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In this paper, we suggest and analyze some new iterative methods for solving
general monotone mixed variational inequalities, which are being used to study
odd-order and nonsymmetric boundary value problems arising in pure and applied
sciences. These new methods can be viewed as generalizations and extensions of

Ž .the methods of He, Solodov and Tseng, and Noor for solving monotone mixed
variational inequalities. Q 1999 Academic Press
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1. INTRODUCTION

It is well known that variational principles can be used to interpret the
basic principles of mathematical and physical sciences with simplicity and
elegance. One of the most fruitful ideas in the calculus of variations is that

w xof variational inequalities, which were introduced by Stampacchia 18 in
1964. During the last three decades, there has been considerable activity in
the development of numerical techniques for solving variational inequali-
ties. There are a substantial number of numerical methods, including
projection technique and its variant forms, Wiener]Hopf equations, de-
scent linear approximation, the auxiliary principle technique, and the

Ž w x.Newton method see 1]18 . It is worth mentioning that the projection
method and the Wiener]Hopf equations cannot be extended and modified
to study the existence of a solution of the mixed variational inequalities.

w xThis fact motivated Glowinski et al. 5 to develop another technique,
which is called the auxiliary principle technique. For the recent applica-
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w xtions of the auxiliary principle technique, see Noor 14, 15 . In this paper,
we consider a new technique, which depends on the concept of the
resolvent of the related maximal monotone operator. Using the resolvent
operator technique, we establish the equivalence between mixed varia-
tional inequalities, fixed-point problems, and resolvent equations. These
alternative equivalent formulations are used to suggest and analyze a
number of well-known iterative methods for general monotone mixed
variational inequalities. As special cases, we apply a number of well-known
iterative methods to the classical monotone variational inequalities.

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are
² : 5 5denoted by ? , ? and . , respectively. Let K be a nonempty closed

� 4convex set in H. Let w : H ª R j q` be a proper, convex, and lower
semicontinuous function.

For given nonlinear operators T , g : H ª H, consider the problem of
finding u g H such that

² :Tu , g ¨ y g u q w g ¨ y w g u G 0, for all g ¨ g H .Ž . Ž . Ž . Ž . Ž .Ž . Ž .
2.1Ž .

Ž .The inequality of type 2.1 is called the general mixed variational inequal-
ity or the general variational inequality of the second kind. It can be shown
that a wide class of linear and nonlinear problems arising in pure and
applied sciences can be studied via the general mixed variational inequali-

Ž .ties 2.1 .
Ž .We remark that if g ' I, the identity operator, then problem 2.1 is

equivalent to finding u g H such that

² :Tu , ¨ y u q w ¨ y w u G 0, for all ¨ g H , 2.2Ž . Ž . Ž .

which are called the mixed variational inequalities. For the applications,
w xnumerical methods, and formulations, see 6, 11, 12, 16 and the references

therein.
We note that if w is the indicator function of a close convex set K in H,

that is,

0, if u g K ,
w u ' I u sŽ . Ž .K ½q`, otherwise,
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Ž .then the general mixed variational inequality 2.1 is equivalent to finding
Ž .u g H, g u g K, such that

² :Tu , g ¨ y g u G 0, for all g ¨ g K . 2.3Ž . Ž . Ž . Ž .
Ž .The inequality of type 2.3 is known as the general variational inequality,

w xwhich was introduced and studied by Noor 9 in 1988. It turned out
that the odd-order and nonsymmetric free, unilateral, obstacle, and equili-

Ž .brium problems can be studied by the general variational inequality 2.1
Ž w x.see 9, 10 .

Ž .For g ' I, the identity operator, the general variational inequality 2.3
collapses to: find u g K such that

² :Tu , ¨ y u G 0, for all ¨ g K , 2.4Ž .

which is called the standard variational inequality, introduced and studied
w x w xby Stampacchia 18 in 1964. For the recent state of the art, see 1]18 .

