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Abstract

In this paper, we establish a residue theorem for Malcev—Neumann series that requires few con-
straints, and includes previously known combinatorial residue theorems as special cases. Our residue
theorem identifies the residues of two formal series (over a field of characteristic zero) which are re-
lated by a change of variables. We obtain simple conditions for when a change of variables is possible,
and find that the two related formal series in fact belong to two different fields of Malcev—Neumann
series. The multivariate Lagrange inversion formula is easily derived and Dyson’s conjecture is given
a new proof and generalized.
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1. Introduction

Let K be a field of characteristic zero. Jacobi [9] used the &1, ..., x,)) of Lau-
rent series, formal series of monomials where the exponents of the variables are bounded
from below, to give the following residue formula.
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Theorem 1.1(Jacobi’'s Residue Formuld)et f1(x1, ..., xn), ..., fu(x1,...,x,) be Lau-
rent series. Leb;; be integers such thaf (xq, ... ,xn)/x’l”'1 .. ~x,},’i” is a formal power series
with nonzero constant term. Then for any Laurent sef¢sy, ..., y,), we have

dfi

ij'

Res

X105 Xn

®(f17 cer fn) = |b1]|1<l,j<n leei d)(YL sy yn)» (11)

1<i,j<n

-1
..... n o

Note that the convergence &f( f1, ..., f,) is obviously required.

Jacobi’s residue formula is a well-known result in combinatorics. It equates the residues
of two formal series related by a change of variables. It has many applications and has
been studied by several authors, e.g., Goulden and Jackson [6, pp. 19—22], and Henrici [8].
However, Jacobi’s formula is rather restricted in application for two reasons: the conditions
on the f; are too strong, and the condition @nis not easy to check: givef}, when does
d(f1,..., fn) COnverge?

We can obtain different residue formulas by considering different rings containing the
ring of formal power seriek [[x1, ..., x,]. In obtaining such a formula, we usually embed
Kx1,...,x,] into aring or a field consisting of formal Laurent series, but the embedding
is not unigue in the multivariate case. Besides Jacobi’s residue formula, Cheng et al. [2]
studied the ringk, (x1, .. ., x;)) of homogeneous Laurent series (formal series of mono-
mials whose total degree is bounded from below), and used homogeneous expansion to
give a residue formula. But the above restrictions still exist for the same reason. We will
use a more general setting to avoid the above problems.

Let G be atotally ordered groupi.e., a group with a total ordering that is compatible
with its group structure. LekK,,[G] be the set oMalcev—Neumann serigMN-series for
short) ong over K relative to<: an element inK,,[G] is a series) = deg agg With
ag € K, such that the suppoft € G: a, # 0} of n is a well-ordered subset ¢f.

By a theorem of Malcev [10] and Neumann [11] (see also [12, Theorem 13.2.11]),
K, [G] is a division algebra that includes the group algekij@] as a subalgebra. We
study the field of MN-series on a totally ordered abelian group, and show that the field
of iterated Laurent seriek ((x1, ..., x»)), Which has been studied in [17, Chapter 2], is a
special kind of MN-series.

We obtain a residue theorem f&t, [G & 7], wherexy, . . ., x, represent the generators
of Z". This new residue formula includes the previous residue theorems of Jacobi and
Cheng et al. as special cases. It is easier to apply and more general: the conditions on
the f; are dropped since we are working in a field; the conditior@ois replaced with a
simpler one and we find that the two related formal series in fact belong to two different
fields of MN-series. In particular, our theorem applies to any rational funaion

In Section 2 we review some basic properties of MN-series. We give the residue for-
mula in Section 3. Then we talk about the (diagonal and nondiagonal) Lagrange inversion
formulas in Section 4, and give a new proof and a generalization of Dyson’s conjecture in
Section 5.
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2. Basic properties of Malcev—Neumann series

A totally ordered abelian groupr TOA-group is an abelian group(written additively)
equipped with a total ordering that is compatible with the group structure@fi.e., for
allx,y,ze G, x <yimpliesx + z < y + z. Such an ordering: is also calledranslation
invariant The abelian groupg, Q, andR are all totally ordered abelian groups under the
natural ordering.

Let K be a field. A formal series on G over K has the form

n= Zagtgy

g€y

wherea, € K and:® is regarded as a symbol. Let= Y, _; bu" be another formal series
onG. Then theproductnzt is defined if for everyf € G, there are only finitely many pairs
(g, h) of elements of; such thau, andb;, are nonzero and + & = f. In this case,

nt = th Z agby.

feG  gth=f

Thesupportsupfn) of n is defined to bdg € G: a, # 0}.

For a TOA-groupg, aMalcev—Neumann serig¢dN-series for short) is a formal series
on G that has a well-ordered support. Recall that a well-ordered set is a totally ordered set
such that every nonempty subset has a minimum. We dg&fjri€] to be the set of all such
MN-series.

By a theorem of Malcev and Neumann [12, Theorem 13.2 K }1]G] is a field for any
TOA-group. A sketch of the proof will be introduced since we will use some of the facts
later.

Let us see some examples of MN-series first.

(1) Ky[Z]~ K ((x)) is the field of Laurent series.

(2) K,,[Q] strictly contains the field ((x)) of fractional Laurent series [13, p. 161], and
is more complicated. When the characteristickois a prime numbep, it includes
as a subfield the generalized Puiseux field [14] with respegt, twhich consists all
seriesf (x) such that supy) is a well-ordered subset @ and there is am such
that for anyx € supf f) we havema = n,/p'® for some integen, and nonnegative
integeri,.

(3) Let@Q* be the multiplicative group of positive rational numbers. Tigghis a TOA-
group, andk,,[Q*] is a field of MN-series.

The set of MN-serieX ,,[G] is clearly closed under addition. The following proposition
is the key to showing thak',,[G] is closed under multiplication, so th&t,[J] is a ring.
For two subsetgl and B of G, we denote byA + B the sef{a + b: a € A, b € B}.

