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Abstract 

The connections between the problem of decomposability of a topological space X into 
two subspaces containing no unscattered compacta and the problem of estimation of 
cardinal&y of X are studied. The developed technique which uses essentially these connec- 
tions allows to show that: if each subspace X’ of a topological space X can be represented as a 
union of A Hausdorff compacta, then 1 X 1 Q A (A is a cardinal), as well as some other 
assertions. 
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Attention of some specialists working in the area of set-theoretic topology was 
drawn to the problem of decomposition of topological spaces into subsets which do 
not contain spaces from a given fixed class. These problems originate from the 
classic work by Bernstein [5] who has proved as early as 1908 that each complete 
separable metric space can be decomposed into a union of two subspaces X=X, 
UX, in such a way that neither X, nor X2 contains the Cantor set D’o. On the 
other side, at the beginning of 70’s Prague mathematicians Neseti3, R6dl and 
Pelant [151 for every T,-space Y (in particular, for Y = DHo ) constructed a 

T,-space X such that for each decomposition X=X, UX, either X, or X2 
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contains the space Y. We emphasize that the constructed space X is essentially 

non-Hausdorff. The problem of the existence of a Hausdorff space X having these 

properties (Frolik was probably the first to pose this problem in such a form) 

remains unsolved in the full measure up till now, in spite of efforts of some authors 

(see [6-8,12,14,15,18, . ..I). A s a final, in a known sense, can be considered the 

following result [7, p. 271. 

Theorem A, For each space X there exists a decomposition X = X, U X, such that 

neither X, nor X, contains unscattered compacta closed in X. 

(It is to be emphasized, that in case I X I > c,,+, this result is proved under some 

additional axiomatic assumptions (and hence in this sense it is not final: see in this 

connection also [121).) 

In the sequel we shall need the following 

Definition 1. A subspace Y of a topological space X is called compact-scattered, or 

k-scattered, in X, if each closed in X compacturn H which is contained in Y, is 

scattered. 

This definition allows us to reformulate Theorem A as follows: 

Theorem A’. Every topological space is representable as a union of two of its 

k-scattered subspaces. 

It turns out that an unexpected consequence of this result and its modifications 

is an estimation of cardinality of a space, which gives a positive answer to the 

following Arhangel’skZs question: 

Assume that each subspace of X is a union of <(u compacta. Is it true that 

1x1 <CL? 
Here and in the sequel small Greek letters are used to denote cardinal numbers 

and the corresponding initial ordinal numbers. No separation axiom is assumed 

unless it is explicitly stated. 

The exact relations between decomposition of a space into k-scattered sub- 

spaces and the corresponding estimation of its cardinality gives the next 

Theorem 2. Let the space X be Hausdorff and X = U {X,: a < v} where all X, are 

k-scattered, v <A and A is a regular cardinal. If 

each subspace of X is a union of < A compacta, (*I 

then 1x1 <A. 

Proof. It is obvious that Vhl(X) < A, where Vhl(X) = min{r: for each family 9 of 

open subsets of X there exists a subfamily 9 ~9 such that lJ 9 = U 9’ and 

19 1 < T}. The inequality V hl( X) < A in case of a regular cardinal A implies that 

IH I < A for each scattered subspace H (see e.g. [2]). On the other hand H can be 
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represented as H = lJ{HP: /3 < ~1 where p < h and all HP are scattered com- 

pacta. (Indeed for each (Y < u the space X, is k-scattered and hence, according to 

(* 1 it is representable as a union of < A (scattered) compacta.) Regularity of the 

cardinal number A allows to conclude now that I X I < A. 0 

In case A = p + from Theorem 2 follows 

Theorem 2’. Zf a T,-space X can be represented as a union of < p of its k-scattered 

subspaces and if, besides, each subspace of X is a union of G p compacta, then 

IXI <LL. 