It is worth mentioning that the projection technique and its variant
forms, including the Wiener]Hopf equations, cannot be used to suggest

Ž .iterative methods for solving the general mixed variational inequalities of
Ž . Ž .types 2.1 and 2.2 because of the presence of the nonlinear term w. To

overcome this difficulty, another technique, which is called the resolvent
w xoperator technique, mainly due to Noor 11]13 , is used to suggest some

Ž .iterative methods for solving problem 2.2 . In this paper, we extend the
resolvent operator technique for the general mixed variational inequality
Ž .2.1 . For this purpose, we recall the following well-known concepts and
results.

w xDEFINITION 2.1 2 . If A is a maximal monotone operator on H, then,
for a constant r ) 0, the resolvent operator associated with A is defined
by

y1J u s I q r A u , for all u g H ,Ž . Ž . Ž .A

where I is the identity operator. It is well known that a monotone operator
is maximal if and only if its resolvent operator is defined everywhere. In
addition, the resolvent operator is single-valued and nonexpansive, that is,
for all u, ¨ g H,

5 5J u y J ¨ F u y ¨ .Ž . Ž .A A

Remark 2.1. It is well-known that the subdifferential w of a proper,
� 4convex, and lower semicontinuous function w : H ª R j q` is a maxi-

mal monotone; so we denote by

y1J u s I q w w u , for all u g H ,Ž . Ž . Ž .w
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the resolvent operator associated with w, which is defined everywhere
on H.

w xLEMMA 2.1 2 . For a gï en z g H, u g H satisfies the inequality

² :u y z , ¨ y u q rw ¨ y rw u G 0, for all ¨ g H ,Ž . Ž .

if and only if

u s J z ,w

Ž .y1where J s I q w w is the resol̈ ent operator and r is a constant. Thisw

property of the resol̈ ent operator J plays an important part in obtaining ourw

results.

Ž .y1Let R ' I y J , where I is the identity operator and J ' I q r ww w w

is the resolvent operator. For a given nonlinear operator T , g : H ª H,
consider the problem of finding z g H such that

Tgy1 J z q ry1R z s 0, 2.5Ž .w w

Ž .where r ) 0 is a constant and g is invertible. The equations of type 2.7
are called the general resolvent equations. If g ' I, the identity operator,

Ž .then problem 2.7 reduces to: find z g H such that

TJ z q ry1R z s 0, 2.6Ž .w w

which are the resolvent equations. For the applications, formulation, and
w xnumerical methods of the resolvent equations, see 11, 12 .

We remark that if w is the indicator function of a closed convex set K
in H, then J ' P , the projection of H onto K. Consequently problemw K
Ž .2.7 is equivalent to finding z g H such that

Tgy1P z q ry1 Q z s 0. 2.7Ž .K K

Ž .Equations of type 2.9 are known as the general Wiener]Hopf equations,
w xwhich are mainly due to Noor 9 . We would like to mention that the

Wiener]Hopf equations are being used to develop some implementable
and efficient iterative algorithms for solving variational inequalities and

w xrelated fields. For the recent state of the art, see 14 and the references
therein.

3. MAIN RESULTS

In this section, we suggest and analyze some new iterative methods for
Ž .solving the general monotone mixed variational inequality 2.1 . First of
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Ž .all, we prove that the variational inequality 2.1 is equivalent to the
fixed-point problem by invoking Lemma 2.1.

LEMMA 3.1. The function u g H is a solution of the mixed ¨ariational
Ž .inequality 2.1 if and only if u g H satisfies the relation

g u s J g u y rTu , 3.1Ž . Ž . Ž .w

Ž .y1where J s I q r w is the resol̈ ent and r ) 0 is a constant.w

Ž .Proof. Let u g H be a solution of 2.1 . Then

² :Tu , g ¨ y g u q w g ¨ y w g u G 0, for all g ¨ g H ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .

which can be written as

² :g u y g u y rTu , g ¨ y g u q rw g ¨ y rw g u G 0,Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .

which is equivalent to

g u s J g u y rTu ,Ž . Ž .w

by invoking Lemma 2.1.

Ž .Lemma 3.1 implies that the general mixed variational inequality 2.1 is
equivalent to the fixed-point problem. This alternative equivalent formula-
tion is very useful from a numerical point of view. This fixed-point
formulation enables us to suggest and analyze the following iterative
algorithm.

ALGORITHM 3.1. For a gï en u g H, compute the approximate solution0
u by the iteratï e schemenq1

u s u y g u q J g u y rTu , n s 0, 1, 2, . . . .Ž . Ž .nq1 n n w n n

w xFor the con¨ergence analysis of Algorithm 3.1, see Noor 16 , if the operators
T , g are strongly monotone and Lipschitz continuous.