Proposition 2.1[12, Lemma 13.2.9]If G is a TOA-group andi, B are two well-ordered
subsets of thenA + B is also well ordered.
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For a TOA-group, K,,[G] is a maximal ring in the set of all formal series @nif n =
deg agt8 is not in K,,[G], then adding; into K,,[G] cannot yield a ring. For if sugg)
is not well ordered, we can assume tlgat> g» > - -- is an infinite decreasing sequence
in supfn). Lett = Zn>1a;71t—8". Note thatr € K,,[G], since—g1 < —g> < --- is well
ordered. But the constant termf equals an infinite sum of 1's, which diverges.

Let [¢8]n be the coefficient of8 in 5. Let n1, n2, ... be a series of elements K, [G].
Then we say thaj; + 12 + - - - strictly convergeso n € K, [G], if for everyg € G, there are
only finitely manyi such tha{s8]n; # 0, andzi>1[tg]n,» =[t8]n. If n1+n2 + - - - strictly
converges to somg e K,,[G], then we say thaj1 + n2 + - - - exists(in K,,[G]). Note that
2012*” does not strictly converge to 1.

Let f(z) = Zn>0bnz" be a formal power series K [z]], and lety € K,[G]. Then we
define the compositionf o n to be

fon:=fm=Y b

n=>0

if the sum exists.

If n # 0 belongs tak,[G], then it has a nonempty well-ordered support so that we can
define theorderof 5 to be ordn) = min(supfn)). Theinitial term of 7 is the term with the
smallest order. It is clear that apgr) = ord(n) + ord(t). The order of O is treated as.

Theorem 2.2(Composition Law)If f € K[[z]] andn € K,,[G] with ord(n) > O, thenf on
strictly converges irk,[G].

The detailed proof of this composition law can be found in [17, Chapter 3.1]. It consists
of two parts: one is to show that for agye G, [¢8]f o n is a finite sum of elements ik ;
the other is to show that the support 66 5 is well ordered. The following proposition is
the key to the proof.

We denote byA ™ the setA + A +--- + A of n copies ofA. A subsetA of G is said to
be positive denoted byA > 0, if a > O for alla € A.

Proposition 2.3[12, Lemma 13.2.10]Let G be a TOA-group. IfA is a positive well-
ordered subset df, thenlJ, o A™" is also well ordered.

Corollary 2.4. For anyn € K,,[G] with initial term 1, n~1 € K,,[G].

Proof. Write n =1 — t. Thent € K,,[G] and ordr) > 0. By Theorem 2.22,120 "
strictly converges itk ,[G]. Knowing that{z8](1—t) - Z@O 7" is a finite sum for every,
we can check thall — 7) - 3, o 7" reduces to 1 after cancelations

For anyn € K,,[G] with initial term f, we writen = f(1 — t) with ord(r) > 0. Then
the expansion of~* is given by f 1", - o =". This implies thatk,, [G] is a field.
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Definition 2.5. If G andH are two TOA-groups, then th€artesian producig x H is
defined to be the sét x H equipped with the usual addition and the reverse lexicographic
order, i.e.(x1, y1) < (x2, y2) if and only if y1 <3 y2 or y1 = y2 andxy <g x2.

We defineG" to be the Cartesian productmftopies ofG. It is an easy exercise to show
the following.

Proposition 2.6.The Cartesian product of finitely many TOA-groups is a TOA-group.

One important example 8" as a totally ordered abelian group.

When considering the rinff,, (G x H), it is natural to treatg, h) asg + h, whereg is
identified with (g, 0) and# is identified with(0, #). With this identification, we have the
following.

Proposition 2.7.The fieldK,[G x H] is the same as the field, [G]),, [H] of Malcev—
Neumann series oH with coefficients irnk,,[G].

Proof. Letn € K,,[G x H], and letA = suppn). Let p be the second projection Gfx H,
i.e., p(g,h)=nh.

We first show thatp(A) is well ordered. If not, then we have an infinite sequence
(g1, h1), (g2, h2), ... of elements ofA such thatp(g1, k1) > p(g2, h2) > ---, which by
definition becomes1 > hy > ---. Then in the reverse lexicographic order, this implies
that (g1, k1) > (g2, h2) > --- is an infinite decreasing sequencedna contradiction. So
p(A) is well ordered.

Now 5 can be written as

n= Z( Z ag,htg>t".

hep(A) “geg, (g.h)eA

Since for eachh € p(A), the sef{g € G: (g, h) € A} is a clearly a well-ordered subset®f
> _¢eG.(g.mea gt belongs tok,, [G] for everyh, and hence) € (K [G])wlH].
Conversely, let =3, bpt" € (K[G1)w[H], whereD = supr) is a well-ordered
subset ofH, andb;, € K, [G]. Let B, denote the support df,. We need to show that
Unep (Br x {h}) is well ordered inG x H. Let A be any nonempty subset of;, , (B, x
{h}). We show thatd has a smallest element. Sinp€A) is a subset of the well-ordered
setD, we can také:g to be the smallest element pfA). The setd N (B, x {ho}) is well
ordered for it is a subset of the well-ordered 8gf x {o}. Let (go, ho) be the smallest
element ofA N (By, x {ho}). Then(go, ko) is also the smallest elementaf O

Let K be a field. The field of iterated Laurent seri€gx1, ..., x,)) is inductively de-
fined to be the field of Laurent series ip with coefficients inK {(x1, ..., x,_1)), with
K {{(x1)) being the field of Laurent serid§((x1)).
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Corollary 2.8.
KulZ" >~ K {x1,x2,...,%n)).

The detailed proof of this corollary is left to the reader. We only describe the identifica-
tion as follows. Let{e; }1<; <, be the standard basis @f . Theny; is identified withs¢.
The field of iterated Laurent series turns out to be the most useful special kind of MN-series
[16,17].

