is a direct product of two copies of the multiplicative group of $\mathrm{GF}(p) .|H| \mid(p-1)^{2}$. Furthermore,

$$
s_{i} \alpha \equiv s_{i}^{a_{i}^{i-1 \cdot c}} \bmod P_{i+1} \quad \text { for } i=2,3, \ldots, n-2 .
$$

The operation on $Z(P)$ depends on whether P is exceptional or not:
$(Z \cdot)$ If P is not exceptional, then

$$
\left(s_{n-1}\right) \alpha=s_{n-1}^{a^{n-2} \cdot c} .
$$

$[Z(P), \alpha]=1$ if and only if $a^{n-2} \cdot c=1 \in \operatorname{GF}(p)$.
$(Z \cdot)$ If P is exceptional, then

$$
\left(s_{n-1}\right) \alpha=s_{n-1}^{a^{n-3} \cdot c^{2}} .
$$

$[Z(P), \alpha]=1$ if and only if $a^{n-3} \cdot c^{2}=1 \in \mathrm{GF}(p)$.
Remark. In other contexts it is convenient to choose $s \in P \backslash\left\{P_{1} \cup\right.$ $\left.C_{P}\left(P_{n-2}\right)\right\}$. It should be clear that in dealing with p^{\prime}-automorphisms the choice in (i) is appropriate.
Proof of Lemma E. $\left|P / P_{2}\right|=|P / \Phi(P)|=p^{2}$ since P is of maximal class. So $C_{\text {Aut }(P)}\left(P / P_{2}\right)$ is a p-group (see $\left.[\mathrm{Hu}, \mathrm{III} .3 .18]\right) . P_{1}$ is a characteristic subgroup of P. Therefore P_{1} / P_{2} is invariant under $\operatorname{Aut}(P)$ and Aut $(P) / C_{\text {Aut }(P)}\left(P / P_{2}\right)$ is isomorphic to a subgroup of the upper triangular matrices in $\mathrm{GL}(2, p)$. This shows the solubility of $\mathrm{Aut}(P)$. Let H be a H all p^{\prime}-subgroup of $\mathrm{A} u t(P)$. O bviously $\mid H \|(p-1)^{2} . P_{1} / P_{2}$ is H-invariant. By M aschke's theorem there exists an H-invariant one-dimensional complement S / P_{2} to P_{1} / P_{2}. Choose $s, s_{1} \in P$ such that $S=\left\langle s, P_{2}\right\rangle$ and $P_{1}=$ $\left\langle s_{1}, P_{2}\right\rangle$. With this choice in mind the rest of (i) and (ii) are easy consequences.

Proof of Theorem A. A ssume that P is exceptional (the other case, i.e., P is not exceptional, can be treated in a similar way). Let $s, s_{1} \in P$ and μ : $H \mapsto D$ be as in the last Lemma. Let D operate on a cyclic group $X=\langle x\rangle$ of order p following ($Z \cdot \cdot$) from Lemma E :

$$
x \mapsto x^{d}=x^{a^{n-3} \cdot c^{2}} \quad \text { for } d=(a, c) \in D
$$

Notice that n is even and $6 \leq n \leq p+1$ since P is exceptional.
Then $\left(C_{H}(Z(P))\right) \mu \leq C_{D}(\langle x\rangle)$ and so it suffices to prove $\left|C_{D}(X)\right|=$ $p-1$.

Because D is abelian, one only needs to show that each Sylow q-subgroup Q of $C_{D}(X)$ is a cyclic group of order q^{k}, where $q^{k} \|(p-1)$.
q odd: Let q be an odd prime dividing $p-1$ with $q^{k} \|(p-1)$ and let Q be a Sylow q-subgroup of D. Let y denote a primitive q^{k} th root of unity in $\mathrm{GF}(p)$. Let

$$
d=\left(y^{v}, y^{w}\right) \in Q .
$$

A ssume $d \in C_{D}(X)$. This is equivalent to

$$
x^{\left(y^{v}\right)^{n-3} \cdot\left(y^{w}\right)^{2}}=x \quad \text { or } \quad y^{v(n-3)+2 w}=1 \in \mathrm{GF}(p)
$$