In the sequel we shall need the following notions: 

Definition 3. A topological space X is called pseudoparacompact (r-pseudopara- 
compact), if each its open cover 9 has a refinement 9’ such that 9’ = lJ (9:: 

(Y < wO} (respectively 9’ = lJ(YL: (Y < 7)) and each 9: is discrete in itself (i.e., 9; 

is disjoint and besides for each P ~9: there exists an open (in X> set UP such that 

U,xP and U,f?(lJzF~)=P.> 

Notice that if we assume additionally in the definition of pseudoparacompact- 

ness that all 9:: cy < w0 are discrete in X and consist of closed sets, then, 

according to Choban and Burke’s theorem (see [9,10]) we come to the notion of a 

a-paracompact space (Arhangel’skii [l]). Basing on this observation, a r-pseudo- 

paracompact space will be called r-paracompact, if all TA, cr < T in its definition 

can be chosen discrete in X and consisting of closed sets. 

A subset A of X will be called r-discrete, if it is a union of r discrete (in itself) 

subspaces. In case A is a union of r discrete in the whole X subspaces, it will be 

called strictly discrete in X. 

Obviously each r-discrete space is r-pseudoparacompact. Moreover, the follow- 

ing statement holds 

Proposition 4. Zf a space X satisfies the condition 

each nonempty closed set F in X contains a nonempty r-discrete open 
in F subset, (* *) 

then X is hereditarily r-pseudoparacompact iff X is r-discrete. 

Proof. Let z? = {U: U is an open r-discrete subset of Xl. According to (* *) the 

family 9 is not empty. Besides, the union U ~3’ is r-discrete, since lJ 9 is 

r-pseudoparacompact and 9 is its cover by r-discrete open sets. To complete the 

proof it is sufficient to notice now that lJ 9 =X: otherwise according to (* * > 

there would exist a nonempty r-discrete open in X\ U 9 subset Uo, and hence 

U, U (U 9’) would be an open r-discrete subset of X. However, this contradicts 

the definition of the family 9. 0 
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Since each scattered space satisfies, obviously, the condition ( * * I, Proposition 4 

implies immediately 

Proposition 4’. A scattered space X is T-discrete iff it is hereditarily r-pseudopara- 

compact. 

Corollary 5. A scattered space X is a-discrete iff it is hereditarily pseudoparacom- 
pact. 

Noticing that the condition I(X) < T in an obvious way implies that X is 

r-pseudoparacompact, we can derive from Proposition 4’ also the following 

Corollary 6. Zf X is a scattered space, then hi(X) = 1 X 1 (see e.g. [2]). 

(We use the standard notation to denote cardinal properties of a topological 

space: 1(X) is the Lindelof number of X, hi(X) is its hereditary Lindelijf number, 

i.e., hi(X) = sup{l(X’): X’ cX}, $(X> is the pseudocharacter of X, d(X) is the 

density of X and hd(X) is the hereditary density of X, i.e., hd(X) = sup{d(X’): 

X’ c X}.) 

Assuming additionally regularity of the space X one can obtain the following 

modifications of Proposition 4’: 

Proposition 4”. If X is a regular scattered space and I+!J(X) < r, then X is r-discrete 
iff it is r-pseudoparacompact . 

Proof. Let 9 = {U: U is an open T-discrete subset of X); we are to show that 

lJ 9 = X. Assume that X\ lJ 9 = F # @. Then there exists a point x,, isolated in 

F and a family (B,: CY < 7) of open (in X) neighborhoods of the point x0 such that 

(x0) := n{B,: (Y < T) and besides B, f~ F = {x0}. For each CY < T let H, = &\B,. 

It is clear that H, c U B and H, is T-pseudoparacompact as a closed subset of X. 

Since 9 is an open cover of H, by r-discrete sets, it follows from here that H, is 

T-discrete itself. Noticing that &,= (U{H,: a < 7)) U {x,) we conclude that q is 

T-discrete. However this contradicts the definition of 9, because x0 E B,\ lJ 9. 

