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ABSTRACT 

A study is made of the extreme points of the convex set of doubly stochastic 
completely positive maps of the matrix algebra Ml,. If n = 2 the extreme points are 
precisely the unitary maps, but if n > 3 there are nonunitary extreme points, 
examples of which are exhibited. A tilde operation is defined on the linear maps of fLQII, 

and used to give an elementary derivation of a result of Kummerer and Maassen. 

1. INTRODUCTION 

Let Ml, denote the *-algebra of n X n complex matrices, where * is 
hermitian conjugation. A C-linear map 4 : Ml, + M,, is 

(1) hermitian if 4 maps hermitian matrices to hermitian matrices, 
(2) positive if 4 maps positive matrices to positive matrices, 
(3) m-positive if 4 8 Id is positive on M, @ Ml,, where Id is the 

identity map, MI, + M,,,, 
(4) completely positive if 4 is m-positive for every m. 
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The positive map 4 is 

(1) stochastic if 4( IL) = It, w h ere 11 denote the identity matrix, 
(2) doubly stochastic if 4 is stochastic and trace preserving: 

Tr+(A) =TrA for all A E Ml,,. 

According to Wigner’s theorem, the invertible stochastic maps’ are either 
unitary or antiunitary: 

WIGNER’S THEOREM [l, Section 2.31. An invertible stochastic map is 

either 

(1) unitary, &(A> = U*AUf or some unitay U E M, (a unitary map is 

doubly stochastic and completely positive) or 

(2) antiunitary, I,!+,,( A) = U*A?‘U for Some unitary U E m/o,, , where A?‘ is 

the transpose of A (an antiunitay map is doubly stochastic but not com- 

pletely positive). 

The set of doubly stochastic maps forms a compact convex subset of the 
set of all linear maps of M,. This is also the case for the set of doubly 
stochastic completely positive maps. Hence for either subset, any element is a 
finite convex sum of extreme points of the respective convex set. 

An invertible stochastic map is extremal in the stochastic maps and 
therefore extremal in the doubly stochastic maps [2]. Tregub considers the 
question whether the invertible stochastic maps exhaust the extremal doubly 
stochastic maps. 

TREGUB’S THEOREM [2]. 

(1) The extremal doubly stochastic maps of M, consist precisely of the 

invertible maps. Hence every doubly stochastic map of Mz is a convex 

combination of unitary and antiunitay maps. 
(2) If n > 3, there are doubly stochastic maps which are not convex 

combinations of invertible maps. Hence there are noninvertible extremal 

doubly stochastic maps. 

We prove the analog of Tregub’s theorem for the case of doubly stochas- 
tic completely positive maps. 

’ By an invertible stochastic map is meant a stochastic map which has an inverse which is 
also stochastic. 
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THEOREM 1. 

(1) The extremal doubly stochastic completely positive maps of M, con- 
sist precisely c>f the unitary ~nups. Hence evey doubly stochastic completely 
positive map of kA2 is a convex combination of unitary maps. 

(2) If n > 3, there are nonunitay extremal doubly stochastic completely 

positive maps. 

An example of (2) is 

4(A) = 

where I(*’ generate rotations about three orthogonal axes in the irreducible 
unitary representation of SU(2) of dimension n = 2j + 1. 

Tregub’s theorem and Theorem 1 show that the analog of the classical 
Birkhoff theorem for commutative algebras extends to the noncommutative 
case if n = 2 but not if n > 3. 

BIRKHOFF’S THEOREM [3]. The extremul doubly stochastic matrices are 

precisely the permutations. Hence evenj doubly stochastic matrix is a convex 

combination of permutations. 

For the case n > 4 the existence of nonunitary extremal doubly stochastic 
completely positive maps of M,, is already contained in the work of Tregub 
[2] and Kummerer and Maassen [4]. Tregub constructs a nonunitary extremal 
diagonal map of M4. Diagonal maps are considered in Section 3, and 
Tregub’s example in Section 4.3. Using Hunt’s characterization of the genera- 
tors of convolution semigroups, Kummerer and Maassen construct examples 
of diagonal semigroups which are not convex combinations of unitary maps if 
n > 4. In Section 6 we present an elementary derivation of their result using 
the tilde technique defined in Section 5. 

