A Note on *p*'-Automorphism of *p*-Groups *P* of Maximal Class Centralizing the Center of *P*

Bardo Wolf

metadata, citation and similar papers at core.ac.uk

Received October 25, 1995

The main subject of this paper is the proof of the following observations (Theorems A and B are contained in the authors dissertation [Wo] written at the University of Mainz in 1994 under the direction of Professor Dr. K. Doerk.)

THEOREM A. Let P be a p-group of maximal class with $|P| = p^n$, $n \ge 4$, and p an odd prime. Let H be a Hall p'-subgroup of the automorphism group of P. Then

(i) $C_H(Z(P))$ is cyclic.

(ii) $|C_H(Z(P))|$ divides p - 1 and if $|H| = (p - 1)^2$, then $|C_H(Z(P))| = p - 1$.

THEOREM B. Let P be a p-group of maximal class with $|P| = p^n$, $n \ge 4$, and p an odd prime. Let q be an odd prime with $q \mid (p - 1)$ and let R be a Sylow q-subgroup of the automorphism group of P. Then

(i) $C_R(Z(P))$ is cyclic.

(ii) $C_R(Z(P))$ acts regularly on P/Z(P)) if and only if $|P| \le p^{q+1}$. (The use of regularly is as in [DH, A.4.23].) *Remark C.* (a) The interest in this subject stems from an application of these theorems in the theory of Fitting classes. In a variation of a result of Trevor Hawkes (see [DH, IX.6.19]), the following is shown in [Wo]:

Let *P* be a *p*-group of maximal class with $|P| \le p^{q+1}$ and *q* an odd prime such that q | (p-1). If α is an automorphism of *P* of order *q* with $[Z(P), \alpha] = 1$ and $G = P \langle \alpha \rangle$ denotes the semidirect product, then the smallest Fitting class containing *G* consists only of supersoluble groups, but is not contained in the class of nilpotent groups.

(b) It is known, that *p*-groups *P* of maximal class need not have any p'-automorphism (see, for example, [CaSco90]), so it is no surprise that usually $C_H(Z(P))$ is not too big, where *H* is a Hall p'-subgroup of the automorphism group of *P*. However, there are two families of *p*-groups of maximal class with $|H| = (p - 1)^2$, such that for Theorems A and B and part (a) of this remark, nontrivial examples exist:

(i) the *p*-groups of maximal class of exponent p with an abelian maximal subgroup (see, for instance, [BaWoe76]);

(ii) the *p*-groups of maximal class constructed by Blackburn (see [Hu, III.14.24] and [Hart84]), which are extensions of an extraspecial *p*-group by a group of order *p* (that $|H| = (p - 1)^2$ in this case is shown in [Wo]).

PRELIMINARIES

A *p*-group *P* of order p^n with $n \ge 2$ and nilpotency class n - 1 is said to be of maximal class. The cornerstone in the theory of *p*-groups of maximal class is the paper by Blackburn [Bb58] (see also Huppert's book [Hu, III.14]).

Consider a *p*-group *P* of maximal class with $p \ge 3$ and $n \ge 4$. Let $1 = P_n \triangleleft P_{n-1} \triangleleft \cdots \triangleleft P_2 \triangleleft P$ be the lower central series of *P*. It is customary to set $P_1 = C_P(P_2/P_4)$. This subgroup of index *p* plays a fundamental role in the study of these groups. The degree of commutativity of *P* is the largest integer *l*, such that $[P_i, P_j] \le P_{i+j+l}$ for all $i, j \ge 1$, unless P_1 is abelian, in which case l = n - 3. If P_1 is not abelian, then the degree of commutativity of *P* is $\ge l$ if and only if $[P_1, P_i] \le P_{i+1+l}$ for all $i \ge 1$ (see [Hart84]).

A p-group P of maximal class is called *exceptional* if the degree of commutativity is zero. One of the main results of Blackburn's paper is the following.

THEOREM D (Blackburn [Hu, III.14.6]). Let P be a p-group of maximal class with $|P| = p^n$ and $n \ge 5$. Then

(i) P/P_{n-1} is not exceptional and $P_1 = C_P(P_i/P_{i+2})$ for $i \le n-3$.