We conclude this section with the following remark.

Remark 2.9. MN-series were originally defined on totally ordered groups. It was shown
in [17, Chapter 3.1] that the results in this section can be generalizedn be replaced
with a totally ordered monoid (a semigroup with a unit), akiccan be replaced with a
commutative ring with a unit.

3. The residue theorem

From now on,K is always a field of characteristic zero. Observe that any subgroup
of a TOA-group is still a TOA-group under the induced total ordering. & dte a TOA-
group and let be an abelian group. I6 : H — G is an injective homomorphism, then
o (H) ~H is a subgroup of;. We can thus regar#ll as a subgroup of throughp. The
induced ordering<” onH is given byhy <” ho < p(h1) <g p(h2). ThusH is a TOA-
group under”. Clearly a subsed of (H, <”) is well ordered if and only ifo(A) is well
ordered in(G, <g).

Let G be a TOA-group. We can giv€ a different ordering so that under this new or-
deringg is still a TOA-group. For instance, the total orderigg defined byg; < g2 &
g2 <* g1 is clearly such an ordering. One special class of total orderings is interesting for
our purpose. Ifo: G — G is an injective endomorphism, then the induced ordedigs
also a total ordering of. We denote the corresponding field of MN-serieskf}{G].

For example, ilG = Z", then any nonsingular matrid € GL(Z") induces an injective
endomorphism. In particula,,[Z?] ~ K ((x,t)) is the field of double Laurent series,
and K5[Z?] ~ K ((x~1,1)), where the matrix corresponding fois the diagonal matrix
diag(—1, 1). Itis easy to see thakt (x{*, ..., x;,")) with €; = +1 are special fields of MN-
seriesK”{(x1, ..., x,)), where the corresponding matrix fpris the diagonal matrix with
entriese; .

Series expansions in a field of MN-series depend on the total ord€fingvhen com-
paring monomials, it is convenient to use the symhbgdl: if g1 <° g» then we write
181 <* t82, We shall call attention to the expansions in the following example.

Let p be defined by (x) = x2y andp(y) = xy?, and considek ? ((x, y)). The expan-
sion of 1/(x — y) is given by

|_\
><I|—\

10"
1- y/x_zg_k’
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sincep(y/x) = p(y)/p(x) = y/x = 1, which implies 1<* y/x.
Now notice the expansion of/1x2 — y) is given by

11 _1Z
2oy Ty x2/y =t

x2k
k

sincep(y/x2) = p(y)/p(x?) = 1/x3 < 1, which implies 1<” x2/y.
In order to state the residue theorem, we need more concepts. Consider the following
situation. LetG and’H be groups with{ ~ Z", and suppose that we have a total ordering
< on the direct sung & H such thay & H is a TOA-group. We identify; with G & 0 and
HwithOdH. Letey, ez, ..., e, be abasis of{. Let p be the endomorphism ang H that
is generated by (e;) = g; + Zj mjje; foralli, whereg; € G, andp(g) =g forall g € G.
Thenp is injective if the matrixM = (m;;)1<;, j<n belongs toGL(Z"), i.e., detM) # 0.
Itis natural to use new variablesto denote* for all ;. Thus monomials ik, [G & H]
can be represented a‘bc’f . ~x,]§". Correspondinglyp acts on monomials by (¢8) = ¢8

Min

forall g € G, andp(x;) =18 x]"™ - - xy,

Notation. If f; are monomials, we uskto denote the homomorphisp generated by
p(xi) = fi.

An element) # 0 of K, [G & H] can be written as

n= Z Zag’ktgxllcl cxhn = Z bix¥,

keZ" geG kezr

wherea, € K andby € Ky, [G]. If bxX £ 0, then we call it an-termof 7. Since the set
{ord(bkx¥): k € Z, by # 0} is a nonempty subset of supp, it is well ordered and hence
has a least element. Because of the different exponents irisheo two of ordbix¥) are
equal. So we can define theinitial term ofy to be thex-term that has the least order.

To define the operator%, CT,,, Reg,, it suffices to consider the cag¢= Z. These
operators are defined by:

% anx” = an,,x"_l, %Tanx" = b, Rxesz bux" =b_1.

nez nez nez nez

Multivariate operators are defined by iteration. All these operators work nicely in the field
of MN-seriesK,[G @ H], because an MN-series has a well-ordered support, and still has
a well-ordered support after applying these operators.

There are several computational rules [17, Lemma 3.2.1] for evaluating constant terms
in the univariate case, but we are going to concentrate on the residue theorem in the multi-
variate case.

In what follows, we suppose; € K,,[G & H] for all ;.
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Definition 3.1. The Jacobian determinant (or simply Jacobianfef (Fy, ..., F,) with
respect toc is defined to be

Fi, P, ..., F dF;
J(FIX) := 1<¥> :det( ’) )
X1, X2, ..., Xy 0xj ) 1<i, j<n

When thex's are clear, we write/ (Fy, Fo, ..., F,) for short.

Definition 3.2. If the x-initial term of F; is a,-xi"'l . -x,'i"", then the Jacobian number Bf
with respect to is defined to be

Fi1,Fp, ..., Fy

X1, X2, ...5Xn

J(FIX) 5=j< )=d81(bij)1<i,j<n.

Definition 3.3. The log Jacobian of7y, ..., F, is defined to be

xl...xn
LJ(F1,...,F) = ——J(F1,..., Fy).
( 1 n) Fi---F, (F1 n)

We call it the log Jacobian because formally it can be written as (see [15])

logFy,...,l0QF,
LJ(F1,...,F,,)=J<M>,

logxy,...,logx,
since

dlogF _dlogF 9F _ 19F dx _ x oF
dlogx  dF dlogx F dx dlogx F oax’

Remark 3.4. The Jacobian is convenient in residue evaluation, while the log Jacobian is
convenient in constant term evaluation.