The tilde technique is formulated using the one-one correspondence 
between linear maps of M,, into itself on the one hand and linear functionals 
on M,, @ M,, on the other [S-lo]. In Section 5 we give a useful form of this 
correspondence and derive the relation between the restriction of the linear 
functional to each of the subalgebras fL4, 8 ll and 1 8 lVU,, and the proper- 
ties of the linear map 4. In particular (Remark 11) there is a one-one 
correspondence between doubly stochastic completely positive maps of M,, 
and doubly chaotic states on FL4,, C+ M,,, the unitary maps corresponding to 
doubly chaotic vector states. (Doubly chaotic vector states occur for example 
in the EPR experiment [ll], where a pure state on ~vU, CCCJ m/o, (the state of 
two spins) reduces on LJU~ 8 ll and on 1 CQ M, to totally unpolarized states.) 



110 L. J. LANDAU AND R. F. STREATER 

1.1. Conventions 

An element A of the algebra M, is associated with a linear functional FA 

on M, by the formula 

FA( B) = Tr( AB) for all I? E M,, 

and any linear functional is uniquely represented in this manner. Hence the 
canonical pairing of M, and its dual is converted into a bilinear form 
(*, * >: M/o, X M, + c; thus F,(B) = Tr(AB) = (A, B) = (B, A). We will 
write A for the inverse of the map A + FA, so that if f is a linear functional, 
Af is the matrix such that F 

with f(n) = 1. In th’ 
Af = f. A state is a positive linear functional f 

is case Af is a density matrix, that is, a normalized 
positive matrix: Af > 0, Tr Af = 1. We will denote the tracial state by w; it is 
the “totally chaotic” state given by w(A) = n-l Tr A, A E IVII~. In quantum 
theory this has the interpretation as the totally unpolarized state, the micro- 
canonical state, or the state at infinite temperature. We note that A w = n-l I. 

If 4 is a linear map of M, into itself, the transposed map 4” is defined 

bY 

(+“(A)> B) = (A 4(B)) (I) 

Then 4” is positive if and only if 4 is. Since for m = 1,2,. . . , Ml,, 8 Ml, is 
of type I, it has a unique normalized trace, tr, putting it into linear correspon- 
dence with its dual. The transpose thus defined will also be denoted ‘. One 
then easily sees that (4 8 Idlt = 4” 8 Id. It follows that if 4 is completely 
positive, so is 4”. Then 4 is doubly stochastic if and only if 4 and 4” are 
stochastic. Furthermore, let K, L E M,; we define 

6) CP,(K) = I+ : 4 is a completely positive map of M, and $( ll> = K}, 
(ii> CP,(K, L) = (4 : 4 E CP,(K) and 4’(n) = L). 

If follows from Equation (1) that Tr K = Tr L, and this is also a sufficient 
condition for CP,(K, L) to be nonempty if K and L are positive. More 
precisely, 

PROPOSITION 1. Let K, L E M, be such that Tr K = Tr L. Then 

(1) there exists a linear map 4 : M, + Ml, such that $( ill = K, 4°C Ill 

= L; 

(2) if K and L are hermitian, then 4 may be taken hermitian; 

(3) if K and L are positive, then 4 may be taken completely positive. 

Proof. To prove (1) write K = K, + iK,, L = L, + iL,, where Kj, Lj 

are hermitian for j = 1,2. Then Tr Kj = Tr Lj and, given (21, there exist 4j 
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such that +j(Il> = Kj, $f,,(ll> = Lj. H ence 4 = +r + i+z has the required 
properties. 

To prove (2) write K = K, - K,, L = L, - L,, where Kj, Lj are posi- 
tive for j = 1,2. Suppose Tr K, > Tr L,. Then there exists E > 0 such that 
Tr K, = Tr( L, + CT 1) and hence Tr K, = Tr( L, + E 1). Given (31, there 
exist hermitian 4 such that +jj< IL> = Kj and $$ii ll> = ( Lj + E 1). Then 
4 = +1 - $J~ has the required properties. A similar proof applies to the case 
Tr K, < Tr L,. 

To prove (3) note that the completely positive map 4 = 7-i Tr( L * ) K, 
where r = Tr K = Tr L, has the required properties. n 

We observe that the map 4 constructed in the proof corresponds to a 
product functional on M, @ M, [Equation (6)]. 