(ii) If P is exceptional, then p > 3 and $6 \le n \le p + 1$; also n is even and $P_E = C_P(P_{n-2})$ is a characteristic subgroup of index p in P different from P_1 .

The following elementary lemma is fundamental:

LEMMA E. Let P be a p-group of maximal class with $|P| = p^n$, $n \ge 4$. Then the automorphism group of P is soluble. If H is a Hall p'-subgroup of Aut(P), then one can choose elements, s, $s_1 \in P$ with the following properties:

(i) $P = \langle s, P_1 \rangle$. If P is exceptional, so $P_E = C_P(P_{n-2}) = \langle s, P_2 \rangle$ and $P_1 = \langle s_1, P_2 \rangle$. Set $s_i = [s_{i-1}, s]$ for i = 2, ..., n-2 and

$s_{n-1} := \langle$	$([s_{n-2}, s],$	if P is not exceptional,
	$[s_{n-2}, s_1],$	if P is exceptional.

Then

$$P = \langle s, s_1 \rangle$$
 and $P_i = \langle s_i, P_{i+1} \rangle$ for $i = 1, ..., n - 1$,
 $Z(P) = \langle s_{n-1} \rangle$.

(ii) For $\alpha \in H$ there exists $a, c \in GF(p)$ with

$$s\alpha = s^a \mod P_2$$
 and $s_1\alpha \equiv s_1^c \mod P_2$

such that

$$\mu: H \to D,$$
$$\alpha \mapsto (a, c),$$

is a monomorphism, where D is a direct product of two copies of the multiplicative group of GF(p). $|H||(p-1)^2$. Furthermore,

$$s_i \alpha \equiv s_i^{a^{i-1} \cdot c} \mod P_{i+1}$$
 for $i = 2, 3, ..., n-2$.

The operation on Z(P) depends on whether P is exceptional or not:

 $(Z \cdot)$ If P is not exceptional, then

$$(s_{n-1})\alpha = s_{n-1}^{a^{n-2} \cdot c}.$$

 $[Z(P), \alpha] = 1 \text{ if and only if } a^{n-2} \cdot c = 1 \in GF(p).$ (Z · ·) If P is exceptional, then

$$(s_{n-1})\alpha = s_{n-1}^{a^{n-3} \cdot c^2}.$$

 $[Z(P), \alpha] = 1$ if and only if $a^{n-3} \cdot c^2 = 1 \in GF(p)$.

Remark. In other contexts it is convenient to choose $s \in P \setminus \{P_1 \cup C_p(P_{n-2})\}$. It should be clear that in dealing with p'-automorphisms the choice in (i) is appropriate.

Proof of Lemma E. $|P/P_2| = |P/\Phi(P)| = p^2$ since *P* is of maximal class. So $C_{Aut(P)}(P/P_2)$ is a *p*-group (see [Hu, III.3.18]). *P*₁ is a characteristic subgroup of *P*. Therefore P_1/P_2 is invariant under Aut(*P*) and Aut(*P*)/ $C_{Aut(P)}(P/P_2)$ is isomorphic to a subgroup of the upper triangular matrices in GL(2, *p*). This shows the solubility of Aut(*P*). Let *H* be a Hall *p'*-subgroup of Aut(*P*). Obviously $|H||(p-1)^2$. P_1/P_2 is *H*-invariant. By Maschke's theorem there exists an *H*-invariant one-dimensional complement *S*/*P*₂ to *P*₁/*P*₂. Choose *s*, *s*₁ ∈ *P* such that *S* = $\langle s, P_2 \rangle$ and *P*₁ = $\langle s_1, P_2 \rangle$. With this choice in mind the rest of (i) and (ii) are easy consequences.

Proof of Theorem A. Assume that *P* is exceptional (the other case, i.e., *P* is not exceptional, can be treated in a similar way). Let $s, s_1 \in P$ and μ : $H \mapsto D$ be as in the last Lemma. Let *D* operate on a cyclic group $X = \langle x \rangle$ of order *p* following $(Z \cdot \cdot)$ from Lemma E:

$$x \mapsto x^d = x^{a^{n-3} \cdot c^2}$$
 for $d = (a, c) \in D$.