The following lemma is needed for the proof of our residue theorem. It is also a kind of
generalized composition law.

Let @ be a formal series inxy,...,x, with coefficients inK,[G], and let F; €
K,[G @ H]. Thend(F1, ..., F,) is obtained from® by replacingx; with F;. The fol-
lowing lemma gives a simple sufficient condition for the convergence (@, ..., F,).

Lemma 3.5.Let® and F; be as above and lef; be the initial term ofF; for all i. Suppose
j(F1,...,Fy) #0. Then®(xy, ..., x,) € K\ [G ® H] if and only if®(f1, ..., f,) exists
in K,[G & H], and if these conditions hold theh(Fy, ..., F,,) exists inK,[G & H].

Proof. We first show the equivalence. The mapx; — f; induces an endomorphism on
‘H ~ Z". This endomorphism is injective sing& f1, ..., f,) # 0, which is equivalent to
j(F1,..., F,) #0. Thereforep also induces an injective endomorphismpa H. We see
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that supp®(f1, ..., fn)) is well ordered inG & H if and only if p(SUpPE@ (x1, ..., Xn)))
is well ordered. This, by definition, is to say thatxs, ..., x,) € K| [G ® H].

Now we show the implication. Write each} as f; (1 + t;), with ord(z;) > 0. Given
the convergence ofb(f1,..., f,) we first show that for everyg € G and m € Z,
[t8XM D (F1, ..., Fy) is a finite sum.

Write @ asy "y .z» akX¥. Let A be the support o® (). ThenA is the disjoint union of
suppaxf©) for all k. This follows from the first partp is injective.

Now

O(FL,....F) =Y af*@Q+m) - A+ (3.1)
kez"

We observe that replacing any nonzero elemerk iby 1 will not reduce the number
of summands, s6l + ;)% can be replaced witlil — ;)1 = 2120 rl.l. Therefore, the
number of summands for the coefficientrék™ in @ (F1, ..., F,,) is no more than that in

Data-m Tt d- Tt =AY s,

kezZ" kezZr

which is a finite product of elements K,,[G & ]. Note that in obtaining the right-hand
side of the above equation, we used the fact that the supparis 'oare disjoint for allk.

The proof of the lemma will be finished after we show tlg(iFy, ..., F;;) has a well-
ordered support. Lef; be the support of;. Then the support ofl + 7;)% is contained in
U0 ;™. Thus for everyk

suppakf¥ (L + ) - A+ o) cAa+ 1+ + | T,
150 150

which is well ordered by Propositions 2.1 and 2.3. So by (3.1), the supp@tif, .. ., F,)
is also well ordered. O

Remark 3.6. The implication in Lemma 3.5 is not true wheiiFy, ..., F,) = 0. For in-
stance, leth = 3o x5/x} — Y50 x5¢ /x2 and letFy = x2, F; = x1(1+x1). Then itis
straightforward to check tha ( f1, f2) =0, but® (Fy, F») is not in K {{(x1)).

Notation. Starting with a TOA-groufy; @ H as described above, Iét be a formal series
on G @ H. When we write Cf @ (x4, ..., x,,), we mean both thab (x1, ..., x,) belongs

to K5 [G @ H], and that the constant term is taken in this field. Wheis the identity
map, it is omitted. When we write GT® (F1, ..., F,), itis assumed thab (x1, ..., x,) €
Kfu[g @ H], where f; is the initial term of F;, and we are taking the constant term of
@(x1,...,x,) inthe ringK’ [G & H]. Or equivalently, we always have

CFTq>(F1, . F) = CXTf D(x1, ..., Xn).

This treatment is particularly useful when dealing with rational functions.
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Now comes our residue theorem &g, [G @ H], in which we will see how an element
in one field is related to an element in another field through taking constant terms.

Theorem 3.7(Residue Theorempuppose for each F; € K,,[G & H] hasx-initial term
fi = apxdt o xhin with a; € K,[G. I j(F1, ..., Fy) # 0, then for anyd (x) € KT [G @
‘H], we have

ReSD(Fy, ... Fy)J (Fu..... Fy) = j(Fy,.... F)ResP(Fy, ... Fy).  (32)

Equivalently, in terms of constant terms, we have

CT®(Fu, ... E)LI (P, Fy) = j(F, . F) CTO(Fy, . Fy). (3.2)

Proof. Replace® (Fy, ..., F,) with Fy--- F,®@(Fy, ..., F,) in (3.2). Then by a straight-
forward algebraic manipulation, we will get (3)2Similarly we can obtain (3.2) from
(3.2). This shows the equivalence.

By the hypothesis and Lemma 3.5, the left-hand side of (3.2) exists by taking the con-
stant term inK,[G & H], while the right-hand side exists by taking the constant term in
KLIG @M.

For the remaining part it suffices to show that the theorem is true for monodhibis
multilinearity. The proof will be completed after we show Lemmas 3.13 and 3.14 below.

Remark 3.8.Whenj (F1,..., F,) =0,®(Fy, ..., F,) is only well defined in some special
cases. In such cases, (3.2) also holds. For exampie(f, ..., x,,) is a Laurent polyno-
mial, then® (F1, ..., F,,) always exists.

Remark 3.9. The theorem holds for any rational functidn i.e., @(x1, ..., x,) belongs
to the quotient field of K,[G])[H]. This follows from the fact thaKL)[Q ® H] is a field
containing(K,,[G])[H] as a subring.

The proof of our residue theorem and lemmas basically comes from [2], except for the
proof of Lemma 3.14, which uses the original idea of Jacobi.