2. EXTREMALITY CONDITION FOR DOUBLY STOCHASTIC 
COMPLETELY POSITIVE MAPS 

For any V E M, the map 4” = V* *V [i.e &(A) = V*AV] is com- 
pletely positive, and every completely positive map of M, is a sum of such 
maps [ 12-141: 

4 = k v(a)* . V’“‘. 

a=1 

The representation (2) is not unique, but the matrices V’“’ may always be 
taken linearly independent, and in that case the number a of terms is 
uniquely determined, and furthermore, if 

4 = i w(P)* .w’P’ 
p=1 

is any other representation for 4, then 

where S : C” + Cb is isometric: S*S = ll,, the identity map on C”. If the 
matrices Wcp) are also linearly independent, then S is unitary. (For a 
discussion of these points see Choi [I2].) 
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The extreme points of the convex set CP,,( K, L) can be characterized by a 
property of the matrices V(“) entering into the representation (2) for the 
completely positive map 4, in close analogy with Choi’s characterization of 
the extreme points of CP,,(K) [12]. Ch 01’s characterization is given in the 
following theorem. 

CHOI’S THEOREM [12]. The map 4 is extreme in CP,(K) if and only if 4 
admits an expression of the form (2) where 

and 

is a linearly independent set of matrices. 

REMARK 1. The linear independence of {Vca)}_ 1,, _, , n follows from the 
linear independence of {V(a)*V(P)}a,P=l,,,.,a. 

In order to state the characterization of the extreme points of CP,,( K, L) 

the following definition is needed. 

DEFINITION 1. The pairs (ul, u,), . . . ,(u&,, 2iN) of elements of a linear 
space are said to be biindependent if 

E ciuj = 0 and 
j=l j=l 

imply cj = 0 for all j = 1,2, . . . , N. The N pairs of elements will be denoted 

u1,**.> uN; ol,--.,“N (the relative order of the u’s and D’S being fixed). 

REMARK 2. Clearly, the pairs (uI, z)~), . . . , (u,, v,) of vectors in C’ are 
biindependent if and only if u1 @ ul, . . . , uh, @ uN are linearly independent 
in @“‘. If follows that N < 2r if they are biindependent. 

We may now state Theorem 2, the proof of which follows closely Choi’s 
proof of Theorem 5 of [12] and will not be given here. 
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THEOREM 2. The map 4 is extrelne in CP,,( K, L) zf and only $ & admits 

an expression qf the form (2) where 

and 

{v’“‘*v’~‘},,p=1,..., (,; (V’“‘V’“‘“},,p=1,.... 0 

is a biindependent set of matrices. 

REMARK 3. Explicitly, the biindependence in Theorem 2 is expressed as 
follows: 

c ca,v (u)*v(P) = () a,,d &#P)V@)* = 0 

imply c,, p = 0 for all IY, p = 1,2, . . . , a. According to Remark 2, 

REMAHK 4. The linear independence of {V’“‘),= ,, d follow from the 

biindependence of {V(a)*V(P)}a,p=l _,,,, Cl; {V’P)V(a)*I,,~= 1 . ...,, . 

As a special case of Theorem 2 we obtain 

COHOLLARY 1. The map $ is ertremal in the doubly stocha.stic com- 

pletely positive maps (If M, if and only if C$ admit.s a representation of the 
form (2) where 

2V (oi)*V(a) = 1, 2 V(a)V(a)* = 1, 

(Y=l a=1 

and 

{V’“‘“V’~)},,+, ,..., a; {v’W’“‘*},J3=I.._., <i 

is a hiindependent set of matrices. 
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3. DIAGONAL MAPS 

A simple class of maps, which will provide examples in Sections 4 and 6, is 
given by the diagonal maps. 

DEFINITION 2. A linear map 4 of Ml/O, into itself is &ago& if it has the 
form 

4( A)jk = 'jk Ajk for all j,k=1,2 ,..., n 

for some C E Ml,. The identity map is diagonal with C = E, where 

Ejk = 1 for all j,k=1,2 ,..., n. 

The following lemma is easily proved. 

LEMMA 1. Zf A and C are positive n X n matrices, then +(A) of 
Definition 2 is positive. 

