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Recent research on CO2 capture is focusing on the optimization of CO2 absorption using amines (mainly
monoethanolamine—MEA) in order to minimize the energy consumption of this very energy-intensive process
and improve the absorption efficiency. Process optimization is always required and this research is worth and
necessary. However, the main concern arises when thinking of the overall process: solvent production, solvent
use and regeneration, and environmental effects related to its use/emissions. The production ofMEA fromammo-
nia involves important CO2 emissions during the Haber–Bosch process. The regeneration of the solvent after the
absorption is also an indirect source of CO2 related to the use of fuels (i.e., combustion processes for energy
supply). Thus, the evaluation of the overall balance of CO2 emitted and captured is essential to determine the
efficiency of the process. In addition, other environmental impacts associated to the toxicity and environmental
fate of the solvent have to be considered. The use of MEA and other amines in CO2 capture is a point of concern
and a global application does not seem to be the best strategy.
This review aims at giving an overview of themain implications of using MEA as absorption solvent for CO2 cap-
ture together with the last advances in research to improve the conventional absorption process. Furthermore,
alternatives of using other solvents and/or using other technology and their advantages and weak points will
be briefly provided. An approach oriented to produce CO2-based products with economic value that can be re-
integrated in a closed carbon loop, reducing the use of freshmaterials and decreasing the production cost, should
be the final objective of current research on CO2 capture.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Carbon dioxide (CO2) is the main greenhouse gas that is leading
to dramatic changes in global warming and climate change. The
. This is an open access article under
concentration of this gas has increased significantly in the last years,
currently reaching values around 400 ppm [52]. The industry accounts
for almost 40% of worldwide CO2 emissions, which is an important
point of concern [1]. Several strategies are being considered in order
to reduce CO2 emissions: post-combustion capture, pre-combustion
capture, oxyfuel combustion, and electrochemical separation [16,24,39].
A considerable list of large-scale integrated CO2 capture and storage
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(CCS) projects in the stages of operation or execution can be found on the
Global CCS Institute's website (http://decarboni.se), which is included in
Table S1 as Supporting Information. Post-combustion plants are found
in the execution (in construction) stage.

Post-combustion capture can be considered themost straightforward
schema for application in existing processes, although it is also one of the
most challenging approaches due to the diluted concentration of CO2 and
its low pressure in the flue gas: 12–15 mol% (in a post-combustion flue
gas from a coal-fired power plant) [4] and, the poor value of the recov-
ered compound (carbon in the highest oxidation level: CO2) [32]. In
this case, the CO2 can be removed in a chemical or physical absorption
process. Table 1 shows an overview of the different industrial processes
used for CO2 removal [8]. Two common physical absorption solvents
are glycol dimethylethers (Selexol) and propylene carbonate. Regarding
the solvents used in chemical absorption processes, they are mainly
aqueous amine solutions, such as monoethanolamine (MEA), activated
methyl diethanolamine (aMDEA) or hot potassium carbonate solutions.
Nevertheless, the MEA process is undoubtedly the most extended for
CO2 capture in post-combustion processes, even though it requires
high regeneration energy. Engineering, procurement, construction and
service companies, such as KBR (Texas), or leaders in power generation,
such as Alstom (France), are betting on this technology, which can be
viewed as a retrofit or add-on to the existing power plant. CCS is now a
reality in the power industry.

However, if the use of MEA is extended as the main solvent for CO2

capture in post-combustion processes, an economic and environmental
global impact will occur. Recent research is focused on the use of this
solvent in a more technically and economically effective way. The
objective of this manuscript is to show the global implications of using
MEA as the main solvent for CO2 capture, and review briefly the main
research that is focused on the optimization of the MEA process as
well as other strategies that try to develop alternatives to the use of
MEA. After reading this manuscript, the reader should have developed
an initial criterion on the implications of using MEA in a global scale
and the degree of current applicability of other alternatives.

2. Implications of a global use of MEA

Using MEA in a global scale would have a large impact on the
production and cost of this chemical. Nevertheless, other effects related
to the impact of an increased production on the environment due to the
Table 1
Overview of CO2 removal processes in a post-combustion scenario [8].