The following properties of Jacobians can be easily checked.
Lemma 3.10.We have

Q) J(F1, Fo, ..., Fy) is Ky[G]-multilinear.
(2) J(F1, F2, ..., Fy)isalternatingi.e.,J(Fy, F>, ..., F,) =0if F; = F; forsome # j.
(3) J(F1, Fo, ..., Fy,) is anticommutative.e.,

JF, ..., F, .. Fj, . Fy)=—J(F1, ..., Fj,...,Fi, ..., Fy).

(4) (Composition rulglf g(z) € K (z)) andg(Fy) exists inK,,[G ® H], then

d
J(g(FD), Fay..., F,) = d—f(FﬂJ(Fl, Fa..., ).
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(5) (Product rule
J(F1G1, Fo, ..., Fy)) = F1J(G1, Fo, ..., F) + G1J(F1, Fo, ..., Fy).
6) J(Fy L Fo,... F) =0.
A formal series org @ H having only onex-term is called ant-monomial
Lemma 3.11.If all f; are x-monomials, then
LI(fr, .o, f)=J(f1 -5 fa)- (3.3)
Equivalently,

St

X1+ Xp

S, ) =J1 s o) (3.3)

Proof. Suppose that for evety f; = aixll”'l . ~x,f"” ,Whereg; isin K, [G]. Thendf; /ox; =
bi; fi/xj. Factoringf; from theith row of the Jacobian matrix for alland then factoring
xj?l from the jth column for allj, we get

T foeees fi) = ﬁ—f dets)).

Equations (3.3) and (3'Bare just rewriting of the above equationo

Lemma 3.12.

Res/(Fy,..., Fy) =0.

Proof. By multilinearity, it suffices to check-monomialsF;. SupposeF; = f; as given
in the proof of Lemma 3.11. Then Eq. (8.8an be rewritten as

=1+> b —14+> bin
J(F1, ... Fy) =detb;j)ay - agxy T2 g 2l

If > bi1=> bip=---=) by =0, then the Jacobian number is 0, and therefore the
residue is 0. Otherwise, at least one of #his has exponeng —1, so the residue is 0 by
definition. O

Lemma 3.13.For all integerse; with at least one; # —1, we have

Rxestl e FJ(F1, ..., Fy)=0. (3.4)
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Proof. The clever proofin [2, Theorem 1.4] also works here.

Permuting theF; and using(3) of Lemma 3.10, we may assume that£ —1, ...,
ej #—1,butej 1 =---=¢, =—1, for somej with 1 < j <n. SettingG,; = QLFf"“
fori=1,...,j, we have

FyrFg? e FnJ(F1, Fa, .. F) = F - F7N(Ga, o, Gy Fiya .o F).
Then applying the formula
FihJ(Ga, ... .G, Figa,..., F) =J(F[5G1,Ga,.... G, Fjya, ..., Fn)
repeatedly forj + 1, j +2,...,n, we get

J(FL

J+1---F,flGl,G2,...,Gj,Fj+1,...,F,,),

The result now follows from Lemma 3.12.0
Forthe casey =e>=---=¢, = —1, we have
Lemma 3.14.

Rxengl o FTYI(FL, L F) = j(F .., Fy). (3.5)

The simple proof for this case in [2] does not apply in our situation. The reason will be
explained in Proposition 3.15.
Note that Lemma 3.14 is equivalent to saying that

CTLJ(F1, ... Fa) = j(F1..... Fy). (3.6)

Proof. Let f; := aixll"'l . -x,’f"" be thex-initial term of F;. ThenF; = f; B;, whereB; €

K [G ® H] hasx-initial term 1. By the composition law, 1d®;) € K,,[G & H]. Now
applying the product rule, we have
Fr o FYJ(FL F E,)
1 n 1, 12, ..., 1'p
= i F Y E YA oy F) 4+ BUYF N F7YI (B Py Fy)
= f{ Fy BN (fL Fa ) 4 Byt F R (109(B), P, . Fy).

From Lemma 3.13, the last term in the above equation has no contribution to the residue
in x, and hence can be discarded.
The same procedure can be applied#0Fs3, ..., F,. Finally we will get

ResF o Fy I (FL Fa, ... Fa) =Resfy - £ (fu. for o fo),

which is equal to the Jacobian number by Lemma 3.113.
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The proof of our residue theorem is now completed
The next result gives a good reason for using the log Jacobian.

Proposition 3.15.Thex-initial term of the log Jacobiad.J (Fy, ..., F,) equals the Jaco-
bian number;j (Fy, ..., F,) when it is nonzero.

Proof. From the definition,

X1+ Xp
LI(F oo Fy) = S (P Fy) = Zf(gl,...,gn

where the sum ranges over altermsg; of F;. Applying Lemma 3.11 gives us

LJ(Fy,... F)—Zgl J (g1, 8n)-

The Jacobian number is always an integer. The displayed summand has the smallest order
wheng; equals thec-initial term of F; for all i. It is clear now that we can write

LJ(Fy,...,F,)=j(F1,..., F,) + higher ordered terms

To show thatj (F1, ..., Fy,) is thex-initial term, we need to show that all the other terms
that are independent afcancel. (Note that we do not have this trouble when all the coef-
ficients belong taK'.) This is equivalent to saying that

CXTLJ(FL-”,Fn)zj(Fl’-u,Fn)’
which follows from Lemma 3.14. O

Example 3.16 Let K ((x, 1)) be the working field. LeF = x2+ x4 x3¢. Then thex-initial
term of F is x2, s0 j (F|x) = 2. Now let us see what happens to the log Jacobi&(F | x)
of F with respect tox.

LI(Flx) = x oF x(2x+t+3x2t)
T Fox  x2(1+1/x +x1)

k
_ r _pre(E
_<2+x+3xt> Z( 1) <x+xt> .

k>0

Since every other monomial is divisible bythe initial term ofL J(F|x) is 2. It then fol-
lows that thex-initial term of L J(F|x) must contain 2 and therefore must be the constant
terminx.

