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k-Decision lists and decision trees play important roles in learning
theory as well as in practical learning systems. k-Decision lists
generalize classes such as monomials, k-DNF, and k-CNF, and like
these subclasses they are polynomially PAC-learnable [R. Rivest,
Mach. Learning 2 (1987), 229�246]. This leaves open the question of
whether k-decision lists can be learned as efficiently as k-DNF. We
answer this question negatively in a certain sense, thus disproving a
claim in a popular textbook [M. Anthony and N. Biggs, ``Computa-
tional Learning Theory,'' Cambridge Univ. Press, Cambridge, UK,
1992]. Decision trees, on the other hand, are not even known to be
polynomially PAC-learnable, despite their widespread practical
application. We will show that decision trees are not likely to be
efficiently PAC-learnable. We summarize our specific results. The
following problems cannot be approximated in polynomial time within
a factor of 2log$ n for any $<1, unless NP/DTIME[2 polylog n]: a
generalized set cover, k-decision lists, k-decision lists by monotone
decision lists, and decision trees. Decision lists cannot be approximated
in polynomial time within a factor of n$, for some constant $>0, unless
NP=P. Also, k-decision lists with l 0�1 alternations cannot be
approximated within a factor log l n unless NP/DTIME[nO(log log n)]
(providing an interesting comparison to the upper bound obtained by
A. Dhagat and L. Hellerstein [in ``FOCS `94,'' pp. 64�74]). ] 1996

Academic Press, Inc.

1. INTRODUCTION

This paper proves lower bounds on the approximability
of decision lists and trees. An instance of such a problem is
a set of boolean n-vectors each labeled with a binary
classification, true or false. The desired output is a decision
list (or tree) over the n attributes that is consistent with the

set of examples and whose size (according to some natural
measure) is within a certain approximation factor of the
minimum solution size.

This is an important problem in learning theory, since the
existence of a polynomial approximation algorithm implies
that the class is PAC learnable (given certain technical con-
ditions [6]). Such algorithms, with a mere logarithmic
approximation factor, exist for k-DNF and k-CNF, for
example. Tighter approximation algorithms imply more
efficient learning algorithms (in terms of sample com-
plexity). Furthermore, the non-existence of such algorithms
implies negative results for learnability. If there is no poly-
nomial approximation algorithm that produces a represen-
tation within a certain factor of the minimum size, then
there is no PAC learning algorithm whose hypothesis is
within that factor of the minimum possible unless RP=NP
[12]. Our main results will show that based on the assump-
tion that NP is not contained in randomized pseudo-
polynomial time, size l k-decision lists (or trees) are not
learnable by size l2log$ l k-decision lists (trees, respectively)
for any $<1. Under the weaker condition that RP{NP, it
is hard to learn general decision lists by size l 1+= decision
lists for some =>0.

Decision trees are the key concept in learning systems
such as ID3 [16] and CART [7], and have found a use in
many applications. There is an enormous amount of
machine learning literature concerned with decision trees
(see, for example, [15�17, 22]). However, the PAC-learn-
ability of decision trees remains one of the most prominent
open questions in learning theory. Other than many heuristic
learning algorithms using principles such as minimum
description length and maximum entropy, the theoretically
best learning algorithm [8] PAC-learns a size n decision
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tree using O(nlog n) time and samples. It is thus a very impor-
tant question in learning theory (and learning practice)
whether decision trees are polynomially PAC-learnable,
that is, whether we can find the approximately smallest deci-
sion tree with high probability. We will provide a negative
result in this direction, showing that decision trees cannot
be efficiently approximated.

Our results do not preclude the PAC-learnability of deci-
sion trees (lists) by decision trees (lists), rather they show
that any learning algorithm will in the worst case produce
hypotheses trees or lists that are significantly larger than the
best possible.

One of the main motivations for the use of decision trees
in empirical learning work is that small decision trees, in our
belief, are a good output representation for human com-
prehensibility. Hence negative results regarding finding such
a hypothesis are particularly relevant. Note that it was not
even known whether finding the smallest decision tree is
NP-hard. It was only known that finding a decision tree
with the minimum external path length is NP-hard [11, 9].