Process
name

Solvent/reagent + additives CO2 in treated
gas (ppm)

Physical absorption systems
Purisol (NMP) N-methyl-2-pyrrolidone Less than 50
Rectisol Methanol Less than 10
Fluorsolv Propylene carbonate Function of pressure
Selexol Polyethylene glycol dimethyl ether Function of pressure

Processes with chemical reagents
MEA Water/monoethanolamine (20%) Less than 50
Promoted MEA Water/MEA (25–30%) + amine guard Less than 50
Benfield Water/K2CO3 (25–30%) + DEA, etc 500–1000
Vetrocoke Water/K2CO3 + As2O3 + glycine 500–1000
Catacarb Water/K2CO3 (25–30%) + additives 500–1000
Lurgi Water/K2CO3 (25–30%) + additives 500–1000
Carsol Water/K2CO3 + additives 500–1000
Flexsorb HP Water/K2CO3 amine promoted 500–1000
Alkazid Water/K2-methylaminopropionate To suit
DGA Water/diglycolamine (60%) Less than 100
MDEA Water/methyl diethanolamine

(40%) + additives
100–500

Hybrid systems
Sulfinol Sulphones/DIPA Less than 100
TEA–MEA Triethanolamine/monoethanolamine

Water/sulpholane/MDEA
Less than 50
emissions of CO2 during the production process should not be
underestimated. In order to detect the main points of concern, the fol-
lowing lines describe briefly the general production process of MEA,
based on the reaction between ammonia (NH3) and ethylene oxide
(EO), two of the Top 50 global chemicals produced by mass [4]. The
overall process should include the production of NH3 and EO, in order
to be able to see the overall picture of CO2 emissions. Thus, it can be di-
vided in three parts according to Fig. 1: 1) NH3 production; 2) EO pro-
duction; and finally, 3) MEA production.

2.1. Ammonia production

Ammonia is synthesized from nitrogen and hydrogen by the follow-
ing reaction:

N2 þ 3H2→2NH3 Reaction 1

Atmospheric air is the best available source of nitrogen while the
hydrogen required can be produced from various feedstocks, although
currently it is derived mostly from fossil fuels, including two different
production methods depending on the type of fossil fuel: steam
reforming or partial oxidation. However, about 80% of the ammonia
production capacity worldwide is currently provided by the well-
developed steam reforming process [8]. Fig. 2 shows the main steps in-
volved in steam reforming for NH3 production. A typical size for a single
stream ammonia production plant is 1000–1500 tonnes/day (300,000–
500,000 tonnes/year) [8].

The first stage, desulphurization, has the objective of elimination of
any sulfur compounds since the catalyst used in the steam reforming
process is highly sensitive to them. Thus, the feed gas is preheated up
to 350–400 °C and the sulfur compounds are hydrogenated to H2S by
typically using a cobalt molybdenum catalyst and adsorbed on pellet-
ized zinc oxide. Next, in the primary reformer, the following reaction
takes place, which is highly endothermic and with a conversion rate
around 60%:

CH4 þ H2O→ CO þ 3H2 ΔHfo ¼ 206 kJ=mol : Reaction 2

The heat for this reaction is obtained from burning natural gas or
other fuels.

In the secondary reformer, nitrogen is supplied for the synthesis and
to complete the conversion of the hydrocarbon feed, reducing the con-
tent of methane to around 0.2–0.3%. The gas stream from the secondary
reformer contains 12–15% CO (dry gas base), whichwill be converted to
CO2 and H2 in the shift section, according to:

CO þ H2O→CO2 þ H2 ΔHfo ¼ − 41 kJ=mol: Reaction 3

The large concentration of CO2 that is present in the gas stream has
to be removed before the ammonia synthesis. The CO2 is removed in a
Fig. 1.Main chemicals involved in MEA production [4].
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Fig. 2. NH3 production by conventional steam reforming [8].
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chemical or physical absorption process as indicated in Table 1, typically
aqueous amine solutions (e.g., MEA), reducing the CO2 content to 50–
3000 ppmv. The small amounts of CO2 and CO that are still remaining
in the gas stream are a poison for the ammonia synthesis catalyst. Thus,
they are removed by hydrogenation to CH4 during the methanation
stage. Finally, after compression of the gas stream to the required level
(100–250 bars, 350–550 °C), the synthesis of ammonia takes place on
an iron catalyst at pressures usually in the range of 100–250 bars and at
temperatures of between 350 and 550 °C:

N2 þ 3H2→2NH3 ΔHfo ¼ −46 kJ=mol Reaction 4

Due to the low conversion efficiency per pass (20–30%) caused by
the unfavorable equilibrium conditions, the unreacted gas is recycled
after removing the ammonia by liquefaction using a refrigeration
compressor.

The production of CO2 in the steam/air reforming of natural gas is
1.15–1.40 kg/kg NH3, without including CO2 in combustion gases. For
comparison, in partial oxidation of residual oils, CO2 production is
2–2.6 kg/kg NH3 [8]. The produced CO2 can be recovered for further
use as feedstock in a urea plant, for the use in fertilizer production
(ODDAprocess) and/ormethanol production or liquefaction, in the bev-
erage industry or as a coolant gas in nuclear reactors. There is, however,
an inevitable excess of CO2 which is released as an emission from the
process. This excess is accounted around 500 kg CO2/t NH3. In addition,
the ammonia production involves the emission of about 0.02–0.04 kg of
solvents for CO2 removal per tonne NH3, mainly due to leaks, and less
than 0.01 kg SO2/t NH3 and 0.03 kg CO/t NH3 [8].

2.2. Ethylene oxide production

Ethylene oxide (EO) is a very versatile chemical intermediate be-
cause of its high reactivity caused by its highly strained ring, which
can be opened easily [43]. However, this reactivity togetherwith its tox-
icity makes it a hazardous compound. EO is produced by direct oxida-
tion of ethylene with air or oxygen on the surface of a silver catalyst.
At present, EO is produced mainly by the oxygen-based process. In
addition to EO formation (partial oxidation in Reaction 5), complete
combustion (total oxidation in Reaction 6) to CO2 and water also takes
place. Both reactions are exothermic, taking place at 250 °C and
1.5 MPa [43].

Reaction 5

H2C ¼ CH2 þ 3 O2→2 CO2 þ 2 H2O ΔHfo ¼ −1323 kJ=mol

Reaction 6

2.3. Monoethanolamine production

Production of monoethanolamine (MEA) takes place by means the
reaction between NH3/water and EO. No catalyst is involved and it is
an exothermic reaction. The operating pressure is 50–70 bars to keep
the NH3 in a liquid phase. The NH3 molecule can react with one, two
or three EO molecules, leading to the formation of monoethanolamine
(MEA), diethanolamine (DEA) or triethanolamine (TEA), respectively.
The composition of the resulted mixture depends on the ratio NH3/EO
and can be oriented to the production of the desired compound: the
higher the proportion of NH3, the more MEA is formed.

Reaction 7

After the reaction, the excess of ammonia is stripped out and the
water is removed from the reaction mixture by distillation in order to
be returned to the reaction step again [9]. Afterwards, the ethanol-
amines are separated from each other in a three-step distillation unit.
Fig. 3 shows the general flowsheet of MEA production.

As described above, the overall process of MEA production involves
energy consumption and direct and indirect CO2 emissions. These emis-
sions have to be considered in the global account of captured CO2 in
order to develop a realistic approach in which the increase of global
MEA production does not cause a negative balance in the general strat-
egy of CO2 capture. In addition, within the MEA process, published re-
sults have pointed out that the reduction of CO2 emissions into the
atmosphere is achieved at the expense of increasing other emissions
and corresponding environmental impacts (mainly those related to
human toxicity and eutrophication) [47]. For example, emission of
MEA and other amines to the environment is not negligible. Post-
combustion capture leads to amines losses from the absorber column,
involving a potential source of amines and amine degradation products,
such as nitrosamines and nitramines [38,41,44]. Amines are not likely
to be of toxicological concern to the aquatic environment at current
environmental concentrations but degradation reactions may ocurr,
leading to the formation of toxic compounds, such as nitrosamines
and nitramines, through reactions between precursor amines and
oxidants such as nitrite (NO2