It is not clear that 2 is the unique term in the expansion of CT(F|x), but all the
other terms cancel. We check as follows.
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k
CTLJ(F|x) = CT(2+ L 3xt> Z(—D"(i +xt>
X X X X

k>0
2k 2k +1 2k+1
-2 12y 12+l gy 2k+1
S () () ()
k>0 k>0 k>0

=2+ ];(2(2:) - 4(2]‘]: 1>>t2k.

Now it is easy to see that the terms, other than 2, not containinghe expansion of the
log Jacobian really cancel.

From Theorem 3.7 and Lemma 3.11, we see directly the following result.

Corollary 3.17. If f; are all x-monomials inK,,[G ® H], j(f1,..., fr) # 0, and ® €
K [G @ H], then

CTe(f..... fw) = fCTf D(f1.---s fo)-

J1

In the case that alf; are monomials itk [x, x 1] with j (f) # 0, @ isin K[x, x"1]ifand
only @(f1,..., fu) is (with possible fractional exponents). Sindehas a finite support,
its series expansion is independent of the working field. In particular, we have

CT &(f1,....fu)= CT ®P(x1,...,xpn).

1o fn XLseeesXn

More generally, we have the following as a consequence of Corollary 3.17 and the above
argument.

Corollary 3.18. Supposg is another set of variables. th € K [x, x"1]((y)), and if f; are
all monomials inx with j (f) # 0, then

C;T(D(fl, ey fn) = C;(T@(xl,...,xn).

The following two examples are illustrative in explaining our residue theorem.

Example 3.19.The following identity follows trivially by replacing with x~1.

gTZx—k = C),CTZxk. (3.7)

k=0 k=0

This identity is not as simple as it might appear at first sight. It equates the constant
terms of two elements belonging to two different fields; namely, the left-hand side of (3.7)
takes the constant term ki (x 1)), while the right-hand side takes the constant term in

K(x)).
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The above cannot be explained by Jacobi’s formula, especially when we write itin terms
of rational functions:

1 1
CT =CT . 3.8
x 1—x"1 % 1—x (38)

Now let us explain this identity in two ways: one using our residue theorem, and the other
using complex analysis.

Let f = x~1. Then the log JacobiahJ (f|x) = x/f - f/dx = —1, and the Jacobian
number is alse-1. Thus

1 1
T =T B UM =G

So thex on the left-hand side of (3.8) is indeed playing the same role with the varjable
defined byf = x~1. Now f~1 > 1 since it is the same as> 1, and we have the correct
series expansion.

Now we sketch the idea in complex analysis, and describe the meaning of Jacobian
number in the one variable case. We have

1 1 1
CT =—¢ ——d
x 1—x 2ni ) z(1—-2)

14

2,

wherey is the counter-clockwise circlg| = ¢ for sufficiently small positives. We can
think of € as equal tox.
Now if we make a change of variable by= 1/u, then after simplifying, we get

1 -1
—,¢7du:CT#,
2ri J u(l—u"1) F1—f1

y/

wherey’, the image ofy under the map — 1/u, is the clockwise circléu| = 1/¢. The
Jacobian number1 comes from the different orientation of the circle. Similarly, if we are
making the change of variable by= u?, the new circle will be a double circle, which is
consistent with the fact that the Jacobian number is 2.

Example 3.20.Evaluate the following constant term Ki(x)).

(1—x"hH?
T x—-Drd-xH+A-x"1H2)

Solution. Let F=1—x"1. ThenLJ(F|x) =x/F -dF/dx =1/(x — 1). Thex-initial
term of F is x 1 so that the Jacobian number-sl. Hence by our residue theorem, we
have
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(1_x—1)4 B F4
CECT x-DEA—x"bH+@-x"12) CXT]TF + F2

LJ(F|x)
4

=CT(-1)  ——.

F( ) nF + F?

Now the initial term ofF is x~! and the initial term ofF2 is x =2 so thatF = F2. Thus the
final solution is

_F2
CT——— =72
F l4+ngF-1

Remark 3.21.Suppose the working field & (x)). If the new variablel’ has a positive Ja-
cobian numbey (F|x), the second field as described in our residue theorem iskalso).

In this case, Jacobi’s formula also applies, (fF|x) is a negative number, then we can
chooseF 1 as the new variable to apply Jacobi’s formula. This is why the two fields phe-
nomenon as in the above two examples was not noticed before.

The next example is hard to evaluate without using our residue theorem.

Example 3.22 Evaluate the following constant term @x(x, y, 7)).

CTx3e/*¥ (2t — 3xy) (x3ye'/xy —tx — ty)_l(x - y)_l(—l + xse’/”)_l. (3.9)
X,y

Solution. Thex-variables are andy. Let F = x2ye!/*Y | G = xy?e!/*? . Itis straightfor-
ward to compute the log Jacobian and the Jacobian number. We have

2t
LJ(F,G|x,y)=3——, and j(F,G|x,y)=3.
Xy

We can check that (3.9) can be written as

F3G

T F_FionF GG/ Gk

Thus by the residue theorem, the above constant term equals

3F3G 3

CT =CT ,
F,G(F2—(F+G)t)(F—G)(G—F?) FG (1- (F;#)(l_ %)(1 _ %2)

(3.10)

where on the right-hand side of (3.10), we can check that 1 is the initial term of each factor
in the denominator.

At this stage, we can use series expansion to obtain the constant term. We use the fol-
lowing lemma instead.
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Lemma 3.23.Suppose tha® contains only nonnegative powersinThen

(ECTd)(x)' =P (u),

1—u/x
whereu is independent of andu > x.
This lemma is reduced by linearity to the case wieg) = x* for some nonnegative

integerk, which is trivial.
We take the constant term @ first by applying Lemma 3.23.