2. LEARNING THEORY AND COMPLEXITY
OF APPROXIMATION

This section introduces concepts and results in learning
theory and complexity of approximation that are needed in
this paper. Denote by Fn the class of all n input boolean
functions, i.e., functions from [0, 1]n to [0, 1]. We will con-
sider the following classes of representations of functions in
Fn . A variable is one of the inputs x1 , ..., xn , and a literal is
a variable or a negated variable.

v Mn : class of monomials, where a monomial is a con-
junction of zero or more literals, the empty monomial being
identically true.

v Mn, k : class of monomials having at most k literals.

v DNF: class of formulas in disjunctive normal form, i.e.,
disjunctions of monomials. CNF: class of formulas in con-
junctive normal form, i.e., conjunctions of disjunctions of
literals.

v k-DNF: class of DNF formulas with each monomial
term in Mn, k . k-CNF is defined analogously.

v DL: class of decision lists. A decision list is a list
L=(m1 , c1)(m2 , c2) } } } (ml , cl ), where for each i=1, ..., l,
mi # Mn is a monomial and ci # [0, 1]. For an input Boolean
vector from [0, 1]n, the value of list L is ci if i is the smallest
integer such that mi is satisfied; if no mi is satisfied then
L=0.1 Monotone decision lists are those in which no
monomial contains a negated variable. The size of decision
list L is l.

v k-DL: class of k-decision lists. A k-decision list is a deci-
sion list in which each monomial belongs to Mn, k .

v DT: class of decision trees. A decision tree is a binary
tree T, each of whose non-leaf nodes is labeled with one of
n input variables, and whose leaves are labeled 0 or 1. The
value of T on an input vector is obtained as the label of the
leaf reached from the root as follows: at each node go to
the left or right child depending on whether the input bit
corresponding to the label is 0 or 1, respectively.

For a given concept class C/Fn , and a given hypothesis
class H/Fn , a PAC-learning algorithm solves the follow-
ing problem:

Input: Constants 0<=, $<1, and a source of random exam-
ples EX that when queried provides in unit time a pair
(x, c(x)) where x is drawn independently according to
some unknown distribution D over [0, 1]n and c is some
fixed unknown concept from C.

Output: A hypothesis h # H.
Requirement: The probability, as determined by the input,

of outputting a bad hypothesis (one for which
D(h(x){c(x))>=) is to be bounded by $.

The learner is allowed running time polynomial in 1�=, 1�$,
and the size of the target concept c. Usually the concept and
hypothesis classes coincide. For more details of Valiant's
PAC-learning model, we refer the reader to [2]. The basic
question in learning theory is to identify the polynomially
learnable classes. Among the most prominent polynomially
learnable classes are monomials, k-DNF, k-CNF, and
k-DL. It is clear that monomials, k-DNF, and k-CNF are
subclasses of k-DL.

Closely related to learning algorithms are consistency
algorithms, which given a set of examples, output a
hypothesis that agrees with all those examples. An efficient
learning algorithm that produces a hypothesis for a certain
class can be converted to a randomized consistency algo-
rithm for that class by a construction of [3] (the essence of
the conversion is that consistency with a sample m can be
obtained by the learner if the learner is trained with the
uniform distribution on m and is forced to achieve accuracy
better than 1�|m| ).

Recently, there has been significant progress in the com-
plexity theoretic aspects of approximation. Below we list the
results that will be needed in this paper.

Theorem 1. Unless NP=P :

1. Graph Coloring cannot be approximated in polynomial
time with ratio n=, for some =>0 [14].

2. Set Covering cannot be approximated in polynomial
time to within any constant ([5] proved NP-completeness of
constant factor approximation).
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3. Vertex Cover does not have a polynomial time
approximation scheme [4]; i.e., for some =>0, it cannot be
approximated within a factor 1+=.

Our hardness results for k-decision lists and decision trees
start with a basic approximation preserving (linear) reduc-
tion from Set Covering to show that approximation within
a constant factor is hard. Then we use a ``multiplication''
process to combine two problems into one in a way that
amplifies approximation difficulty. For k-decision lists, this
amplification is done using a new form of the set covering
problem that we define, show to be difficult to approximate,
and to which we reduce the problem of finding a consistent
k-decision list. For decision trees, we do the amplification
on decision trees themselves to show how arbitrary
approximability can be improved with additional computa-
tion. This allows us to achieve a greater lower bound on
approximation than the constant implied by our reduction
from Set Covering.