and

$$
(n-3) \cdot v+2 \cdot w \equiv 0 \bmod q^{k} .
$$

Especially with $v=1, w_{1}=\frac{1}{2}\left(q^{k}-n+3\right)$ it follows that

$$
d_{1}:=\left(y, y^{w_{1}}\right) \in C_{Q}(X) .
$$

The order of d_{1} is q^{k} and so $\left\langle d_{1}\right\rangle=Q_{1} \leq C_{Q}(X)$.
With $v_{2}=1, w_{2}=(4-n) / 2$, and

$$
d_{2}:=\left(y, y^{w_{2}}\right),
$$

it follows that

$$
(n-3) \cdot v_{2}+2 \cdot w_{2} \equiv 1 \bmod q^{k} .
$$

Therefore $x^{d_{2}}=x^{y}$ and $x^{d_{2}^{i}}=x^{y^{i}}$ for $i=1, \ldots, q^{k}$. So the cyclic group $Q_{2}=\left\langle d_{2}\right\rangle$ is of order q^{k}. As a consequence of the construction of Q_{2},

$$
Q_{2} \cap C_{Q}(X)=1 .
$$

However, Q is abelian and so $Q=Q_{1} \times Q_{2}$. This shows $Q_{1}=C_{Q}(X)$ and $\left|Q_{1}\right|=q^{k}$.
$q=2$: Now $q=2$ and $2^{k} \|(p-1)$. Let Q be a Sylow 2 -subgroup of the abelian group D. Set $S:=\operatorname{Soc}_{2}(Q)$. The first step is to show that the group $C_{S}(X)$ is a cyclic group of order 2. This has as an immediate consequence, that $C_{Q}(X)$ is cyclic, since Q is abelian.

For $d=(a, c) \in S$ with $a, c \in\{1,-1\}$,

$$
x^{d}=x \text { is equivalent to } x^{a^{n-3} \cdot c^{2}}=x .
$$

Since n is even and ($n-3$) is odd it follows that the only nontrivial solution of this equation for $a, c \in\{1,-1\}$ is given with $a=1$ and $c=-1$. Therefore, $\left|C_{S}(X)\right|=2$. It remains to show, that $\left|C_{Q}(X)\right|=2^{k}$.

Let $y \in \mathrm{GF}(p)$ denote a primitive 2^{k} th root of unity in $\mathrm{GF}(p)$. Let

$$
d:=\left(y^{v}, y^{w}\right) \in Q \quad \text { with integers } v, w .
$$

Count the number of different solutions of

$$
x^{d}=x, \quad \text { respectively, } x^{\left(y^{v}\right)^{n-3} \cdot\left(y^{N}\right)^{2}}=x .
$$

This is equivalent to

$$
y^{v(n-3)+2 w}=1 \in \mathrm{GF}(p)
$$

and

$$
2 \cdot w \equiv-(n-3) \cdot v \bmod 2^{k} .
$$

Count for each v with $0 \leq v<2^{k}$ the number of different solutions of this linear congruence. It is $(n-3)$ odd. Therefore, if v is odd, this congruence has no solution; otherwise, if v is even, it has exactly. $\left(2,2^{k}\right)=2$ different solutions. So the number of different solutions of this linear congruence is 2^{k}. This shows $\left|C_{Q}(X)\right|=2^{k}$.

Lemma F. Let P be a p-group of maximal class with $|P|=p^{n}, n \geq 4$. Let H be a Hall p^{\prime}-subgroup of the automorphism group of P. Let $s, s_{1} \in P$ and $\mu: H \rightarrow D$ be as in Lemma E . If $\alpha \in C_{H}(Z(P))$ is of odd order and

$$
(\alpha) \mu=(a, c)
$$

or

$$
s \alpha \equiv s^{a} \bmod P_{2} \quad \text { and } \quad s_{1} \alpha \equiv s_{1}^{c} \bmod P_{2}
$$

then the multiplicative order of a in $\operatorname{GF}(p)$ is the same as the order of α. In particular, if $|\alpha|=q$ for an odd prime q, then a is a primitive qth root of unity in $\mathrm{GF}(p)$ and $c=a^{r}$ for an integer r.