CT 8 =CT 3F*
F.G (1_(1”;#)(1_%)( _%2) T F (F2—(F+ F2)t)(F — F?)
3 1
=CT :

B 3
S A-n(l-15)

where in the last step, we applied Lemma 3.23 again.
After simplification, we finally get

_ _ 3
CTx3e!/™ (2 — 3xy)(x3ye’/xy —1x —ty) Y- y)_l(—1+x36’/”) 1o o
X,y —
4. Another view of Lagrange’s inversion formula
Let F1,..., F, be power series in variables, ..., x, of the form F; = x; + higher

degree terms, with indeterminate coefficients for e@adtis known, e.g., [1, Proposition 5,
p. 219], thatF = (Fy, ..., F,) has a unique compositional inverse, i.e., there exists
(G1,...,G,) where eaclG; is a power series imy, ..., x, such thatF; (G1, ..., G,) = x;
andG;(Fy,..., F,) =x; foralli.

Lagrange inversion gives a formula for thigs in terms of theF’s. Such a formula is
very useful in combinatorics. A good summary of this subject can be found in [4].

The diagonal (or Good’s) Lagrange inversion formula deals with the diagonal case, in
which x; divides F; for everyi, or equivalently,F; = x; H;, where H; € K[[x1, ..., x,]|
with constant term 1. We now derive Good’s formula by our residue theorem:

Let K{{x1, x2, ..., x,)) be the working field. Then; is the initial term ofF;, and the
Jacobian numbej(Fy, ..., F,) equals 1. Lety; = F; (x). We will havex; = G;(y). Then

[yfl . y;]in]Gl (y) — Ryesylflfkl e yn_l_k”Gl(y) (41)

- RXestl*"l o YR (F). (4.2)
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The above argument works the same way by using Jacobi’s residue formula.

A similar computation applies to the nondiagonal case by workingAf(x1, ..., x,)),
where p is the injective homomorphism int& ((x1, ..., x,,)) induced byp: x; > x;t.
This total ordering makes; the initial term of F; for all i, and clearlyK” {(x1, ..., x,))
containsK [x1, ..., x, ]l as a subring. This way is equivalent to the homogeneous expansion
introduced in [2]. Note that Jacobi’s formula does not apply directly, though Gessel [4]
showed how the nondiagonal case could be derived from the diagonal case. Note also
that we cannot apply the residue theorenKitixs, ..., x,)), because the Jacobian number
might equal 0. For example, if, does not divideF;,, then it is easily seen that the exponent
of x,, in the initial term ofF; is zero for alli. So the Jacobian number 61, ..., F, is 0.

More generally, leth € K[[y1, ..., y.l. Then

k1 kn _ —1—k1 o1k
[t yi]e(Gy) = RxesF1 F, D (x)J(F).

Multiplying both sides of the above equation p@l . ~-y,’§", and summing on all non-
negative integersy, ko, . .., k,, we get

1 1

(G =Res .
( (y)) >?F1—Y1 Fu—yn

J(F)@(x), (4.3)
which is true as power series in thgs.

It is natural to ask if we can get this formula directly from our residue theorem. The
answer is yes. The argument is given as follows.

The working field isK”{(x1, ..., x, ) {1, ..., ). We letz; = F; — y;. Thenx; =
G;(y + 2), and the initial term off; — y; is x;, for y; has higher order than thes. Thus
the Jacobian number is 1, and the Jacobian determif@mt) still equalsJ (F). Applying
the residue theorem, we get

1
es
X Fl_yl Fn_yn

1
J(F)®(x) =Res———@(G(y + 2)).
Z lez oo Zﬂ
Since @(G(y + 2)) is in K[y, z]], the final result is obtained by settig= 0 in
@ (G(Y+2).
Note thatJ (F) € K[[x]| has constant term 1. TherefoyéF)~1®(x) is also inK [x].
Hence we can reformulate (4.3) as

1
Res

Y —_— 71
e, Fn_yncb(x) D(X)J(F)

x=G(y)"

5. Dyson’s conjecture
Our residue theorem can be used to prove a conjecture of Dyson.

Theorem 5.1 (Dyson’s Conjecture)Letas, ..., a, ben nonnegative integers. Then the
following equation holds as Laurent polynomialszin
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cr I1 (1_i)j=(“1+“2+'”+“”)!. (5.1)

i aplap!---ap!
1<l;ﬁ/<l’l Z] 1-d2 n

Forn = 3 this assertion is equivalent to the familiar Dixon identity:
Z( 1)/- a+b\(b+c\[(c+a _(a+b+c)!
- a+j)\b+j)\c+j) ablc!

Theorem 5.1 was first proved by Wilson [15] and Gunson [7] independently. A similar
proof was given by Egorychev in [3, pp. 151-153]. These proofs use integrals of analytic
functions. A simple induction proof was found by Good [5]. We are going to give a Laurent
series proof by using the residue theorem for MN-series. Our new proof uses Egorychev’s
change of variables, and uses Wilson’s argument for evaluating the log Jacobian. This leads
to a generalization of Theorem 5.1.

Let z be the vectonzy, z2, ..., z,). If z appears in the computation, we uséor the
productz! = z1z5 - - - z,. We use similar notation fau.

Let A@) = A(z1, - z) =[]z — 2j) = det(z/ /) be the Vandermonde determi-
nantinz, and letA;(z) = A(zg, ..., Z;, ..., Zn), Wherez; means to omit ;. We introduce
new variables

uj = (—1)1*117—1Aj(z).
Then they satisfy the equations

n
A@ =Y (1A @) = ur fup -+,
j=1

and

u-uy = [ [~ 7240 = 0@z Ha@)"
j=1

We also have

“ Zi i1 A@ U4 uz+ - +uy
1_[ 1-—)= (_l) n—1 = !
7 T4 uj

i=1,i#j 2j
Thus Eq. (5.1) is equivalent to

CT (g +up + -4 up) 2T F (agfag+ -+ ay)!
An -

z uyt - up ailaz!---ay!