Our hardness results for generalized decision lists are
based on an approximation preserving reduction from
Graph Coloring.

3. NON-APPROXIMABILITY OF k-DECISION LISTS

Our results build upon the non-approximability of Set
Covering (item 2 above) and Vertex Cover (item 3 above),
which can be viewed as a special case of Set Covering. For
a collection S1 , S2 , ..., Sm/U=[1, 2, ..., t] of subsets of a
universe U, a cover is a subcollection Si1 , Si2 , ..., Sik whose
union is U. The size of this cover is k. In the problem of Set
Covering we are given a collection of subsets of a universe
and want to find a minimum size cover. The lower bound 2
on approximability of Set Covering translates to a lower
bound on approximability of monomials, where we are
given a set of examples labeled ``positive'' or ``negative'' and
want to find a shortest monomial consistent with those
examples. A consistent monomial is true on positive and
false on negative examples. The reduction from Set Cover-
ing to monomials is as follows [10]. Given an instance of
Set Covering, S1 , S2 , ..., Sm/[1, 2, ..., t], create examples
of length m bits, one bit for each set, as follows. For each ele-
ment of U, create a negative example that has a 0 for all sets
containing it and 1's elsewhere. Also create one positive
example of all 1's. The latter prevents any negative literals
from occurring in a consistent monomial. It is easy to see
that a consistent monomial of k literals exists iff a size-k set
cover exists. So, assuming NP{P, the shortest consistent
monomial cannot be approximated in polynomial time
within any constant.

Under the stronger assumption NP/3 DTIME[nO(loglogn)],
[5, 14] show that Set Covering cannot be approximated
in polynomial time with a ratio of c log n, for any c<1�8.
(Our results, based on item 2 of Theorem 1, do not benefit

from this stronger bound.) For monomials (and
k-DNF�k-CNF), this result is sharp, since a greedy algo-
rithm finds a monomial that is at most logarithmically
longer than the shortest one [10]. Decision lists, however,
are of a different nature, since their individual components
are ordered in an essential way. They correspond not to
Set Covering, but to a generalization that we call (P, N)
Covering: Given disjoint sets P, N and a collection
S1 , S2 , ..., Sm/P _ N, we are to find a shortest sequence
Si1

, ..., Sik that covers P such that for each 1�r�k,

S$ir =
def

Sir> .
j<r

Sij

is a subset of either P or N. If S$ir is non-empty and S$ir�X,
we say Sir discovers X (covers part of X for the first time).
Here, X can be P, N, or a subset of either. When X is a
singleton set [x] we also say that Sir discovers x.

3.1. Non-approximability of (P, N) Covering

We show how to amplify the non-approximability of Set
Covering by a blow-up reduction from Set Covering to
(P, N) Covering. The basis of this blow-up is formed by a
construction that ``multiplies'' a Set Covering instance A
with a (P, N) Covering instance B to obtain a (P, N) Cover-
ing instance C whose smallest solution has a size close to the
product of those of A and B. Let instance A consist of cover-
ing sets s1 , s2 , ..., sm/U=[1, 2, ..., t]. Let instance B con-
sist of covering sets r1 , ..., rl/P _ N. Instance C will consist
of the following elements: a copy of U, m copies of P and N
called Pi , Ni , 1�i�m and two extra elements x, y. These
elements are partitioned into PC=U _ �i Ni _ [x] and
NC=�i Pi _ [ y]. Denote the copy of rj in Pi _ Ni by ri, j .
The covering sets of C are

v ri, j for all 1�i�m and 1�j�l.

v si _ Pi , for all 1�i�m.

v U _ NC .

v PC _ NC .

Claim 2. If a and b are the sizes of minimum covers of A
and B, then the minimum cover of C has size a(b+1)+2.
Furthermore, for any c, d, given a covering of C of size at
most c(d+1)+2, one can find, in time polynomial in the size
of C, either a cover of A of size at most c, or a cover of B of
size at most d.