Proof. Let $\alpha \in H$ be an element of order q for an odd prime q with $[Z(P), \alpha]=1$ and $s \alpha=s^{a} \bmod P_{2}$. Then $a \neq 1 \in \operatorname{GF}(p)$. A ssume not. Then $c \neq 1$, since α is a nontrivial p^{\prime}-automorphism.
(i) If P is not exceptional it follows from Lemma E with $(Z \cdot)$ that

$$
\left(s_{n-1}\right) \alpha=s_{n-1}^{c} \neq s_{n-1},
$$

since $c \neq 1$. H owever, this contradicts $[Z(P), \alpha]=1$.
(ii) If P is exceptional it follows from ($Z \cdot \cdot$) in Lemma E that

$$
\left(s_{n-1}\right) \alpha=s_{n-1}^{c^{2}} \neq s_{n-1},
$$

since $c \neq 1$ and α is of odd order. A gain this contradicts $[Z(P), \alpha]=1$. Therefore $\alpha \neq 1$. The same argument for each $i \in\{1, \ldots, q-1\}$ yields $a^{i} \neq 1$ and so a is a primitive q th root of unity in $\mathrm{GF}(p)$, since the order of α is q. Therefore $c=a^{r}$ for some integer r.

Now let $\alpha \in C_{H}(Z(P))$ be an element of odd order m. A ssume $s \alpha \equiv s^{a}$ $\bmod P_{2}$ and the multiplicative order of a in $\mathrm{GF}(p)$ is $t<m$. Then t divides m and $\alpha^{t} \in C_{\text {Aut }(P)}\left(s P_{2}\right)$. As a consequence an odd prime q dividing m / t exists, such that $\beta:=\alpha^{m / q}$ is a nontrivial automorphism of P of order q centralizing the center of P. From $t \mid(m / q)$ it follows with an appropriate integer k that

$$
\beta=\alpha^{m / q}=\alpha^{t k}=\left(\alpha^{t}\right)^{k} \in C_{\mathrm{Aut}(P)}\left(s P_{2}\right) .
$$

However, this is a contradiction. This shows that the multiplicative order of a in GF (p) is m.

Proof of Theorem B. Part (i) of this theorem is an immediate consequence of Theorem A .
A ssume $\left|C_{R}(Z(P))\right|=q$ in a first step for part (ii). Let $1 \neq \alpha \in$ $C_{R}(Z(P))$. With Lemmata E and F one has

$$
s \alpha \equiv s^{y} \bmod P_{2} \quad \text { and } \quad s_{1} \alpha \equiv s_{1}^{y^{w}} \bmod P_{2},
$$

where y is an q th root of unity and $w \in\{0, \ldots, q-1\}$. From Lemma E one gets, for $i=2, \ldots, n-2$,

$$
s_{i} \alpha \equiv s_{i}^{i^{i-1+w}} \bmod P_{i+1} .
$$

(a) If $n>q+1$, then α has a fixed point on $P / Z(P)$ and so $C_{R}(Z(P))$ does not act regularly on $P / Z(P)$: It is $n-2>q-1$. Therefore, $i_{0} \in\{1, \ldots, n-2\}$ exists with $i_{0}-1 \equiv-w \bmod q$ and so $s_{i_{0}} \alpha \equiv s_{i_{0}}$ $\bmod P_{i_{0}+1}$. This essentially shows with [$\left.\mathrm{Hu}, \mathrm{I}, 18.6\right]$ that α has a fixed point on $P / Z(P)$.
(b) If $n \leq q+1$, then α has no fixed points on $P / Z(P)$ and so $C_{R}(Z(P))$ acts regularly on $P / Z(P)$: There are two cases to examine.
(i) Let P be not exceptional. From ($Z \cdot$) (Lemma E) one gets

$$
y^{n-2+w}=1 \in \operatorname{GF}(p) .
$$

This is equivalent to

$$
n-2+w \equiv 0 \bmod q
$$

and this congruence determines w.
For $i \in\{1,2, \ldots, n-2\}$ it follows that

$$
i-1+w \equiv-(n-1-i) \bmod q .
$$

It is

$$
n-1-i \in\{1,2, \ldots, n-2\} \subseteq\{1,2, \ldots, q-1\},
$$

since $n \leq q+1$. Therefore $i-1+w \not \equiv 0 \bmod q$ for $i=1,2, \ldots, n-2$ and

$$
s_{i} \alpha \equiv s_{i}^{y_{i}^{i-1+w}} \not \equiv s_{i} \bmod P_{i+1} \quad \text { for } i=1,2, \ldots, n-2 .
$$