−). This would represent a risk of contami-
nation of drinking water supplies by these often carcinogenic com-
pounds [41]. The formation of nitrosamines and nitramines in the
atmospheric oxidation of amines is shown in Fig. 4 [38]. These conver-
sion and degradation reactions will take place in both the gas phase
and the atmospheric aqueous phase, which includes water-containing
aerosol particles and cloud-, rain- and fog-droplets [38]. Significant ev-
idences for formation of nitrosamines and nitramines through CO2



Fig. 3. Production of ethanolamines (MEA, DEA and TEA) from the reaction between ammonia (NH3) and ethylene oxide (EO).
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capture using amine-based solvents have been discovered [35]. Thus,
the formation of these toxic compounds has to be considered when de-
fining the viability of post-combustion CO2 capture using amine-based
solvents in a global scenario. In addition, amines also suffer degradation
due to the presence of O2 and SO2. Results by Supap et al. showed that
an increase in temperature and the concentrations of MEA, O2 and SO2

resulted in a higher MEA degradation rate [51].
In spite of the major disadvantages of using amine-based post-

capture processes, they can be applied to already constructed plants,
operatedwith the plant to capture CO2, or disconnected to providemax-
imum power output at times of peak electricity price, and large pilot
plants are under operation [18]. Thus, current research considers the
use of amines as a realistic approach, aiming at the optimization of the
CO2 capture process using MEA and other amines. Nevertheless, novel
solvents and novel technologies are an important alternative under
development. The last advances in these areas are shown in the next
sections.

3. Current research on CO2 absorption using MEA

The current research on CO2 absorption usingMEA ismainly focused
on the minimization of energy consumption during solvent regenera-
tion [30,34]. Le Moullec et al. [26] elaborated a thorough review based
on patents and research articles on the processmodifications of CO2 ab-
sorption. Three main categories of research were highlighted with the
corresponding sub-categories: 1) absorption enhancement: intercooled
absorber, rich solvent recycle, interheated absorber, split flow
Fig. 4. Routes of atmospheric photo-oxidation of amines. Published with permission from
Nielsen et al. [38].
arrangement, double loop absorber, flue gas compression and expan-
sion; 2) heat integration: rich solvent splitting, rich solvent preheating,
rich solvent flashing, parallel economizer arrangement, interheated
stripper, heat integrated stripper, overhead condenser bypass, vacuum
operated stripper, and multieffect stripper; and, 3) heat pump: lean
vapor compression, rich vapor compression, integrated heat pump,
stripper overhead compression, and multipressure stripper. This study
concludes with the existance of a clear lack of pilot plant scale evalua-
tion sincemost studies have beenperformed through processmodeling.
In addition, the energetic performance of the capture process is in-
creased but at the expense of increasing their complexity and cost and
reducing their operability.

Indeed, the MEA-based CO2 capture process has been modeled in-
tensively in the literature [40,60], describing several operation strate-
gies and control configurations that aim at a decrease in energy
consumption during solvent regeneration. The liquid residence time in
the reboiler was found to be the dominant factor in the response time
of the system and there is a linear relationship among the optimal sol-
vent rate, the energy flux to the reboiler and the boiler load [60]. The
inlet flue gas flowrate presents also an important role in the number
of unconstrained degrees of freedom and several operation regions for
the process have been identified [40]. Arce et al. [2] showed that the ap-
plication of dynamic optimisation approaches, such as model predictive
control focused on the reboiler, to exploit the time-varying values of
wholesale electricity and CO2 prices can lead to significant savings in
the operating costs associated with post-combustion CO2 capture pro-
cesses, reducing the operating cost by an average of approximately
4.66%, and in some cases by as much as 10%. Varying the lean solvent
loading, or allowing CO2 to accumulate in the circulating solvent
(in sympathy with prevailing market prices for CO2 and energy) was
found to be a key to enhance the cost-optimality of the process.