Notice that *n* is even and $6 \le n \le p + 1$ since *P* is exceptional.

Then $(C_H(Z(P)))\mu \leq C_D(\langle x \rangle)$ and so it suffices to prove $|C_D(X)| = p - 1$.

Because *D* is abelian, one only needs to show that each Sylow *q*-subgroup *Q* of $C_D(X)$ is a cyclic group of order q^k , where $q^k || (p-1)$.

q odd: Let q be an odd prime dividing p - 1 with $q^k || (p - 1)$ and let Q be a Sylow q-subgroup of D. Let y denote a primitive q^k th root of unity in GF(p). Let

$$d = (y^v, y^w) \in Q.$$

Assume $d \in C_D(X)$. This is equivalent to

$$x^{(y^{v})^{n-3} \cdot (y^{w})^{2}} = x$$
 or $y^{v(n-3)+2w} = 1 \in GF(p)$

and

$$(n-3)\cdot v+2\cdot w\equiv 0 \bmod q^k.$$

Especially with v = 1, $w_1 = \frac{1}{2}(q^k - n + 3)$ it follows that

 $d_1 \coloneqq (y, y^{w_1}) \in C_0(X).$

The order of d_1 is q^k and so $\langle d_1 \rangle = Q_1 \leq C_Q(X)$. With $v_2 = 1$, $w_2 = (4 - n)/2$, and

$$d_2 \coloneqq (y, y^{w_2}),$$

it follows that

$$(n-3) \cdot v_2 + 2 \cdot w_2 \equiv 1 \mod q^k.$$

Therefore $x^{d_2} = x^y$ and $x^{d_2^i} = x^{y^i}$ for $i = 1, ..., q^k$. So the cyclic group $Q_2 = \langle d_2 \rangle$ is of order q^k . As a consequence of the construction of Q_2 ,

$$Q_2 \cap C_Q(X) = 1.$$

However, Q is abelian and so $Q = Q_1 \times Q_2$. This shows $Q_1 = C_0(X)$ and $|Q_1| = q^k$.

 $\dot{q} = \dot{2}$: Now q = 2 and $2^{k} || (p - 1)$. Let Q be a Sylow 2-subgroup of the abelian group D. Set $S := \text{Soc}_2(Q)$. The first step is to show that the group $C_{s}(X)$ is a cyclic group of order 2. This has as an immediate consequence, that $C_Q(X)$ is cyclic, since Q is abelian.

For $d = (a, c) \in S$ with $a, c \in \{1, -1\}$,

 $x^d = x$ is equivalent to $x^{a^{n-3} \cdot c^2} = x$.

Since *n* is even and (n - 3) is odd it follows that the only nontrivial solution of this equation for $a, c \in \{1, -1\}$ is given with a = 1 and c = -1. Therefore, $|C_s(X)| = 2$. It remains to show, that $|C_o(X)| = 2^k$. Let $y \in GF(p)$ denote a primitive 2^k th root of unity in GF(p). Let

 $d \coloneqq (v^v, v^w) \in O$ with integers v, w.

Count the number of different solutions of

$$x^d = x$$
, respectively, $x^{(y^v)^{n-3} \cdot (y^w)^2} = x$.

This is equivalent to

$$y^{\nu(n-3)+2w} = 1 \in \mathrm{GF}(p)$$

and

$$2 \cdot w \equiv -(n-3) \cdot v \mod 2^k.$$

Count for each v with $0 \le v < 2^k$ the number of different solutions of this linear congruence. It is (n - 3) odd. Therefore, if v is odd, this congruence has no solution; otherwise, if v is even, it has exactly. $(2, 2^k) = 2$ different solutions. So the number of different solutions of this linear congruence is 2^k . This shows $|C_Q(X)| = 2^k$.

LEMMA F. Let P be a p-group of maximal class with $|P| = p^n$, $n \ge 4$. Let H be a Hall p'-subgroup of the automorphism group of P. Let s, $s_1 \in P$ and μ : $H \to D$ be as in Lemma E. If $\alpha \in C_H(Z(P))$ is of odd order and

$$(\alpha)\mu = (a,c)$$

or

$$s\alpha \equiv s^a \mod P_2$$
 and $s_1\alpha \equiv s_1^c \mod P_2$,

then the multiplicative order of a in GF(p) is the same as the order of α . In particular, if $|\alpha| = q$ for an odd prime q, then a is a primitive qth root of unity in GF(p) and $c = a^r$ for an integer r.