The obtained contradiction completes the proof. 0 

Proposition 4”‘. A regular scattered space X is strictly r-discrete iff it is r-pseudo- 

paracompact and $(X> < T. 

Proof. If X is strictly r-discrete, then $(X) < 7. Let 9 = {U: U is an open strictly 

r-discrete subset of X). One can prove now the proposition quite analogously to 

the proof of Proposition 4” substituting everywhere the condition of strict T-dis- 

creteness for the condition of r-discreteness and substituting the condition of 

r-paracompactness for the condition of T-pseudoparacompactness. 0 

Corollary 7. If X is a regular scattered space, then I X I G t)(X). l(X) [3, Theorem 

91. 
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We pass now the proof of results on decomposition of a space into k-scattered 

subspaces; as Theorem 2’ shows, these results give a key to the corresponding 

estimations of the cardinality of a space. An important role here, as well as in [7], 

will play the following concept: 

Definition 8 [7]. Subset A of X is called rc-compact, if for each countable N CA 

the following implication holds: 

(i) N has a cluster point in A if (and only if) N has a cluster point in X. 

(A point x E X is called cluster for N if (U,\(x)) n N f fl for each of its 

neighborhoods U, .> 

Clearly, a subset A of X is rc-compact if (and only if) implication (i) holds for 

each discrete in itself subset N CA. 

Proposition 9. Let f : X + Y be a closed continuous mapping. If A is an rc-compact 

subset in T,-space X, then f(A) is rc-compact in space Y. 

Proof. Let M be a countable discrete (in itself) set, M c f(A) and assume that M 

has a cluster point in Y. We shall show that there exists a point y, E f(A) which is 

a cluster point for M. 

Indeed, for every y E A4 having chosen a point xy E f-‘(y) nA, we get a set 

N = {x,: y EM} CA. It is clear that N is not closed (since f is a closed mapping 

and f(N) = M f a>. Therefore, since A is rc-compact, there exists a point 

x0 EA\ U{f-‘< 1 y : y EM} which is a cluster point for N. Then yO = f(xo) is a 

cluster point for the set M = f(N) and besides y, E f(A). However this just means 

that f(A) is rc-compact. q 

Remark. A set A in X is called rc-closed [7], if for each countable N CA the 

following implication holds 

(i’) N is closed in X if (and only if) N is closed in A. 
Notice that the concepts of rc-compactness and rc-closedness, which are generally 

different, coincide, in particular, in case of a countably compact space X, and in 

all statements of 171 they are interchangeable. The only exception in this respect is 

[7, Proposition 3.111, the proof of which was in fact reproduced above (see 

Proposition 9); as it has been noticed by V. Tkacuk, this proof is valid only for 

rc-compact sets. 

In the sequel we shall need also the following obvious fact 17, Proposition 3.131. 

Proposition 10. For a set A in a sequential T,-space X the following conditions are 
equivalent : 

(a) A is rc-compact in X; 
(b) A is rc-closed in X; 
Cc) A is closed in X. 
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Indeed, if A is not closed in X, then, since X is sequential, there exists a 

sequence (x,: y1 < w,,} converging to a point x GA and hence A is not rc-compact. 

It remains to notice only that the implications (c) * (b) * (a) are obvious for each 

space X. 

From Propositions 9 and 10 easily follows 

Proposition 10’. If f : X--f Y is a closed continuous mapping, Y is a sequential 

T,-space and A is an rc-compact set in X, then the set f(A) is closed in Y. 

Proposition 11. If A is rc-compact in X and B is closed in X, then A 

rc-compact in B and hence also in X. 

We shall need also the following simple statement (7, Proposition 3.151: 

nB is 

Proposition 12. Zf A c X, then there exists a set A which is rc-closed in X (and hence 

also rc-compact in X> and besides A ck and I k I G I A I ‘O. 