Proof. Recall that a cover of C means a cover of set PC .
Since PC contains an element, x, which occurs in covering
set PC _ NC only, set NC must be covered before the dis-
covery of x by PC _ NC . Since only U _ NC can discover
y # NC , set U must be discovered by the sets si _ Pi , of
which a are necessary and sufficient. Each of those requires
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Pi to be covered first, for which b of the ri, j sets are necessary
and sufficient. Thus, a(b+1) sets are necessary and suf-
ficient to cover U, after which the sets U _ NC and PC _ NC

suffice (and are needed) to complete the covering of PC . For
the second part one can use the induced covering of U or the
smallest induced covering of P. Clearly, if the former is of
size more than c and the latter of size more than d, then by
the first part the cover of C would require at least
(c+1)((d+1)+1)+2 sets, contrary to the assumption
that c(d+1)+2 sets suffice.

We can now define ``powers'' A0, A1, ... of a Set Cover
instance A, where A0 is an empty (P, N) Cover instance, and
Ai+1=AAi. Solving for size, we find that a cover of Ai has
minimal size

(ai&1)
a+2
a&1

.

Furthermore, Claim 2 implies that, from a cover of Ai of size
s, we can efficiently find a cover of A of size at most w i

- s x ,
since

( i
- si&1)

i
- s +2
i
- s &1

>s.

This blow-up technique allows us to prove

Theorem 3. (P, N) Covering cannot be approximated in
polynomial time within a factor of 2log$ n, for any $<1, unless
NP is contained in DTIME[2polylog n].

Proof. Suppose, by way of contradiction, that it could.
Let an arbitrary Set Covering instance A of size n have a
smallest solution of size s<n. In 2 polylog n time, we form Ad

where d=logr n with r=2$�(1&$) (for clarity of exposi-
tion, we assume d to be integral; the details of non-integral
d are messy but straightforward). This (P, N) Covering
instance has a smallest solution of size

(sd&1)
s+2
s&1

.

Then, using the (P, N) Covering approximation, we find a
solution of size at most

(sd&1)
s+2
s&1

2d$ log$ s,

from which we can find a solution to A of size at most the
dth root of that, which is approximately

s2d&(1&$)log$ s=s2log&2$ n log$ s=O(s),

which contradicts the non-approximability of Set Covering
(Theorem 1). K

3.2. A Variant of (P, N) Covering and k-Decision Lists

We next adapt Theorem 3 to a slight variant of (P, N)
Covering, called Complementary (P, N) Covering, where
the collection of covering sets is closed under complementa-
tion. Given an instance A of (P, N) Covering, introduce
three new elements x, y, z, let P$=P _ [x] and N$=
N _ [ y, z]. Add for each covering set its complement
(which includes x, y and z), and add the complementary
covering sets N _ [x, z], P _ [ y], P _ N _ [z], and [x, y]
to produce a new instance A$. None of [x, y, z] can be
covered until P is covered, so the complements of original
sets are not useful, and once P is covered, it takes two addi-
tional sets to cover x and thereby P$. Note that covering N$
also takes two additional sets, a fact that will be used later.
Hence, A has a size-k solution if and only if A$ has a solution
of size k+2. So, similarly to Theorem 3, we have

Corollary 4. Complementary (P, N) Covering cannot
be approximated in polynomial time within a factor of 2log$ n,
for any $<1, unless NP is contained in DTIME[2 polylog n].

Using this result we prove the non-approximability of
k-decision lists.

Theorem 5. k-Decision lists cannot be approximated in
polynomial time by k-decision lists within a factor of 2log$ n,
for any $<1, unless NP is contained in DTIME[2 polylog n].

Proof. We first show that 1-decision lists are as hard to
approximate as Complementary (P, N) Covering, by a
proper encoding.

Consider an instance A of Complementary (P, N) Cover-
ing: S1 , S� 1 , ..., Sm , S� m�P _ N (we will assume A is derived
as in Section 3.2). For each element s in P _ N we create a
bit-vector e of length m. The i th bit of e is 1 if Si contains ele-
ment s, otherwise the i th bit of e is 0. The example e is
labeled positive or negative depending on whether s is from
P or N, respectively. The 1-decision list problem on these
examples is isomorphic to problem A, since a decision list
node with literal xi or x� i selects covering set Si or S� i , and the
constant of the node is then determined by whether this set
discovers P or N. Also, the part of N that remains not
covered corresponds to the default 0 classification of
examples in the decision list. Thus there is a 1-decision list
of size l iff there is a l set covering for the Complementary
(P, N) Covering problem.