We then have 

PROPOSITION 2. The diagonal map 4 (Definition 2) is positive if and 

only if C is positive. In this case 4 is actually completely positive. 

Proof If 4 is positive, then C = 4(E) is positive, since E is positive. If 
C is positive, then 4 isrpositive by Lemma 1. For any integ%r m, the map of 
Ml, 8 m/o,, define? by 4 = 4 @ Id is a $agonal map with C = C @ E. If C 
is positive, then C is positive and thus 4 is positive. Hence 4 is completely 
positive. W 

REMARK 5. If 4 is diagonal, then 4” is also diagonal with C replaced by 
its transpose. Thus 4( 1) = 4,“(n) = K, where K$ = Cjja$, j, k = 1, . . . , n. 

Thus 4 is stochastic if and only if Cjj = 1 for all j = 1,. . . , n, and then 4 is 
doubly stochastic. 

PROPOSITION 3. If 4 is a completely positive diagonal map, then in any 

representation (2) the matrices V’*’ are diagonal. 

Proof. From the representation (2) we conclude 

c V.!“’ Ai,,V;;) = cjk Ajk. ‘I 
a,i, m 
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Since A is arbitrary, 

c V.!“’ v,y = Cjk Sijq&. 
‘I 

a 

Setting i = m, j = k, i + j, we obtain 

Thus Vija) = 0 if i Zj. 

We may then write 

115 

n 

(4) 

and 

Cjk = c A$“’ A$$. (5) 
a 

The extremality condition, Theorem 1, may be formulated in the case of 
diagonal maps with the aid of the following definition. 

DEFINITION 3. The elements ul,. . . , uh, of C’ are said to form a full 
set of vectors if 

(uj, Auj) = 0 for all j = 1,. . . , N implies A = 0. 

Here A E Mlr, and (u, 2;) is the usual scalar product in Cr. 

We may then state 

THEOREM 3. The following conditions on the completely positive diago- 

nal map 4 are equivalent: 

(i) 4 is extremal in CP,,( K, K), where K is given in Remark 5. 

(ii) #J is extremal in CP,( K). 

(iii) The matrix C (Definition 2) may be expressed as Cjk = Cz = IA~“‘h~‘, 

where C, s b,, h$*)h’P) = 0 for all j = 1,2, . . . , n implies b = 0. 

(iv) 4‘ has the ripresentation (2) where Vji”) = hj*)ajk, and the vectors 

u1,...> u,, are a full set of vectors in @“, where (u.) = A!“‘. Ia J 
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REMAKK 6. The linear independence of the diagonal matrices 
{v’*‘*V’p’),, /3= I.....” implies a2 < n, since n is the dimension of the space 
of diagonal n x n matrices. 

Proof of Theorem 3. According to Proposition 3, the matrices V’“‘, V’“‘* 
occurring in the representation (2) are diagonal and thus mutually commut- 
ing. It follows that the biindependence expressed in Theorem 1 is in this case 
equivalent to the linear independence expressed in Choi’s theorem. Thus (i) 
and (ii> are equivalent. The matrix V (a)*V(s’ is diagonal with diagonal 

entries h(“)h!“‘. Thus the linear independence of these matrices is equivalent 
to the coklit!ion in (iii), where C is related to 5”“’ by Equations (4) and (5). 
The condition in (iii) expresses the fullness (Definition 3) of ui, . . . , u, in @“. 

DEFINITION 4. The linear maps & and & of M, into itself are unitarily 
equivalent if there are unitary maps & = R* * R, C#J~ = S* . S such that 

67 = cbn619s. 

Unitary equivalence preserves complete positivity, stochasticity, and ex- 
tremality. If +r and & are unitarily equivalent, then K, = R*KiR and 
L, = SL, S*, and their representations (2) satisfy Vi‘“) = SV,‘*)R. 

THEOREM 4. 

(1) If 4 is completely positive with representation (2) where a = 1, then 

4 is unitarily equivalent to a completely positive diagonal map. 

(2) Zf 4 is a doubly stochastic completely positive map with representa- 

tion (2) where a = 2, then 4 is unitarily equivalent to a doubly stochastic 

completely positive diagonal map. 