Let’s recall that a family (A a: CY < v) of sets of X is said to be a chain, if 

A, cAp for every (Y < p < v. 

Proposition 13. Let J$ = (A,: (Y < v) be a chain in a space X such that I A, I < r 
for all (Y < v. Then: 

(1) I U d I =G T, and moreover 
(2) if cf(r) # cf(v), then I U LX? I CT; 

(3) if Ud+A, and A, =& for all (Y < 7, then cf(v) < d( U ~~21; 

(4) if d( U _c/) < cf(r) and A, =& for all (Y < v, then I U sd I < T. 

Proof. (1) Assume that I lJ d I > T, then there exists a set M c U & such that 

I M ( = T. For each x E M fix an index a(x) in such a way that x E A,,,,, and let 

p = sup(cw(x>: x EM}. It is clear that /3 = v (otherwise M CA, and hence I A, I Z= 

7). However, this means that the set of ordinals (US(X): x EM) is cofinal in v, i.e., 

cf(v) G I A4 I G 7, and therefore I U a? I = I IJ {A,,,, : x E M} I =G I M I . sup{ I A,,,, I : 
XEM)<T. 

(2) Assume that I tJ d I = T and for each A < 7 find a cardinal a(h) < v such 

that I AoChj I a h (A ccording to point (1) it would mean that I U d I G A CT, if 

such a cardinal a(A) does not exist!) Having chosen a set (ha: p < cf(r)) of 

cardinals in such a way that A, < 7 and c(Ap: /3 < cf(T)} = 7, we obtain 1 U(Ao(+): 

p < cf(T)} I = -r and hence the family (Aa( p < cf(T)} is cofinal in ~2. Thus, 

cf(v) < cf(7). 

To prove the converse inequality consider a subset L c v which is cofinal in v 

and such that I L I = cf(v). It is clear that the corresponding family {A,: (Y EL) is 

cofinal in the chain s’, and hence the set of cardinals ( I A, I: a E L} is cofinal for 

7 (since I A, I < T for all cw> and therefore cf(r) < cf(v). 

(3)ChooseMcU~insuchawaythat~~lJ~~’and IMI=d(Utilandlet 

p = sup(a(x): x EM}, where a(x) is taken in such a way that x eAaCxj. It is clear 
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that p = v (otherwise A, 3M and hence A, =xp 2 lJ &‘I, and therefore cf(v) < 

IMI =d(U&. 
(4) Assuming that lJ S! #A, for all (Y < v (otherwise the statement is obvious) 

we conclude by point (3) that cf(v) < d(U sZ), and hence cf(v) < cf(r). In accor- 

dance with point (2) we conclude from here that I U at’ I < T. 0 

In case T = K, from Proposition 13 in an obvious way follows 

Proposition 13’. If a? is a chain of countable closed subsets of X and X is hereditarily 

separable, then the set U ti is also countable 

Lemma 14 (Main). Let &’ = {A,: CY < u} be a chain of m-compact subsets of X, 

U~=Xandassumethatforeach~~=A,\U{A,:y<a}(A~=A,)thereexistsa 
family {Gi: f3 <u} such that: 

(1) A6, = UIG!: j3 < ~1; 
(2) each Gi is contained in some scattered (in X> compactum Cf cX. 
Then X0 = lJ{Gf: LY < u} is k-scattered in Xfor all p < u and, besides, X = {X0: 

P < l-4. 