Proof. Let $\alpha \in H$ be an element of order q for an odd prime q with $[Z(P), \alpha] = 1$ and $s\alpha = s^a \mod P_2$. Then $a \neq 1 \in GF(p)$. Assume not. Then $c \neq 1$, since α is a nontrivial p'-automorphism.

(i) If *P* is not exceptional it follows from Lemma E with $(Z \cdot)$ that

$$(s_{n-1})\alpha = s_{n-1}^c \neq s_{n-1},$$

since $c \neq 1$. However, this contradicts $[Z(P), \alpha] = 1$.

(ii) If *P* is exceptional it follows from $(Z \cdot \cdot)$ in Lemma E that

$$\left(s_{n-1}\right)\alpha = s_{n-1}^{c^2} \neq s_{n-1},$$

since $c \neq 1$ and α is of odd order. Again this contradicts $[Z(P), \alpha] = 1$.

Therefore $\alpha \neq 1$. The same argument for each $i \in \{1, ..., q - 1\}$ yields $a^i \neq 1$ and so *a* is a primitive *q*th root of unity in GF(*p*), since the order of α is *q*. Therefore $c = a^r$ for some integer *r*.

Now let $\alpha \in C_H(Z(P))$ be an element of odd order *m*. Assume $s\alpha \equiv s^a \mod P_2$ and the multiplicative order of *a* in GF(*p*) is t < m. Then *t* divides *m* and $\alpha^t \in C_{Aut(P)}(sP_2)$. As a consequence an odd prime *q* dividing m/t exists, such that $\beta \coloneqq \alpha^{m/q}$ is a nontrivial automorphism of *P* of order *q* centralizing the center of *P*. From $t \mid (m/q)$ it follows with an appropriate integer *k* that

$$\beta = \alpha^{m/q} = \alpha^{tk} = (\alpha^t)^k \in C_{\operatorname{Aut}(P)}(sP_2).$$

However, this is a contradiction. This shows that the multiplicative order of *a* in GF(p) is *m*.

Proof of Theorem B. Part (i) of this theorem is an immediate consequence of Theorem A.

Assume $|C_R(Z(P))| = q$ in a first step for part (ii). Let $1 \neq \alpha \in C_R(Z(P))$. With Lemmata E and F one has

$$s\alpha \equiv s^{y} \mod P_{2}$$
 and $s_{1}\alpha \equiv s_{1}^{y^{w}} \mod P_{2}$,

where y is an qth root of unity and $w \in \{0, ..., q - 1\}$. From Lemma E one gets, for i = 2, ..., n - 2,

$$s_i \alpha \equiv s_i^{y^{i-1+w}} \mod P_{i+1}.$$

(a) If n > q + 1, then α has a fixed point on P/Z(P) and so $C_R(Z(P))$ does not act regularly on P/Z(P): It is n - 2 > q - 1. Therefore, $i_0 \in \{1, \ldots, n-2\}$ exists with $i_0 - 1 \equiv -w \mod q$ and so $s_{i_0} \alpha \equiv s_{i_0} \mod P_{i_0+1}$. This essentially shows with [Hu, I.18.6] that α has a fixed point on P/Z(P).

(b) If $n \le q + 1$, then α has no fixed points on P/Z(P) and so $C_R(Z(P))$ acts regularly on P/Z(P): There are two cases to examine.

(i) Let *P* be not exceptional. From $(Z \cdot)$ (Lemma E) one gets

$$y^{n-2+w} = 1 \in \mathrm{GF}(p).$$

This is equivalent to

$$n-2+w\equiv 0 \mod q$$

and this congruence determines w.