Proof. (1): Any matrix V E M,, can be expressed as the product of a 
unitary matrix and a positive matrix (polar decomposition). The positive 
matrix can be diagonalized with a unitary matrix. We may then write 
V = SDR, where S, R are unitary and D is a positive diagonal matrix. Now if 
4 has the representation (2) with a = 1, then expressing V(i) = SDR, we 
have 4 = 4R 4’&, where 4’ is a completely positive diagonal map. 

(2): If 4 has the representation (2) with a = 2, then express V(l) = SDR 

and define W by V (‘I = SWR. Then 4 = 4A4’4S, where 4’ is a doubly 
stochastic completely positive map with V’(i) = D, V’@) = W. Then 0’ + 
W*W = ll, D2 + WW* = 1. It follows that W is normal: WW* = W*W. 
A polar decomposition for W gives W = VT, where U is unitary and T is 
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positive; that W is normal implies that U and T commute. Then D’ + T2 = 

Il. It follows that T = (1 - D’)1/2, which is diagonal, and that U commutes 
with D and can thus be simultaneously diagonalized with D. We thus obtain 
4” which is unitarily equivalent to 4 and is diagonal. W 

4. ON BIRKHOFF’S THEOREM 

In this section we consider the extreme points of the doubly stochastic 
completely positive maps of LJ,, for n = 2,3,4. 

4.1. The case n = 2 
If C$ is an extremal doubly stochastic completely positive map of M,, then 

it has the representation (2). According to Remark 3, the biindependence in 
Theorem 2 requires a2 < 2n” = 8, from which it follows that a = 1 or 2. If 
a=Ithen4=V*. V and V *V = 1, that is, V is unitary, so 4 is a unitary 
map. If a = 2, according to Theorem 4 + is unitarily equivalent to a diagonal 
map. which will also be extremal. But according to Remark 6 we must then 
have a2 < 2. Thus only a = 1 is possible when n = 2, for an extremal map. 

Thus, the set of extremal doubly stochastic completely positive maps of 
M, consists of the unitary maps, and every doubly stochastic completely 
positive map of M2 is a convex combination of unitary maps. This proves 
Theorem l( 1). 

4.2. The case n = 3 
If c$ is a doubly stochastic completely positive diagonal map of Ma, then 

it can be written as a convex combination of extremal doubly stochastic 
completely positive maps, which, according to Proposition 3, must be diago- 
nal. Then according to Remark 6 these extremal diagonal maps must have 
n = 1 and are thus unitary. Furthermore, any doubly stochastic completely 
positive map $ with representation (2) and a = 2 is unitarily equivalent to a 
diagonal map, according to Theorem 4. As this diagonal map is a convex 
combination of unitary maps, the same holds for 4 and we have proven 

THEOREM 5. 

(1) If $ is a doubly stochastic completely positive diagonal map of M,, 
then it is a convex combination of diagonal unitanj maps. 



118 L. J. LANDAU AND R. F. STREATER 

(2) Zf c$ is a doubly stochastic completely positive map of Ml, with 
representation (2) and a = 2, then 4 is a convex combination of unitary 
maps. 

We can however construct a nonunitary extremal map 4 of M, with a 
representation (2) and a = 3, by setting VCa) = (I/ fi)J(“), where 

0 0 i 

J(3) = l 0 0 -i 0 0. I 0 

To see this note that Vca)* = V(*) for all 1y = 1,2,3 and V(l)’ + Vc2j2 + 
Vc3j2 = Il. Thus 4 is doubly stochastic. We will show that the matrices 
(V’“‘V’P’} = (I p 1,2,3 are linearly independent. It follows by Choi’s theorem 
that 4 is extremal in the stochastic maps and thus also extremal in the doubly 
stochastic maps (biindependence follows from linear independence). Now the 
matrices J(*) transform according to the three-dimensional spin-j = 1 repre- 
sentation of SO(3) (the adjoint representation), and thus the matrices Tap = 
3’“‘J’P - g&n, a < P, transform according to the five-dimensional j = 2 
representation. The matrix il = ~[J”” + Jc2@ + Jc3)‘] transforms according 
to the one-dimensional j = 0 (trivial) representation, and the matrices S,, = 
[J’*‘, Jcp’] = iJCy) ((Y, P, 7 y 1’ p c c lc ermutations of 1,2,3) transform accord- 
ing to the j = 1 representation. As these matrices are nonzero, they are 
necessarily linearly independent, since they transform according to inequiva- 
lent irreducible representations of SO(3). Hence (V’“‘V’p’},, P= 1,2,3 are 
linearly independent. 