Proof. Let H be a closed subset of X, for which there exists a closed mapping 

f:H+I=[O, 11 such that I f(H) I > Et,. Then by letting A, =X and c = min{cY < 

V: I fWnA,)I > Et,) we get a chain (f(H n A,): LY < Z} of countable closed 

subsets of I. (Indeed, according to Proposition 11 the sets H n A, are rc-compact, 

and hence, by Proposition 10’ the sets f(H nA,) are closed in I.1 Applying 

Proposition 13’ we conclude from here that the set U { f( H n A,): (Y < Z) = f( H n 
(U{A a: a < E})) is countable and hence 

I f(HnA’,)l a~, (andmoreover, I f(HnA’,)l 2~). (*I 

(Indeed, f(HnA’,)=f(HnA,\Hn(U{A,: (~<Z)))xf(HnA,)\f(Hn 

CUM,: a < ii;u)>).) 
On the other hand, for each p < p the set f<Ci n H) is a scattered compacturn 

(this follows from the fact that the mapping f has an irreducible restriction-see 

e.g. [ll]) and hence, according to Corollary 6 or Proposition 4”‘, it is countable. 

It follows now, that I f<Gf n H n A,) I G K, for each p < p and hence, accord- 

ing to (*), 

f(H\Xp) # fl (and even I f(H\X,)l a c, (* *> 

and moreover H\Xp f @. (Indeed, since A’, nXp = Gi, it follows that 

f(H\Xp)xf(A’,nH\A’,nX,nH) 

=f(A;H\GlnH)x(f(A;nH)\f(GinH))#(d.) 

To complete the proof notice that for each unscattered compacturn F there exists 

a surjective mapping f : F + I (see e.g. [7, Theorem 4.2, or Theorem 4.51) and 

hence, if besides F is closed in X, then F\X,, # fl for each p < CL. However, this 

means that all X0 are k-scattered. 
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Finally, the equality X = lJ {X0: p < p} in an obvious way follows from condi- 

tion (1). 0 

It is clear that in case I A, 1 G p we have I AL I G I A, I G p and Ab, = lJ{{x& 

p < p) and hence from Lemma 14 immediately follows: 

Lemma 14’. Let & = {A cu: (Y < v} be a chain of rc-compact subsets, U JZ’ =X and 

I A, I G w for all (Y < v. Then X is a union of G u compact-scattered subspaces. 

Lemma 15. Let v’/‘[~ = v (i.e., if h < v then also AX” < v). Then for each X such 

that 1 X 1 = v there exists a chain S? = {A ol: (Y < v) of rc-compact subsets of X such 
that I A, I < v for all (Y < v and U ti =X. 

Proof. Let X= {x,: cx < v}. Assume that for all (Y < CY’ where a’ < v we have 

constructed the sets A, such that 

(0) A,, = &,I; 

(1) {A a: a < a') is a chain in X and x, E A, for all (Y < a’; 

(2) I A, I G I a I HO (if a > 1); 

(3) A, is rc-compact in X. 

Consider the set C,, = ix,,) u (U(A,: (Y < a’}), then I C, ( G CC I A, I : a < a’} < 

I a’ I xcl- I a’ 1 = 1 CY’ I NO (if (Y’ > l), and hence, according to Proposition 12 there 

exists an rc-compact (in X) set A,, 1 C,, such that I A, I < I C, I ‘” = I a’ I “‘. 
Obviously the family {A,: CY < v} thus obtained satisfies the conditions (O)-(3) and 

hence it is the desired chain. 0 

If v = (jJxo)+, then, obviously, for each A < v we have Ax” < ~‘0 < v, i.e., 

v’/‘o = v. Thus, from Lemma 14’ and 15 follows: 

Theorem 16. If ~‘0 = t.~ and I X I < t.~ +, then X can be decomposed into < t.~ 

compact-scattered subspaces, i.e., X = u{X,: /3 < u} where all XP are compact- 

scattered. 

The main result of the paper follows now easily from Theorems 2’ and 16: 

Theorem 17. If each subspace X’ of a space X is a union of < A compacta (i.e., 
X’ = U {CO: p < h), where all CO are compacta), then 1 X 1 < A’o. 

Proof. Consider a set X’ CX such that I X’ I < (A’“)+, By setting Ax0 = F we get 

from Theorem 16 that X’ = tJ{X,: p < p} where all Xp are compact-scattered. 