Furthermore, $s \alpha \equiv s^{y} \not \equiv s \bmod P_{2}$. So α has no fixed points on every section of the lower central series of $P / Z(P)$ and as an immediate consequence no fix points on $P / Z(P)$.
(ii) Let P be exceptional. From Blackburn's Theorem D it follows that $n \geq 6$ and n is even. With Lemma $\mathrm{E}(Z \cdot \cdot)$ one gets

$$
y^{n-3+2 w}=1 \in \operatorname{GF}(p) .
$$

This is equivalent to

$$
n-3+2 w \equiv 0 \bmod q
$$

and this congruence determines w.
A ssume

$$
n-i_{0}-2+w \equiv 0 \bmod q
$$

for an appropriate $i_{0} \in\{1,2, \ldots, n-2\}$. Therefore $w \equiv-n+i_{0}+2$ $\bmod q$. Since $\alpha \in C_{R}(Z(P)$) it follows from ($Z \cdot \cdot$) in Lemma E that

$$
n-3+2 w \equiv 0 \bmod q
$$

and
($\star) \quad n-3+2\left(-n+i_{0}+2\right) \equiv-n+1+2 i_{0} \equiv 0 \bmod q$.
It is $n-3<q$, since $n \leq q+1$. Therefore one gets, with $1 \leq i_{0} \leq n-2$,

$$
-q<-n+3 \leq-n+1+2 i_{0} \leq-n+1+2(n-2)=n-3<q .
$$

To fulfill (\star) it is necessary that $-n+2 i_{0}+1=0$. However, n is even and so $-n+2 i_{0}+1 \neq 0$. This contradicts (\star). This contradiction shows

$$
n-i_{0}-2+w \not \equiv 0 \bmod q .
$$

Therefore α has no fixed points on every section of the lower central series of $P / Z(P)$ and as an immediate consequence no fixed points on $P / Z(P)$.
Now it remains to prove in the case $n \leq q+1$ and $\left|C_{R}(Z(P))\right|>q$ that $C_{R}(Z(P))$ acts regularly on $P / Z(P)$. By (i), $C_{R}(Z(P))$ is cyclic. From the first part of the proof it follows that $\operatorname{Soc}\left(C_{R}(Z(P))\right.$) acts regularly on $P / Z(P)$.

Let $C_{R}(Z(P))=\langle\alpha\rangle$ with $\left.|\langle\alpha\rangle|=q^{t}\right\rangle q$. A ssume, that $m \not \equiv 0 \bmod \left(q^{t}\right)$ exists, such that α^{m} has a fixed point $x_{0} Z(P) \neq Z(P)$ on $P / Z(P)$. Then $1 \neq\left(\alpha^{m}\right)^{r} \in C_{R}(Z(P))$ is an element of order q for some appropriate r with fixed point $x_{0} Z(P) \neq Z(P)$. However, this is a contradiction

REFERENCES

[BaW oe76] A.H.Baartmans and J. J. W oeppel, The automorphism group of a p-group of maximal class with an abelian maximal subgroup, Fund. Math. 93 (1976), 41-46
[Bb58] N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92
[CaSco90] A. Caranti and C. M. Scoppola, A remark on the orders of p-groups that are automorphism groups, Boll. Un. Mat. Ital. A(7) 4 (1990), 201-207
[DH] K. Doerk and T. O. Hawkes, "Finite Soluble Groups," de Gruyter Verlag, Berlin, 1992
[H art84] B. Hartley, Topics in the theory of nilpotent groups, "G roup Theory, Essays for Philip Hall," pp. 61-120, A cademic Press, London, 1984.
[H u] B. Huppert, "E ndliche Gruppen I," Springer-V erlag, Berlin, 1967
[Wo] B. Wolf, Ü berauflösbare Fittingklassen, die durch gewisse Erweiterungen von p-Gruppen von maximaler Klasse erzeugt werden, Dissertation, U niversität M ainz, 1994