To extend the results to k-decision lists, for k>1, we add
two additional fields, called x and y, to the bit-vectors. Field
x has length k and field y length k&1. We create a
k-decision list problem instance B as follows. Replace each
old example e by k2k length m+2k&1 examples exy, con-
sisting of

117LOWER BOUNDS ON LEARNING DECISION LISTS AND TREES
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1. 2k examples where x ranges over all k bit strings and
y=1k&1, all classified the same as the old example.

2. 2k(k&1) examples where x ranges over all k bit
strings and y consists of k&2 ones and one 0, classified
positive or negative as the parity of x is 1 or 0, respectively.

Intuitively, the purpose of these examples is to force k&1
of the k literals in each decision-list node to be wasted on
distinguishing the examples of type 1 from the examples of
type 2, leaving only one literal to select a covering set as in
the k=1 case. After all the type 1 examples have been
covered in this way, those of type 2 can be covered with
2k&1 (a constant) nodes each using all k literals to test x for
parity 1.

The next claims conclude the proof of the theorem.

Claim 6. As long as both positive and negative type 1
examples remain uncovered, each node in L must test all k&1
y variables,

Proof. If a node does not test all k&1 y variables, then
it will cover some type 2 examples. Consider the first node
that covers a type 2 example. If it does not test all k
x-variables then it will satisfy examples of both parities,
a contradiction since these examples were not covered
before. If it does test all k variables, then it will satisfy the
assumed remaining positive and negative type 1 examples,
another contradiction.

Claim 7. Complementary (P, N) Covering problem A
has a size l covering iff there is a solution to the k-decision list
problem B of size l+ck , where ck is a constant depending only
on k.

Proof. Let ck be the size of a minimum k-decision list for
just the type 2 examples, i.e., parity on k variables (we need
not bother showing that ck=2k&1). Given a size l solution
to A, we can convert each covering set S to a decision list
node with monomial ly1 } } } yk&1 where literal l corresponds
to S and with constant 1 or 0 according to whether S dis-
covers P or N. The resulting length l decision list covers all
type 1 examples, and can be extended with ck nodes to cover
all type 2 examples. Now for the other direction, assume we
have a decision list L of size l+ck that is a solution to B.

Claim 6 implies that a prefix of L corresponds to a cover-
ing of P or N. As noted in Section 3.2, a covering of N
implies a same size covering of P. Since the remainder of L
must therefore be a decision list for all the remaining type 2
examples, it must have length at least ck and hence the prefix
has length at most l. K

The following learning result follows from the standard
technique mentioned in the Introduction [12].

Corollary 8. For no $<1 does there exist a polyno-
mial time PAC learning algorithm for k-decision lists whose
hypothesis class is k-decision lists of size no more than l2log$ l,
where l is the size of the target k-decision list, unless
NP/RTIME[2 polylog n].

3.3. Non-approximability of Monotone 1-Decision Lists by
Monotone Decision Lists

In learning theory, one often considers the problem of
learning a class of concepts by a broader class of hypothesis.
The freedom to formulate hypothesis from a richer class
generally makes the learning task easier. Analogously, we
can ask whether it is for instance easier to approximate a k
decision list with a 2k decision list, or even an arbitrary deci-
sion list, with no bound on the length of the monomials. We
provide an answer to a variation of the latter problem,
where no negative literals are allowed in the monomials.

Theorem 9. Monotone 1-decision lists cannot be approx-
imated in polynomial time by monotone decision lists within
a factor of 2log$ s, for any $<1, unless NP is contained in
DTIME[2 polylog n].

Proof. We present a variant on the multiplication of
Section 3.1 to produce an instance of (P, N) Covering where
the intersections of covering sets are of no use. This variant
is based on the Vertex Cover problem, which can be
regarded as a restricted form of Set Covering where each
element appears in exactly two covering sets.

Again the basis of the blow-up is formed by a construc-
tion that multiplies a Vertex Covering instance A with a
(P, N) Covering instance B to obtain a (P, N) Covering
instance C whose smallest solution has a size close to the
product of those of A and B. Let instance A consist of cover-
ing sets s1 , s2 , ..., sm/U=[1, 2, ..., t]. Let instance B con-
sist of covering sets r1 , ..., rl/P _ N. Instance C will consist
of the following elements: a copy of U, m(m+1)�2 copies
of P and N indexed by an unordered pair of the m set
indices (Pi, j=Pj, i and Ni, j=Nj, i), and two extra elements
x, y. We take PC=U _ �1�i, j�m Ni, j _ [x] and NC=
�1�i, j�m Pi, j _ [ y]. The copy of rh in Pi, j _ Ni, j is referred
to as ri, j, h . We take the following covering sets:

v for each 1�i�m, 1�h�l a set Si, h=�1�j�m ri, j, h

v for each 1�i�m, a set Si=si _ �1�j�m Pi, j

v for each 1�i, j�m, a set Ii, j=Si & Sj=(si & sj) _ Pi, j

v U _ NC

v PC _ NC .