For $i \in \{1, 2, \dots, n-2\}$ it follows that

$$i-1+w \equiv -(n-1-i) \mod q.$$

It is

$$n-1-i \in \{1, 2, \ldots, n-2\} \subseteq \{1, 2, \ldots, q-1\},\$$

since $n \le q + 1$. Therefore $i - 1 + w \not\equiv 0 \mod q$ for i = 1, 2, ..., n - 2 and

$$s_i \alpha \equiv s_i^{y^{i-1+w}} \neq s_i \mod P_{i+1}$$
 for $i = 1, 2, \dots, n-2$.

Furthermore, $s\alpha \equiv s^{y} \neq s \mod P_{2}$. So α has no fixed points on every section of the lower central series of P/Z(P) and as an immediate consequence no fix points on P/Z(P).

(ii) Let *P* be exceptional. From Blackburn's Theorem D it follows that $n \ge 6$ and *n* is even. With Lemma E $(Z \cdot \cdot)$ one gets

$$y^{n-3+2w} = 1 \in \mathrm{GF}(p).$$

This is equivalent to

$$n-3+2w\equiv 0 \bmod q$$

and this congruence determines w.

Assume

$$n - i_0 - 2 + w \equiv 0 \mod q$$

for an appropriate $i_0 \in \{1, 2, ..., n-2\}$. Therefore $w \equiv -n + i_0 + 2 \mod q$. Since $\alpha \in C_R(Z(P))$ it follows from $(Z \cdot \cdot)$ in Lemma E that

$$n-3+2w\equiv 0 \bmod q$$

and

$$(\bigstar) \qquad n-3+2(-n+i_0+2) \equiv -n+1+2i_0 \equiv 0 \bmod q$$

It is n - 3 < q, since $n \le q + 1$. Therefore one gets, with $1 \le i_0 \le n - 2$,

$$-q < -n + 3 \le -n + 1 + 2i_0 \le -n + 1 + 2(n - 2) = n - 3 < q.$$

To fulfill (\star) it is necessary that $-n + 2i_0 + 1 = 0$. However, *n* is even and so $-n + 2i_0 + 1 \neq 0$. This contradicts (\star). This contradiction shows

$$n - i_0 - 2 + w \not\equiv 0 \mod q$$
.

Therefore α has no fixed points on every section of the lower central series of P/Z(P) and as an immediate consequence no fixed points on P/Z(P).

Now it remains to prove in the case $n \le q + 1$ and $|C_R(Z(P))| > q$ that $C_R(Z(P))$ acts regularly on P/Z(P). By (i), $C_R(Z(P))$ is cyclic. From the first part of the proof it follows that $Soc(C_R(Z(P)))$ acts regularly on P/Z(P).

Let $C_R(Z(P)) = \langle \alpha \rangle$ with $|\langle \alpha \rangle| = q^t > q$. Assume, that $m \neq 0 \mod(q^t)$ exists, such that α^m has a fixed point $x_0Z(P) \neq Z(P)$ on P/Z(P). Then $1 \neq (\alpha^m)^r \in C_R(Z(P))$ is an element of order q for some appropriate r with fixed point $x_0Z(P) \neq Z(P)$. However, this is a contradiction

REFERENCES

[BaWoe76] A. H. Baartmans and J. J. Woeppel, The automorphism group of a *p*-group of maximal class with an abelian maximal subgroup, *Fund. Math.* 93 (1976), 41–46

- [Bb58] N. Blackburn, On a special class of *p*-groups, Acta Math. 100 (1958), 45–92
- [CaSco90] A. Caranti and C. M. Scoppola, A remark on the orders of *p*-groups that are automorphism groups, *Boll. Un. Mat. Ital.* A(7) 4 (1990), 201–207
- [DH] K. Doerk and T. O. Hawkes, "Finite Soluble Groups," de Gruyter Verlag, Berlin, 1992
- [Hart84] B. Hartley, Topics in the theory of nilpotent groups, "Group Theory, Essays for Philip Hall," pp. 61–120, Academic Press, London, 1984.
- [Hu] B. Huppert, "Endliche Gruppen I," Springer-Verlag, Berlin, 1967
- [Wo] B. Wolf, Überauflösbare Fittingklassen, die durch gewisse Erweiterungen von p-Gruppen von maximaler Klasse erzeugt werden, Dissertation, Universität Mainz, 1994