Ž .We define the residue vector R u by the relation

R u s g u y J g u y rTu . 3.2Ž . Ž . Ž . Ž .w

Thus it is obvious that u g H is a solution of the general mixed variational
Ž .inequality 2.1 if and only if u g H is a zero of the equation

R u s 0. 3.3Ž . Ž .
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Ž . Ž .For a constant g g 0, 2 , Eq. 3.3 can be written as

g u q rTu s g u q rTu y g R u .Ž . Ž . Ž .

This formulation can be used to suggest the following new implicit method
Ž .for solving the general mixed variational inequality 2.1 .

ALGORITHM 3.2. For a gï en u g H, compute u by the iteratï e0 nq1
scheme

g u s g u q rTu y rTu y g R u , n s 0, 1, 2, . . . .Ž . Ž . Ž .nq1 n n nq1 n

3.4Ž .

We remark that if w is the indicator function of the closed convex set K
in H, then the resolvent operator J s P , the projection of H onto K.w K

Ž .Consequently, relation 3.2 becomes

R u s g u y P g u y rTu , 3.5Ž . Ž . Ž . Ž .K K

and Algorithm 3.2 collapses to Algorithm 3.3 for the general variational
inequalities.

Ž .ALGORITHM 3.3. For a gï en u g H, g u g K, compute u by the0 0 nq1
iteratï e scheme

g u s g u q rTu y rTu y g R u , n s 0, 1, 2, . . . .Ž . Ž . Ž .nq1 n n nq1 K n

If g ' I, the identity operator, then Algorithm 3.2 reduces to:

w xALGORITHM 3.4 12 . For a gï en u g H, compute u by the iteratï e0 nq1
scheme

u s u q rTu y rT y g R u , n s 0, 1, 2, . . . , 3.6Ž . Ž .nq1 n n u nnq 1

where

w xR u s u y J u y rTu , n s 0, 1, 2, . . . .Ž .n n w n n

Ž .If g s I, the identity operator, and g s 1, then the iteratï e scheme 3.6 can
be written as

y1 w xu s I q T J I y T q T u , n s 0, 1, 2, . . . ,Ž . Ž .� 4nq1 w n

which can be considered as the operator splitting method.

If w is the indicator function of the closed convex set K in H, then
J s P , the projection of H onto K. Consequently Algorithm 3.4 col-w K

w xlapses to the algorithm of He 7 .
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w xALGORITHM 3.5 7 . For a gï en u g K, compute u by the iteratï e0 nq1
scheme

w xu s u q rTu y rTu y g u y P u y rTu ,nq1 n n nq1 n K n n

n s 0, 1, 2, . . . .

It is clear that Algorithm 3.2 can be considered an extension of the iteratï e
w x w xmethods of He 6, 7 and Noor 12 .

For the convergence analysis of Algorithm 3.2, we need the following
result.

Ž .THEOREM 3.1. Let u g H be a solution of 2.1 . If T : H ª H is a
g-monotone operator, then

2² :g u y g u q r Tu y Tu , R u G R u , for all u g H .Ž . Ž . Ž . Ž . Ž .
3.7Ž .

Ž .Proof. Since u g H is a solution of 2.1 , then

² :Tu , g ¨ y g u q w g ¨ y w g u G 0, for all g ¨ g H .Ž . Ž . Ž . Ž . Ž .Ž . Ž .
3.8Ž .

Ž . w Ž . x Ž .Taking g ¨ s J g u y rTu in 3.8 , we havew

r Tu , J g u y rTu y g u q rw J g u y rTu² :Ž . Ž . Ž .Ž .w w

y rw g u G 0. 3.9Ž . Ž .Ž .

Ž . w Ž . x Ž . Ž .Setting z s g u y rTu, u s J g u y rTu , ¨ s g u in 2.6 , we obtainw

g u y rTu y J g u y rTu , J g u y rTu y g u² :Ž . Ž . Ž . Ž .w w

q rw g u y rw J g u y rTu G 0 3.10Ž . Ž . Ž .Ž . Ž .w

Ž . Ž .Adding 3.9 and 3.10 , we have

g u y r Tu y Tu y J g u y rTu , J g u y rTu y g u G 0,² :Ž . Ž . Ž . Ž . Ž .w w

which can be written as

² :R u y r Tu y Tu , g u y g u y R u G 0, 3.11Ž . Ž . Ž . Ž . Ž . Ž .