Note that the collection of sets containing parts of both
PC and NC is closed under intersections since for any i,
Si/U _ NC/PC _ NC . Also, the intersection of three or
more sets Si is empty, because in the Vertex Cover problem,

118 HANCOCK ET AL.
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each element appears in only two covering sets. The sets Si, h

are not closed under intersections, but such intersections are
not helpful in a covering anyway.

Claim 2 can be shown to hold for these instances as well.
We sketch the remainder of the proof.

An arbitrary Vertex Cover instance can be taken to the
appropriate d th power. Using the standard encoding of
Theorem 5, this yields an instance of the monotone decision
list problem, any solution of which is essentially a monotone
1-decision list, since intersections of covering sets are not
useful. Approximating the the blown-up Vertex Cover
problem and finding a dth root solution from that gives us
an approximation to the original Vertex Cover instance of
size

s2log&2$ n log$ s�s(1+=),

for any fixed =>0 and sufficiently large n. This contradicts
the non-approximability of Vertex Cover (Theorem 1). K

4. NON-APPROXIMABILITY OF GENERAL
DECISION LISTS

In this section, we will show that decision lists also cannot
be efficiently approximated, unless NP=P. Notice that the
non-approximability results for k-DL in the last section
does not say anything about DL, and our bound in this sec-
tion will be stronger than that of the previous section.

The result below on DNF easily follows from a reduction
from the Graph Coloring problem to the approximation of
the smallest consistent DNF given in [19] (see also [12])
and the n= non-approximability lower bound for Graph
Coloring in [14].

Theorem 10 (Pitt�Valiant, Lund�Yannakakis). DNFs
cannot be approximated in polynomial time by DNFs within
a factor of n=, for some =>0, unless NP=P.

We will prove the same non-approximability ratio for
decision lists. Our result in fact strengthens Theorem 10 by
showing that DNFs cannot be approximated by the richer
class of decision lists within a ratio of n=.

Theorem 11. Decision lists cannot be approximated in
polynomial time by decision lists within a factor of n=, for
some =>0, unless NP=P.

Proof. We use a reduction similar to that of [19], which
linearly reduces the Graph Coloring problem to DNF,
although our reduction is slightly more involved.

Given a graph G=(V, E) on n nodes and m edges, we
reduce it to an instance of decision lists. Construct positive
examples

1i&101n&i (1)

(0 in position i, 1's elsewhere), one for each vertex, and
negative examples

1i&101 j&i&101n&j (2)

(0's in positions i, j, 1's elsewhere), one for each edge [i, j].
We will show that G is k colorable iff there is a decision list
of k terms, for any k.

If G is k colorable, then [19] shows that there is a DNF
formula of k terms, which is trivially expressed as a decision
list of k terms. It remains to show that if there is a decision
list of k terms, then we can find a k-coloring of G. This direc-
tion needs a nontrivial proof different from [19].

Consider a decision list L=(m1 , b1)(m2 , b2) } } } (mk , bk)
of k terms consistent with these positive and negative
examples in (1) and (2). We will produce a k-coloring of G
from L.

Say that c satisfies a vertex or edge if the corresponding
example satisfies mc . Say that c discovers a vertex or edge if
c satisfies it and no d<c does so. If bc=1, then by con-
sistency of L, c only discovers vertices, while if bc=0, it only
discovers edges.

Convert G to a directed graph by directing all edges in G
arbitrarily. The color assigned to a vertex i is the minimal c
that either

1. discovers i, or

2. discovers exactly one edge, where that edge is
directed to i.

Notice that in the second case, color c is given to just one
vertex, i.