We observe that the above construction may be carried out for any 
irreducible representation of SO(3). In the 2j + l-dimensional spin-j repre- 
sentation the Casimir operator J(l)’ + Jc2j2 + Jc3)’ = j(j + l>Ii. This proves 
Theorem l(2). 

4.3. The case n = 4 
According to Remark 6, n = 4 is the smallest value of n such that 

nonunitary extremal doubly stochastic completely positive diagonal maps can 
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exist. Then necessarily a = 2. An example may be constructed by setting 

v(l) 

v (2) 

10 0 

00 0 

0 0 L 
\/?J 

00 0 

( 

\ 

10 0 0 
01 0 

1 

O0 kz 

00 0 
t 

0 

0 

0 

1 

6 

j 

I 

0 ’ 
0 

0 

2, 
It is easily verified that {V(~)*V(S)}a,P=1,2 are linearly independent, or 
equivalently (Theorem 3) that the vectors 

are a full set of vectors for C’. This gives Tregub’s example [2]. 
_ _ 

We note that the maps given in Sections 4.2 and 4.3 are extremal not only 
in the doubly stochastic completely positive maps, but also in the stochastic 
completely positive maps. 

5. THE TILDE OPERATION 

The correspondence between linear maps of Ml,, into itself and linear 
functionals on M,, 8 M, has been expressed in the literature in various forms 
[5-lo]. Our approach is based on the formula 

L,(ABB) = u(B?;b(A)) = iTrf@(A), (6) 
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where B?’ denotes the transpose of B, and w is the tracial state. Equation (6) 
defines a one-one correspondence between the maps + on FLJ!,~ and the linear 
functionals L, on M”, @ M,,. 

REMAHK 7. The functional L, is normalized if and only if o(&n>> = 1. 
That is, L+( il @ 1) = 1 if and only if Tr +( 1) = n. 

5.1. Doubly Stochastic Maps and Doubly Chaotic States 

An interesting relation concerning the restriction of L, to each of the two 
factors M,, does not seem to have been previously noticed. Given a linear 
functional L on Mn 8 M,,, let L! be the restriction of L to the first factor 
M,, @ 1 = Mm, and L!’ the restriction of L to the second factor ll 8 M, = 
Ml,,. That is, 

L’(A) = L(A @ l), L”(B) = qn 8 B). 

Thus L’ and L” are linear functionals on Ml,, and define elements AL! and 
AL” E M,, under the pairing (*, . ) (Section 1.1). An easy computation based 
on Equation (6) gives 

PROPOSITION 4. 

Au, = ,#,(Ao)~ = n-i$(n)T. 

It is useful to develop an explicit formula for the correspondence (6) 
relating linear maps and linear functionals. It is convenient to represent the 
*-algebra m/o,, B M, faithfully as acting on the vector space M, by (A @ B)C 
= L,R,,C = ACBT (A, I?, C E Fun) extended by bilinearity to sums of 
elements of the form CA 8 B. We introduce the scalar product ( A, B) = 
n-i Tr(A*B) = w(A*B) on PM,,. This makes M, into the Hilbert space of 
matrices with the Hilbert-Schmidt norm, and Mln 8 M,, is identified with 
B(M,,), the W*-algebra of operators on M,,. Define the linear functional 
L on lLlln @ M,, by the formula L, .(M) = (C, MD) for M E m/o,, 8 

lid?; “= B(MJ. Any linear functional on’ M, 8 M,, may be expressed as a 
linear combination of such functionals. As for Ml, in Section 1.1, every linear 
functional L on M,, 8 M, corresponds to a matrix S, E Ml,, 8 m/o,, by the 
formula L(M) = tr( 6, M), where here tr is the trace on m/o, @ M”. Using 
Equation (61 we easily derive 
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PROPOSITION 5. L,, D corresponds to the linear map qbc D = L, * R, = 
C**Don M,. 