Ž .by using 3.2 .



ALGORITHMS FOR VARIATIONAL INEQUALITIES 337

Ž .From 3.11 , it follows that

² :g u y g u q r Tu y Tu , R uŽ . Ž . Ž . Ž .
² : ² :G R u , R u q r Tu y Tu , g u y g uŽ . Ž . Ž . Ž .
² :G R u , R u , since T is g-monotone,Ž . Ž .

which implies that

25 5² :g u y g u q r Tu y Tu , R u G R ,Ž . Ž . Ž . Ž .

the required result.

Ž .THEOREM 3.2. Let u g H be the solution of 2.1 and u be thenq1
approximate solution obtained from Algorithm 3.2. Then

2
g u y g u q r Tu y TuŽ . Ž . Ž .nq1 nq1

2 2F g u y g u q r Tu y Tu y g 2 y g R u . 3.12Ž . Ž . Ž . Ž . Ž .Ž .n n n

Ž . Ž .Proof. Since u is a solution of 2.1 and u satisfies relation 3.4 ,nq1

2
g u y g u q r Tu y TuŽ . Ž . Ž .nq1 nq1

2s g u y g u q r Tu y Tu y g R uŽ . Ž . Ž .Ž .n n n

2 22s g u y g u q r Tu y Tu q g R uŽ . Ž . Ž .Ž .n n n

² :y 2g g u y g u q r Tu y Tu , R uŽ . Ž . Ž .Ž .n n n

2F g u y g u q r Tu y TuŽ . Ž . Ž .n n

2 22y 2g R u q g R u , by using 3.7Ž . Ž . Ž .n n

2 2s g u y g u q r Tu y Tu y g 2 y g R u ,Ž . Ž . Ž . Ž .Ž .n n n

the required result.

THEOREM 3.3. Let g : H ª H be in¨ertible. Then the approximate solu-
tion u obtained from Algorithm 3.2 con¨erges to a solution u of the generalnq1

Ž .¨ariational inequality 2.1 .

Ž . Ž .Proof. Let u g H be a solution of 2.1 . From 3.12 , it follows that

`
22

g 2 y g R u F g u y g u q r Tu y Tu ,Ž . Ž . Ž . Ž . Ž .Ý n 0 0
ns0



MUHAMMAD ASLAM NOOR338

and consequently,

lim R u s 0.Ž .n
nª`

� 4 � 4Let u be the cluster point of u , and the subsequence u converges ton n j
Ž .u. Since R u is continuous,

R u s lim R u s 0,Ž . Ž .n jjª`

Ž .and u is the solution of the general mixed variational inequality 2.1 by
invoking Lemma 3.1 and

2g u y g u q r Tu y TuŽ . Ž . Žnq1 nq1

2F g u y g u q r Tu y Tu .Ž . Ž . Ž .n n

� 4Thus it follows from the above inequality that the sequence u hasn
exactly one cluster point and

lim g u s g u .Ž . Ž .n
nª`

Since g is invertible,

lim u s u ,Ž .n
nª`

which is the solution of the general monotone mixed variational inequality.

w xUsing Lemma 2.1, Lemma 3.1, and the technique of Noor 9 , we
establish the equivalence between the general mixed variational inequali-

Ž . Ž .ties 2.1 and the resolvent equations 2.7 . This equivalence is used to
suggest a new iterative algorithm for solving the mixed variational inequal-

Ž .ity 2.1 .

Ž .THEOREM 3.4. The general mixed ¨ariational inequality 2.1 has a solu-
Ž .tion u g H, if and only if the general resol̈ ent equation 2.7 has a solution

z g H, where

g u s J z 3.13Ž . Ž .w

and

z s g u y rTu. 3.14Ž . Ž .

Ž .Proof. Let u g H be a solution of 2.1 . Then by Lemmas 2.1 and 3.1
we have

g u s J g u y rTu .Ž . Ž .w
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Using the fact that R ' I y J and the above equation repeatedly, wew w

obtain

R g u y rTu s g u y rTu y J g u y rTuŽ . Ž . Ž .w w

s yrTu
y1s yrTg J g u y rTu .Ž .w

This implies that

Tgy1 J z q ry1R z s 0,w w

with
z s g u y rTu.Ž .