Some studies are also developing technological modifications in the
conventional process in order tominimize the energy consumption. For
example, Jande et al. [22] coupled the CO2 absorption–desorption sys-
tem based on MEA with capacitive deionization (CDI) to minimize the
hear duty requirement of the stripper. Before the carbon-richMEA solu-
tion is sent to stripper for regeneration, it is concentrated using a CDI
cell where ionic species are adsorbed at oppositely charged electrodes
during the charging cycle, and an ion free solution is sent back to the
absorber. Results indicated that 10–45% of the total energy supplied to
the stripper can be conserved because of the high CO2 loading of the
solution. Integration of ultrasounds have also demonstrated an increase
in the physical desorption rate and the desorption can be performed at
temperatures below 80 °C [14].

García-Abuín et al. [15] developed two alternative processes to the de-
sorption step consisting in removing a reaction product (mainly the bicar-
bonate ion) and the simultaneous amine deprotonation. Those processes
(i.e., treatment of the carbon dioxide-rich amine with calcium hydroxide
or with the use of an anionic exchange resin) showed an important
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decrease in the energy employed for the regeneration of the investigated
tertiary amines (pyrrolidine—PYR, methyldiethanolamine—MDEA,
triethanolamine—TEA and triisopropanolamine—TIPA).

Another example is the integration of solar-assisted post-
combustion CO2 capture into a power plant with amine-based chemical
absorption for CO2 capture [27,59]. Solar thermal energy has the poten-
tial to support the thermal demand for CO2 capture and theproposed in-
tegration has shown better performance than the conventional process
with the limitation of the investment cost. However, due to the global
magnitude of CO2 capture, application of solar thermal energy can be
considered a good strategy but its capacity is currently not large enough
to cover all the energy requirements.

Thus, the conventional process can still be optimized and improved
bymodifying the operating conditions or bymeans of the integration of
other emerging technologies.

4. Alternative solvents for CO2 capture

Another field of recent research is the use of the absorption–
desorption process but utilizing a different solvent. The energy penalty
that the use of MEA presents is widely known and the search for other
solutions conform a large part in the update of the state of the art. One
of the possible substituent that has been proposed instead of MEA is
the use of aqueous ammonia. Bandyopadhyay presented in 2011 an
interesting comparison between the energy consumption and CO2 emis-
sions caused by the use ofMEA versus the use of ammonia. The estimated
total energy requirement for the NH3-based process was 1147 kJ/kg-CO2,
which was founded to be around 27% of the energy requirement of the
MEA-based process accounted in that work for 4215 kJ/kg-CO2 using
30% w/w MEA solution [3,11,36]. The reported range of energy require-
ment when using 30 wt.% MEA varies from 3200 to 5500 kJ/kg-CO2,
and even more recent works using 35 wt.% MEA with advanced stripper
configurations could achieve heat duties as low as 2900 kJ/kg [45] but
still higher than the NH3-based process. In addition, using ammonia
would lead to the production of ammonium bicarbonate (NH4HCO3)
among other compounds (ammonium sulfate: (NH4)2SO4; ammonium
nitrate: NH4NO3) by adapting the reaction conditions (temperature, pres-
sure, and concentration of reactants), which is a synthetic N-fertilizer
whose use produces about 152 Mt CO2-equivalent emissions. Then, pro-
ducing this compound from the CO2 capture process instead of conven-
tional routes would decrease the overall emissions [3]. Thus, those that
defend the use of ammonia as an alternative for CO2 capture take its
lower energy consumption and the possibility of recovering as fertilizer
as themain arguments to promote its application in a large scale. In addi-
tion, using aqueous ammonia may offer some benefits in comparison
with the MEA process: higher loading capacity (mol CO2 absorbed/mol
of absorbent), no corrosion problems, stable in flue gases conditions,
lower liquid to gas flow ratio, multi-pollutant capture capability (also
used for SO2 and NOx removal), less energy consumption during the re-
generation of solvent (if the ammonia is recovered instead of used to pro-
duce NH4HCO3, (NH4)2SO4, and/or NH4NO3), and it is more economic
than MEA. Nevertheless, as commented in the previous sections, not
only should the CO2 emissions related to the absorption process be con-
sidered but also the overall emissions caused during the production of
ammonia. In this aspect, a large quantity of CO2 is produced during the
Haber–Bosch process. The production of MEA is more energy intensive
than the production of ammonia but the much higher necessary ammo-
nia makeup leads to higher energy requirements for solvent production
in the ammonia capture processes [50]. Producing fertilizers is not a
real solution either. The CO2 bound up will be probably re-released into
the atmosphere. Thus, an approach that does not achieve the recycling
of ammonia in a closed loop is not a feasible solution and will lead to a
perpetual downward spiral of energy inefficiency and wasted resources.
In addition, the necessary reduction of ammonia emissions leads to fur-
ther energy requirements, and solvent production as well as the remain-
ing ammonia losses to the environment have a more significant
environmental impact than CO2 removal with MEA [50]. Some technical
issues should be also resolved to ensure economic viability, such as: sup-
pression of ammonia vaporization, heat integration, minimization of ab-
sorbent flow rate, and bicarbonate-prevalent operation [17]. Thus,
ammonia can be a possible alternative as CO2 absorbent in CO2 capture
but itmaynot fulfill the expectations of capture of CO2 in a global scenario
due to the intrinsic penalty (energetic and environmental) that takes
place during its use and production.