Theorem 2’ allows to conclude from here that 1 X’ I < p, and hence I X 1 < p = A’“. 

0 

Corollary 18. If uLNu = u, then 1 X 1 < p iff each subspace of X can be represented as 
a union of G u compacta. 

(Notice that the first result in this direction was obtained in [4].) At the same 

time the problem whether the statement of Corollary 18 is true “naively” for each 
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infinite cardinal p (i.e., without the assumption ~‘0 = CL) remains open. On the 

other hand, under additional axiomatic assumptions, the authors of this paper have 

earlier proved an essentially more strong (than it is necessary, as Theorem 2’ 

shows, for the estimation of the cardinality) theorem on decomposition [7, Theo- 

rems 8.3, 9.71 (cf. Theorem A), from which by virtue of Theorem 2’ immediately 

follows 

Theorem 19 (see [17]). Let each subspace of a space X be representable as a union of 
G u compacta, where p is an infinite cardinal. Then 1 X 1 < p in each one of 

following cases : 

(1) I-L < c,,j 

(2) P < CWl’ under assumption K, < C; 

(3) p is arbitrary under assumption (ACI’#) or (V= L). 

(Here ACP# = (ACP) & (Hi < c); ACP = “For each cardinal p > c there exists 

a cardinal r < c such that p”cJ < p,” and I/= L is the Hijdel axiom of constructibil- 

ity.) 

We shall mention here also the following result; it can be proved similarly to the 

proof of Theorem 19 having applied a modification of our Lemma 19 which makes 

a more complete use of the technique developed in [7, Lemma 6.11(d)]: 

Theorem 19’. Let each subspace of X be representable as a union of <u = uLNU 
compacta. Then also 1 X 1 < p in each one of the following cases: 

(1) I x I < PcLw(]; 
(2) IXI <pu,,, and N, CC. 

(Here pi = p + and pa = minlv: v > pcLp, VP < a) (see [7]).) 

Theorem 20. If each subspace of X is representable as a union of G p compacta, 
where FL>,K~, then (Xl <2+ and hd(X)<p. 

Proof. It is clear that each space has an everywhere dense left subspace (see e.g. 

[13]). On the other hand each left compacturn is scattered 13,161, and hence each 

space Z contains an everywhere dense k-scattered subspace Z’ c Z. 

On the conditions of the theorem I X’ 1 G p for each k-scattered subspace X’ 

of X (see the proof of Theorem 2). It follows from here that hd(X) G p. Therefore 

by setting Y= (F cX: F closed in X, I F I a 2’“) we conclude that I s7 I G 2” and 

hence, by virtue of [7, Proposition 2.31 there exist subspaces X0 and X, of X such 

that X=X, U X, and for each closed in X subset H cX, (i = 0, 1) it holds 

I H I < 2p. Now taking into account that cf(2p) > p, and representing X as a 

union of < p compacta He: Xi = U{He: p < p}, i = 0, 1, we conclude in case of a 

Hausdorff space X that / X, 1 < 2p, i = 0,l and hence I X I < 2&. To complete the 

proof it is sufficient to notice that the assumption of Hausdorffness of the space X 

is unessential; because on the conditions of the theorem it is sufficient to show that 

I H I < 2LL for each compacturn H c X. q 
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Note added in proof 

Professor I. Juhasz has kindly informed me that recently J. Gerlits, A. Hajnal 

and Z. Szentmiklossy have proved that for Hausdorff spaces the statement of 

Theorem 19 holds without any set-theoretic assumptions. Namely if each subspace 
of a Hausdorff space X is the union of ,u compact subsets, then I X I G p (see J. 

Gerlits, A. Hajnal, Z. Szentmiklossy, On the cardinality of certain Hausdorff 

spaces, Discrete Math. 108 (1992) 31-35). 
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