’

which is a direct consequence of the multinomial theorem and the following proposition.
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Proposition 5.2.For any seriesp (z) € K"((z)), we have
CZT<I>(u1, ce Up) = CEJT@D(ul, e, Up).
In fact, we can prove a more general formula. Léte an integer and let
u§’) = (-1 4;@.
Then u(lr) + - +ul equalsh,_n4+1(z1, 22, . .., zn) A(Z) for r > n — 1 and equals 0 for
0<r <n—2,whereh;(2) = Zi1<-~<ik zZiy -+ - Zi, 1S the complete symmetric function [13,

Theorem 7.15.1]. We have the following generalization.

Theorem 5.3.1f r is not equal to any 00, 1,...,n — 2, or —("51), then for any series
®(2) € K”((2)), wherep(z;) = u'”, we have

CTo (), ... ul) =CTo @, ... u).

u)

Note that Proposition 5.2 is the special caserfet n — 1 of Theorem 5.3. If we set
r = n, the multinomial theorem yields the following:

Corollary 5.4. Letas, ..., a, ben nonnegative integers. Then the following equation holds
for Laurent polynomials irz.

C
a a,
z le...Zn"

ayttay N\ !
LGt I (1_Z_l> _latat o ta) g,

i ailap!---ay,!
lgi;&jgn Z./ 1:d2 n

By Theorem 3.7 and Proposition 3.15, Theorem 5.3 is equivalent to the assertion that
the log Jacobian is a nonzero constant. To show this, we use

Lemma 5.5[15, Lemma 4] LetG(x1, ..., x,) be a ratio of two polynomials in the's, in
which the denominator ig(xq, ..., x,) and

(1) G is a symmetric function ofy, ..., x,,
(2) G is homogeneous of degr@en thex’s.

ThenG is a constant.

Proof of Theorem 5.3. In order to compute the log Jacobian, we let

3 Iogu?”)

J = det(Jl-j) = det< P |Ong

ThenJ;; =r andJ;; = Zk# zi/(zx — zj) for i # j. We first show that/ is a constant by
Lemma 5.5. Itis easy to see thasatisfies conditions (1), (2) in Lemma 5.5. Now we show



G. Xin / Advances in Applied Mathematics 35 (2005) 271-293 291

that the denominator of is A(z), so that we can claim that the Jacobian is a constant, and
hence equals the Jacobian number.

Evidently J is the ratio of two polynomials in th#s, whose denominator is a product
of factorsz; — z; for somei # j. From the expression af;;, we see that; — z; only
appears in théth and thejth column. Every 2 by 2 minor of thi#h andjth columns is of
the following form, in which we assume thiatand! are not one of and;.

W% o % _u
7j—2Zi + ZS#LJ 5= Zi—Zj + ZS#LJ 75—2)
z 2z 4] 2
7j—2Zi + Zs‘#l.j 5=z Zi—Zj + ZS#LJ 5—2)

In the above determinant, the terms containing- z)? as the denominator cancel. There-
fore, expanding the determinant according totieand jth column, we see thai(2) is
the denominator of .

Now the initial term ofz; — z; is z; if i < j. We see that the initial term oi(’) is
2i2h 2252z, 1. Similarly we can get the initial term far{”. The Jacobian number,
denoted byj (r) is thus the determinant

Jri Jij | _
Ji Jij

r n—2 n—3 --- 0
n—2 r n—3 --- 0

j(r)=det| . : : S
n—2 n—3 n—4 - r

where the displayed matrix has diagonal entitesand other entries in each row are
n—2,n—3,...,0, from left to right.
Since the row sum of each rowsst (",%), it follows that

n—1
il — =0.
We claim thatj (r) =0 whenr =0, 1,...,n — 2. For in those cases(’) 4+ +ul =0.

This implies that the Jacobianis O, and hemoe 0. We can regargl(r) as a polynomial
in r of degreen, and we already havwe zeros. So

j(r):r(r—l)--~(r—n+2)<r~|—(nzl))

up to a constant. This constant equals 1 through comparing the leading coeffioient of
In particular,j (n — 1) = (5) (n — 1)! = (n — 1)n!/2. Note that in [3, p. 153], the constant
was said to b&2n — 3)(n — 1)!, which is not correct. O

Another proof of Dyson’s conjecture by our residue theorem is to use the change of
variables by Wilson [15].
Let
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Then the initial term of; is zf("_’)zﬁl .-+ z, Up to a constant. Since the ordengfis 0,
we have to exclude, from the change of variables, for otherwise, the Jacobian number
will be 0. In fact, we have the relatiom + v2 + - - - + v, = 1, which can be easily shown
by Lemma 5.5.
Dyson'’s conjecture is equivalent to

n

—a; !

CTHUi aj _ (a1 + a2+ +ay) ‘ (53)
z o1 aplaz!---ay,!

Another Proof of Dyson’s Conjecture. Using Lemma 5.5 and Wilson’s argument, we
can evaluate the following log Jacobian. (See [15] for details.)

d(logv1, loguy, ..., logu,—1)
=(m—-2D,.

d(logz1,logza, ...,logz,—1)
Then by the residue theorem
CTo(1,...,0n—1,20) = CT Q-vy—---— vn—l)_l(p(vla ey Un—1,Zn)-

Zz V1,.--,Un—1,2n
In particular (since the initial term of £ v — --- — v,_1 is 1) we have:
n n—1
—aj _ e —ap—1 T4
CZTl_[lvi =.CT a-u Up—1) 1_[1vl
J= J=

— [vil...UZ'L—]il] Z (Cln +m)(v1+,..+vn_1)m

m>0\
_ (an +a1+~--+an_1)(a1+--~+an_1)
dn ai,...,ap-1

Equation (5.3) then follows. O
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