CO2 capture with aqueous amine solution presents problems
related to equipment corrosion, amine degradation [46], and
high energy consumption. Thus, mixtures of alkanolamines
(monoethanolamine—MEA, diglycolamine—DGA, diethanolamine—
DEA and N-methyldiethanolamine—MDEA) with poly(ethylene glycol)
(PEG) have been proposed [28]. PEG has a very low vapor pressure and
about half of the heat capacity of water, showing less energy consump-
tion during the regeneration step and less corrosion problems. From the
work performed by Li et al. [28] on solubility of CO2 on 30% DGA, DEA or
MDEA mixed with 70% PEG200, it was observed that DEA–PEG200 and
DGA–PEG200 solutions show relatively high CO2 capacity at 313.15 K
owing to a chemical reaction with CO2; DEA–PEG200 solutions can
achieve full regeneration more easily than aqueous MEA under high
temperature; and MDEA–PEG200 solution has much higher loading
than pure PEG200 solution under low temperature (e.g., 313 K), pre-
senting the property of physical absorber. Regarding MEA–PEG200
mixtures, they have the lowest temperature at which the weight loss
begins (363 K) and thus is not appropriate for CO2 capture at high
temperature.

CO2 capture with sodium carbonate–bicarbonate slurry has been
also proposed as an integrated system with a power plant [23]. The
CO2 absorption produces sodiumbicarbonate, which has lower solubility
than the carbonate.When the solubility limit is exceeded, solid bicarbon-
ate is precipitated and the capacity of the solvent is increased. The CO2

rich slurry is then heated in a stripper in order to regenerate the solvent
and release the CO2 captured. The energy requirement of solvent regen-
eration is estimated around 3.22 MJ/kg-CO2 captured, which is lower
that the energy consumption of the MEA process (3.8 MJ/kg-CO2

captured). The use of sodium carbonate may be considered as an envi-
ronmentally friendly option due to the non-hazardous and non-volatile
character of this chemical aswell as a low corrosion rate is low.However,
the absorption rate is very low compared to amines, leading to high ab-
sorption towers. As highlighted by Knuutila et al. [23], additives that in-
crease the transfer kinetics may be needed, such as arsenous acid,
formaldehyde, hypochloride, phenols, sucrose, dextrose, piperazine,
diethanolamine, monoethanolamine, DIPA and piperazine, whose im-
pact in the energy consumption of the entire process is still a pending
issue.