Now we will show that no pair of neighboring vertices get
the same color. Consider an edge e=(i, j), directed from i
to j. Suppose, by way of contradiction, that vertices i and j
are assigned the same color c. Then bc=1, because other-
wise the color c is assigned to at most one vertex according
to item 2 above. Hence, c must satisfy both i and j ; that is,
mc satisfies the positive examples 1i&101n&i and 1 j&101n&j

corresponding to i and j. Hence the monomial mc does not
include literals xi , xj , or any negative literals. But this
means mc satisfies e. So by consistency of L, e must have
already been discovered, say, by d. But in order to satisfy
e=(i, j), md may contain neither xi nor xj nor any negative
literals x� k , k{i, j. This leads to a contradiction with i and
j being colored c, since either

v d satisfies vertex i or j in which case i or j must have
been uncovered by some smaller d $, hence not colored c,

v or md includes both x� i and x� j , in which case only edge
e is satisfied by d. But in this case, by our rule 2, we would
have colored j with color d rather than c.

Therefore, no pair of vertices connected by an edge are
colored by the same color. Furthermore, all vertices are
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uncovered by some c. We have produced a k coloring for the
graph G.

Since the above reduction preserves minimum solution
size, approximation of decision lists within a factor of n=

would imply the same approximation of Graph Coloring,
and hence is impossible under the given assumptions. K

The above proof also shows

Corollary 12. DNFs cannot be approximated in poly-
nomial time by decision lists within a factor of n=, for some
=>0, unless NP=P.

Corollary 13. There exists an =>0 such that there is
no polynomial time PAC-learning algorithm for decision lists
(or DNF ) that, when run on examples from a decision list
(DNF, respectively) of size l, will on success (i.e., with
probability exceeding 1&$) always output as a hypothesis a
decision list of size at most l 1+=, unless NP=RP.

5. NON-APPROXIMABILITY OF DECISION TREES

We now consider the problem of finding a small decision
tree consistent with a set M of examples. For notational
convenience we measure the size of the tree as the number
of leaves (i.e., one more than the number of interior nodes
in a binary tree).

Theorem 14. Unless P=NP, there is a constant c>1
such that decision trees cannot be approximated in polyno-
mial time by decision trees within a factor c.

Proof. The argument is similar to the one used in Sec-
tion 3 to show the hardness of approximating monomials.
Decision trees are clearly at least as expressive as
monomials. It remains to show that for the given boolean
vectors (a negative one for each element of the universe and
an all 1's positive one), they are not more expressive. To this
end, observe that in a consistent decision tree, any node's 0
subtree can be safely replaced by a single leaf labeled 0 (the
unique positive example has all variables set to 1), the result
being a degenerate tree that's equivalent to a monomial. K

We now discuss how to amplify this result to show that an
algorithm to approximate decision trees within a factor of
2log$ n could in fact be improved to approximate within an
arbitrary constant factor in pseudo-polynomial time.

A key idea is that we can ``square'' a decision tree problem
as described in the following construction. Let M be a set of
m examples with n variables. Construct a set M$ with m2

examples over 2n variables by concatenating xy for each
x, y # M. If f (x) is the classification of example x, let each
example xy have the classification f $(xy)=f (x)� f ( y) (i.e.,
f $ is the exclusive-OR of two copies of f over different
variables).

The obvious way to build a decision tree for M$ is to take
a decision tree T for M on the first n attributes and place at
each of its leaves a copy of T over the second set of n
attributes. This converts a k-leaf tree for M into a k2 leaf tree
for M$. We show that this construction is optimal as a con-
sequence of the following stronger lemma which shows how
we can efficiently convert a tree for M$ back to trees for M
in a manner that has implications for approximation.

Lemma 15. There is an efficient algorithm to convert a
decision tree with k$ leaves that is consistent with M$ into a
tree with no more than - k$ leaves that is consistent with M.

Proof. Let T $ be such a k$ leaf decision tree consistent
with M$. We use the notation that x1 , ..., xn , y1 , ..., yn are
the variables in T $, where the xi 's test the first n attributes
and the yi 's test the second n.

Note that if examples xy and x$y$ (for x, y, x$, y$ # M)
both reach the same leaf in T $, then examples xy$ and x$y
must also reach that leaf. To avoid contradiction it must be
true that x and x$ have the same classification in M and
likewise for y and y$. More generally, the path to a leaf in T $
must determine sufficient information to determine two
classifications for each example that reaches the leaf��one
based on the xi 's and one based on the yi 's (the leaf 's label
is the XOR of those two classifications).