REMARK 8. The linear functional L, n = ( 1, M 1) is a state on M, @ 
Ml, = B(Ml~), being the expectation in the unit vector It E Ml,. The corre- 
sponding density matrix 6L, n is obviously P, E B&I,), the orthogonal 
projection onto il E M,. The hnear map 4X, n corresponding to L,, n, given 
in Proposition 5, is the identity map of Ml, onto itself. 

We may obtain the following formula for the linear functional L, associ- 
ated with the linear map 4: 

,. 
L, = L,, Jl a 4, where f = C#J 8 Id, (7a) 

or 

6L, = &Pn (a) 

Here, the transpose map 4 + $t is defined by 

tr[W(M)] = tr[+(N)M], M, N E M, 8 I&. 

The expression (7) follows from 

L,(A 8 B) = u(RT4(A)) = L,,,@(A) @R) 

= Ln,n(&A @ B)). 

so 

Also, 

A 

L, =L,,,04. 

&,,(&A @RI) = tr[P,&A @B)] 

= tr[( $‘P,)( A CQ B)] 
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so 

A linear functional L on Ml,, @ m/o,, is 

(1) real if L(M*) = L(M) for all M E M, 8 M,, 

(2) weakly positive if L( A 63 B) > 0 whenever A > 0 and B > 0, 

(3) positive if L(M) > 0 for all positive M E IWI n @ Mn. 

The following proposition may be derived from Equations (6) and (7) and 
Proposition 5. 

PROPOSITION 6. L, is positive (weakly positive, real) ij-and only if 4 is 

completely positive ( positive, hermitian). 

The content of Proposition 6 is contained in [lo]. We confine ourselves to 
the following remarks. 

REMARK 9. The representation (2) of the completely positive map 4 
corresponds by Proposition 5 to the decomposition of the positive linear 
functional L, into its extreme points. Since the state space M, 8 M, is not a 
simplex, this decomposition is not unique. Equivalently, we can consider the 
decomposition of the positive operator SL, into its spectral resolution. We 
then obtain the representation (2) where the V(“’ are orthogonal with 
respect to the Hilbert-Schmidt scalar product ( , >. 

REMARK 10. Equation (7) and Proposition 6 give a transparent proof of 
Choi’s result [151Athat an n-positive map of Ml, is completely positive: If 4 is 
n-positive, then 4 [Equation (7)] is positive and thus L, is positive. Hence 4 
is completely positive. 

REMARK 11. The linear functional L on M, @ M, is ~1ooubly chaotic if 
its restriction to each of the factors M, is the totally chaotic state o. From 
Propositions 4 and 6 and Remark 7, the correspondence (6) sets up a one-one 
correspondence between doubly stochastic completely positive maps of Mn 
and doubly chaotic states on M,, 8 M,. 

5.2. The Tilde Operation 
Let 4 be a linear map of M, into itself, and L, the corresponding linear 

functional on M, 8 M,. Let P, E B(bU,,) be the projection onto 1 E m/o,, 
(Remark S), and Pk the projection onto the orthogonal complement of IL. 
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We then have 

6L, = P: 6L,P: + P, 6L,Pj+ + P: 6L,P, + P, SL,P, 

where 

(8) 

and 

s = 6L,n - $<Jl, s,,Wl, 

s = sq,n - ;a, s,*,n)n, 

where * denotes the adjoint on B(M,,). Correspondingly we obtain, from 
Proposition 5, 

4 = c$ + s* . + * s. 

The tilde operation is defined by the transformation 4 + 4. 

REMARK 12. 

(i) If 6 is hermitian, then L, is real and SL$ = SL,. Hence S’ = S. 
(ii> If 4 is completely positive, then L, and 6L, are positive and so is 

6Lq,. Thus 4 is completely positive. 

We may give an explicit formula for 6 in terms of the representation (2>, 
using P$c = C - (n,C>II = C -(l/n)TrCll. 

PROPOSITION 7. lf 4 is represented as in Equation (2), then 

where V(“)= V(“) - [(l/n)Tr Vca)]ll. 
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5.3. The Generator of a Completely Positive Semigroup 

We observe that C$ and S depend smoothly on 4, so that if c#dt) is a 

differentiable one-parameter family of linear maps, then m and S(t) are 
differentiable in t. Furthermore, since the identity map corresponds to PI, it 
follows that 

iz = 0. 