Other amines and their blends are currently under research in order
to overcome the drawbacks of MEA. Piperazine is an example of an
amine solvent that has been investigated due to its high CO2 capture
capacity and absorption rate [28,37]. It has been considered in blends
with other compounds or alone [12,13]. However, piperazine presents
limited solubility, which motivates its use in blends with other amines
or keeping the CO2 loading in the range of 0.26–0.42mol-CO2/mol alka-
linity above 20 °C [29]. Nevertheless, the stability of piperazine may
condition its use outside a specific range of operating conditions.Mazari
et al. [35] presented a review on the recent advances and findings on
thermal and oxidative degradation of piperazine. Piperazine may
degrade in nitrosamines among which 1-nitrosopiperazine and
N,N-dinitrosopiperazine are a main worry due to their high toxicity.
From this review, it was concluded that: i) piperazine is thermally stable
up to 150 °C; ii) the degradation rate of piperazine increases with in-
crease in temperature, concentration of piperazine, and CO2 loading;
iii) partial pressure of O2 and temperature has a direct effect on the
oxidative degradation of piperazine, and the presence of Cu2+ increases
its oxidative degradation; and iv) the most abundant thermal and oxi-
dative degradation products of piperazine are N-formylpiperazine,
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NH4
+, N-(2-aminoethyl) piperazine, and ethylenediamine, with 1-

nitrosopiperazine in small concentrations. Thus, although piperazine
shows interesting properties as substitute of conventional MEA, there
are still technical limitations, mainly related to the long-term stability,
that slow down the direct use of this solvent in the industry.

Using amino acids as absorption agent is also being considered for
CO2 absorption due to the presence of the same amino functional
groups in their molecules as the conventional amines, negligible vapor
pressure and resistance to oxidative degradation. L-arginine (ARG) and
its salt potassium L-argininate (PA) were compared with MEA, DEA
and TEA by Yan et al. [56]. It is shown that PA is a highly CO2 selective
absorbent and has a better affinity towards CO2 thanMEA. Furthermore,
using PA allowed a lower solvent concentration, lower liquid velocity
and higher reaction temperature in comparison to MEA. Also, PA
demonstrated a better flexibility to the change of CO2 partial pressure
than MEA.

Finally, the consideration of ionic liquids as novel absorption liquids
is under study. Ionic liquids (ILs) are organic salts with a melting point
below 100 °C or even below 25 °C (room temperature ionic liquids).
Many ILs have attracted a remarkable interest for CO2 capture due to
their intrinsic properties (e.g., non-volatility, high thermal stability,
tuned structure) and, high CO2 solubility and low energy requirements
for regeneration [7,42,57]. The presence of NH2, F, O, etc., in the IL struc-
ture has been shown to play an important role in CO2 absorption,mainly
related to the kind of anion that conform the ionic liquid [19,48,53,58].
SO2 can alsomodify the capacity of CO2 absorption in ionic liquids since
recent research has shown that large amounts of SO2 can be dissolved in
ionic liquids reversibly, which is interestingwhen aiming at eliminating
this component from gas streams but it may compete with CO2 when
the latter is the target compound [20,21,61]. Somevalues of CO2 absorp-
tion capacity can be found in the literature: 0.96 mol-CO2/mol-IL (at
293 K) was achieved with pure [TETAH][BF4] and as 2.04 mol-CO2/
mol-IL (at 293 K) with [TETAH][BF4] containing 40% water [19]; 1-(3-
propylamino)-3-butyllimidazolium-tetrafluoroborate ([apbim][BF4])
absorbed 0.5 mol-CO2/mol-IL at 1 atm and room temperature [5];
diamino ionic liquid [aemmim][Tau] absorbed 0.9 mol-CO2/mol-IL at
303 K [55]; 0.32–0.72 mol-CO2/mol-IL for some amino acid-anion
based ILs and 0.1–1.26mol-CO2/mol-IL for other aminate ILs [49]. In ad-
dition, mixing ionic liquids with amines could result in lower vapor
pressure in comparison with the only use of the amine and, a reduction
of the heat of vaporization in the regeneration step. However, LaFrate
et al. [25] observed that the degradation of carbon capture solvents con-
taining ionic liquids was faster in the presence of CO2 than other gases
(air, N2 or SO2) and the presence of the ionic liquid enhanced the degra-
dation. Furthermore, imidazolium and other types of ionic liquids also
inherently have ammonia, ethylene and other base feedstocks incorpo-
rated into their structures. These aspects put them in economic disad-
vantage regarding the conventional absorption process based on
amines. Thus, the application of the studied ionic liquids for CO2 capture
in large scale does not seem a realistic approach for the moment.