To prove the Lemma we first consider the simple case
where T $ is constructed such that every path in T $ has all its
tests of the first n attributes (variables x1 , ..., xn) before it
tests any of the second n attributes (variables y1 , ..., yn). We
describe such a tree as being in ``standard form.'' The top
portion of T $ that tests x1 , ..., xn must have k distinct paths
(k being the minimum size of any tree consistent with M)
since otherwise we could form a fewer than k leaf tree for M
by taking this top portion and giving each path a leaf value
corresponding to the unique classification of all the x's in M
that follow that path (the previous paragraph states that
these tests suffice to assign a single class consistently with
M). Similarly, each of the subtrees over y1 , ..., yn must also
have k or more leaves. This implies both that T $ has at least
k$=k2 leaves and also that we can derive from T $ a - k$ leaf
tree for M, simply by taking whichever is smallest of the
x1 , ..., xn subtree or any of the y1 , ..., yn subtrees.

We now argue that if T $ is not in standard form, then an
efficient transformation can find another equivalent tree
that is in standard form and has no more leaves than T $.
From this the lemma follows.

The transformation process will process T $ incrementally
from the bottom up. After each node is processed, the
following two properties will be true:

1. The subtree rooted at the node is in standard form.

2. All of the various y1 , ..., yn subtrees reachable from
the node are identical (except possibly for having com-
plementary leaf settings).
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Both properties are trivially true at the leaves. We show how
to process a node both of whose children have been
processed in such a way as to achieve the two properties
(without increasing the size of the tree or changing the
function it represents).

We consider two cases. First, suppose the node being pro-
cessed tests a variable xi (1�i�n). In this case property 1
is already true. To achieve property 2, note that each of the
y1 , ..., yn subtrees reachable from this node must perform
exactly enough tests to uniquely decide on the yi classifica-
tion of each example that reaches it. These subtrees get the
same set of examples over y1 , ..., yn , and so they need only
differ on the value of their leaves (which are the XOR of
whatever the x and y classifications turn out to be). Thus we
can choose the smallest of all the xi node's yi subtrees to
replicate onto every path (thus achieving property 2) while
ensuring that T $ does not grow.)

The second case is when the node being processed tests
variable yi (1�i�n). Assume w.l.o.g. that the yi node's
0-subtree has a smaller x portion than its 1-subtree. Then
transform T $ by moving yi below tests of x1 , ..., xn as
follows. Replace this test of yi with its 0-subtree and then
reinsert yi on all the edges leading from a variable xj to a
variable yk . Each such new test of yi will have as its
1-subtree the tree over y1 , ..., yn that appeared throughout
yi 's original 1-subtree (with the leaves set to the appropriate
XOR value). It's not hard to verify that this transformed
tree is no larger than T $, is equivalent, and satisfies the two
properties.

This process iterates up T $, and once the root is processed
we are done. K

The construction generalizes to an arbitrary depth d ; i.e.,
by concatenating d copies of the original variables, we get a
sample M (d ) of md examples over dn attributes for which the
minimum decision tree has kd nodes iff k is the minimum
number of nodes for a decision tree over M. In a manner
analogous to that of Theorem 3, this blow-up technique
gives us

Theorem 16. Decision trees cannot be approximated in
polynomial time by decision trees within a factor of 2log$ s, for
any $<1, unless NP is contained in DTIME[2 polylog n].

Proof. Suppose, by way of contradiction, that they
could. Let an arbitrary Set Covering instance A of size n
have a smallest solution of size s<n. In 2 polylog n time, we
form a tree decision problem Ad where d=logr n with
r=2$�(1&$). The smallest solution of A$ has size sd. Then,
using the tree decision approximation, we find a solution of
size at most sd2d$ log$ s, from which we can find a solution to
A of size the d th root of that, which is

s2d&(1&$) log$ s=s2log&2$ n log$ s=O(s),

which contradicts the non-approximability of Set Covering
(Theorem 1). K

Corollary 17. For no $<1 does there exist a polyno-
mial time PAC-learning algorithm for decision trees whose
hypothesis class is decision trees with no more than l2log$ l

leaves, where l is the number of leaves in the target decision
tree, unless NP/RTIME[2 polylog n].
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