Thus 

We conclude from Remark 12 

PROPOSITION 8. Zf 4(t) is a differentiable family of completely positive 

maps, then 

$ = 4(t) =x+-x 
t 0 

where _F = lim, ~ O (1/)4(t) is completely positive and 

X= T*. +-T, T =&W. 

The converse follows easily from the Lie product formula, and we have 
thus obtained a transparent derivation of the general form of the generator of 
a completely positive semigroup [ 16- 191: 

GORINI-KOSSAKOWSKI-LINDBLAD~UDARSHAN THEOREM [16, 171. The 

map r generates a completely positive semigroup on M,, if and only if 

r =x + A? where f is completely positive and Z = T* ’ + * T for some 

T E M,. 

Although formulated somewhat differently, the approach in [18] is essen- 

tially equivalent to the method used here. 

PROPOSITION 9. If #&I = exp(tl3, where IY = L? + Z, _5? is arbitrary, 

andX= T*. + ’ T for some T E M,, then 
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since*= O(Pt 1 = 0). 

6. AN ELEMENTARY DERIVATION OF A RESULT OF 
KUMMERER AND MAASSEN 

In this section we consider the class of examples constructed by Kum- 
merer and Maassen [4], who constructed doubly stochastic completely posi- 
tive semigroups which are not convex combinations of unitary maps. We shall 
give an elementary derivation of their result, based on the tilde technique, 
which does not rely on Hunt’s theorem. 

Let 4(t) = exp(tF), F =/+ T* . + . T, where f is completely positive 
and T E Ml,. Then 4(t) is a continuous semigroup of completely positive 
maps. According to Proposition 9 

&= lilio :4(t). (9) 

Equation (9) is useful in relating properties of y to properties of $(t>, in 
particular the property that 4(t) is a convex combination of unitary maps. 

Express 4(t) according to the representation (2) with a fixed. Equation 
(9) and Proposition 7 give 

j= lim e W(a)(t)*. w’*‘(t), 
t+o a=1 

(10) 

where W’*‘(t) = (l/ fi)V’“‘(t). 

PROPOSITION 10. There exists a sequence t, --f 0 such that for each (Y, 

W’“‘( tk) + ‘&a’ and 8: t z(a)* . z’“‘. 

CX=l 

Proof. From Equation (lo), ~$1) = lim,, ,~C”,=,W’*‘(t)*W’“‘(t>. It 

follows by a compactness argument that a sequent t, + 0 exists such that 
W’*‘(t,) converges for each (Y. n 
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Following Kummerer and Maassen [4], let )r = A* * A, where A is 
normal, and let T = - $A*A + iH, where H = H* is arbitrary. Then 4(t) 
is a doubly stochastic completely positive semigroup. 

KUMMERER AND MAASSEN’S THEOREM [4, Proposition 2.2.11. Zf the 

spectrum of A does not lie on a circle or on a line, then 4(t) is not a convex 

combination of unitary maps for each t. 

Proof. Assume that for each t 2 0, 4(t) is a convex combination of 
unitary maps. Then we may express 4(t) as in the representation (2) with 
each V’“‘(t) a multiple of a unitary matrix. (By Caratheodory’s theorem [20, 
Theorem 181 we may take a fixed.) Since 2 = 2 * A and & is expressed as 
in Proposition 10, it follows that each 2’“) is a multiple of A. Since the 
spectrum of V’*’ lies on a circle and therefore the spectrum of WC*) lies on 
a circle, it follows that the spectrum of 2’“) either lies on a cir_cle or on a 
limit of a circle, namely a straight line. The same then holds for A and for A. 

REMARK 13. In the above construction A is normal and therefore may 
be diagonalized by a unitary matrix. The constructed semigroup above is 
therefore unitarily equivalent to a diagonal semigroup (if H commutes with 
A). According to the discussion in Section 4, n = 4 is the smallest value of n 

such that diagonal maps of M, may not be convex combinations of unitary 
maps. Notice that n complex numbers always lie on a circle or a line if 
n < 4. 

We thank E. B. Davies for bringing to our attention the work of 

Kummerer and Maassen 141. 
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