Several solvent alternatives to the use of amines are under research
but the perfect solvent that combines high CO2 absorption, easy regen-
eration, low energy consumption during production and regeneration,
low cost, and low environmental impact has not been identified. The
most critical aspect is the development of a closed process that allows
the reuse of the solvent at minimum environmental and economic
cost. In a perfect scenario, the processwould lead to CO2-based products
with economic value that can be re-integrated in a closed carbon loop
and avoid the use of raw materials.

5. Concluding remarks and technological alternatives

Current research is focused on the optimization of the CO2 capture
process usingMEA and other amines aswell as novel solvents. The pres-
ent review has described briefly the main concerns of using MEA in a
global strategy and the last advances in the development of other
alternative solvents. One last point that deserves attention is the radical
modification of the CO2 capture process, opting by technologies that in-
trinsically involve lower energy consumption and even may produce a
final product to be reused in the industry.

Adsorption, CO2 conversion, calcium looping, and membrane tech-
nology are the focus of alternatives to the conventional process for
CO2 capture in a post-combustion scenario [32]. Membrane technology
is attracting the attention of more and more researchers due to its clear
advantages regarding energy consumption, operational flexibility and
modularity, based on two main kinds of systems: those in which the
membranes act as a selective layer and, those in which the membrane
acts as the support and a CO2-selective liquid has to be used [32]. For
the first group, membranes with permeabilities around 103 Barrer and
CO2/N2 selectivity of about 100 are available for CO2 capture; for the
second, overall mass transfer coefficients ranging between 10–5 and
10–3 m s–1 are common in this technology [32]. Several reviews that
show the current status of membrane technology for CO2 capture
have been recently published [31–33] and some necessary research
paths have been already identified: i) development of newmembranes
that fit in the framework of low-cost processes to consider an econom-
ically affordable replacement of membranes; ii) development of new
solvents (when involved) for CO2 capture with low vapor pressure
and low toxicity; and iii) study of process performance under industrial
operation conditions (real composition regarding gases such as H2S,
SO2, NH3, water, etc.; temperature and pressure) to achieve a system
with real implementation in the industry [33]. In addition, multistage
or hybrid systems coupled to an economic analysis should be priority
research since they may provide the most promising solutions for CO2

capture [6].
Regardless the chosen technology, it is important to keep in mind

that the final objective of the development of any technological option
to the conventional process should aim at negative carbon intensity
(energy-related CO2 emissions to the atmosphere in grams of carbon
in relation to energy in Joules) [10]. This means that more CO2 has to
be captured than emitted per unit of energy. Budzianowski [10] identi-
fied two large groups of potential carbon negative renewable energy
technologies: i) carbon negative biofuels (e.g., biogas, liquid biofuels
from pyrolysis of biomass, bioethanol from low-input cellulosic bio-
mass, algae energy) and, ii) carbon negative products derived from
CO2 and renewable energy (s renewable solar energy, renewable hydro-
gen, geothermal energy, conversion of CO2 to useful carbonate and
bicarbonate products). Thus, the development of novel technology
must always consider the overall impact of the entire process and the
scale in which that technology can be applied to give solutions in a
local or a global scale.

More research is still needed but it should be re-oriented towards
the development of closed processes that are not only focused on
removing CO2 from a gas stream at any price but thinking of the overall
process and integrating the captured CO2 in theproduction chain. A pro-
cess that would lead to CO2-based products with economic value that
can be re-integrated in a closed carbon loop is the best solution. This
approach would avoid CO2 emissions while reducing the use of fresh
materials and decreasing the production cost. This target should be
always kept in mind in order to produce valuable research that leads
to real solutions from a technical, environmental, economic and social
point of view. Some of the alternatives shown in this manuscript are a
hot topic in the current research but they are quite far from satisfying
this objective.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.desal.2015.08.004.
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