Ž .Conversely, let z g H be a solution of 2.7 . Then

rTgy1 J z s yR z s J z y z .w w w

Now by invoking Lemma 2.1 and the above relation, we have

0 F J z y z , g ¨ y J z q rw g ¨ y rw J z² :Ž . Ž .Ž . Ž .w w w

s r Tgy1 J z , g ¨ y J z q w g ¨ y w J z .² :Ž . Ž .Ž . Ž .½ 5w w w

y1 Ž .Thus u s g J z is a solution of the mixed variational inequalities 2.1 .w

From Theorem 3.1, it follows that general mixed variational inequality
Ž . Ž .2.1 and the resolvent equations 2.7 are equivalent. We use this equiva-
lence to suggest a new iterative algorithm for solving the general mono-

Ž .tone mixed variational inequalities 2.1 .
Ž .Using the fact that R s I y J , the resolvent equations 2.7 can bew w

written as

z y J z q rTgy1 J z s 0.w w

Thus, for a stepsize g , we can write this as

g u s g u y g z y J z q rTgy1 J z .Ž . Ž . � 4w w

This fixed-point formulation allows us to suggest the following itera-
tive algorithm for solving general monotone mixed variational inequali-

Ž .ties 2.1 .

ALGORITHM 3.5. For a gï en u g H, compute the approximate solution0
u by the iteratï e schemesnq1

z s g u y rTuŽ .n n n

w s z y J z q rTgy1 J zn n w n w n

g u s g u y g w , n s 0, 1, 2, . . . .Ž . Ž .nq1 n n
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Ž .We note that for g ' I the identity operator , Algorithm 3.5 collapses
w xto the following algorithm of Noor 13 for solving the monotone mixed

Ž .variational inequalities 2.2 .

ALGORITHM 3.6. For a gï en u g H, compute the approximate solution0

z s u y rTun n n

w s z y J z q rTJ zn n w n w n

u s u y g w , n s 0, 1, 2, . . . .nq1 n n

In brief, for a suitable and appropriate choice of the operators, T , w,
and the space H, one can obtain a number of algorithms, including those

w x w x w xof He 6, 7 , Solodov and Tseng 17 , and Noor 13 for solving various
classes of variational inequalities and the related optimization problems.

For the convergence analysis of Algorithm 3.5, we need the following
concepts.

DEFINITION 3.1. For all u, ¨ g H, an operator T : H ª H is said to be

Ž .i g-monotone if

² :Tu y T¨ , g u y g ¨ G 0.Ž . Ž .

Ž .ii g-Lipschitz continuous if there exists a constant d ) 0 such that

2² :Tu y T¨ , g u y g ¨ F d g ¨ y g u .Ž . Ž . Ž . Ž .

Note that for g ' I, the identity operator, Definition 3.1 reduces to the
standard definition of the monotonicity and Lipschitz continuity of the
operator T.

Ž .THEOREM 3.5. Let u g H be a solution of 2.1 and T : H ª H be a
g-monotone and g-Lipschitz continuous operator with a constant d ) 0. Then

y1g u y g u , R u y rTu q rTg J g u y rTu² :Ž . Ž . Ž . Ž .w

2� 4G 1 y rd R u , for all u g H . 3.15Ž . Ž .

Ž .Proof. Let u g H be a solution of 2.1 . Then

² :r Tu , g ¨ y g u q rw g ¨ y rw g u G 0,Ž . Ž . Ž . Ž .Ž . Ž .
for all g ¨ g H . 3.16Ž . Ž .
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Ž . w Ž . x Ž .Taking g ¨ s J g u y Tu in 3.16 , we havew

r Tu , J g u y rTu y g u² :Ž . Ž .w

q rw J g u y rTu y rw g u G 0. 3.17Ž . Ž . Ž .Ž .Ž .w

Ž . w Ž . x Ž . Ž .Letting z s g u y rTu, u s J g u y rTu , ¨ s g u in 2.6 , we obtainw

J g u y rTu y g u q rTu , g u y J g u y rTu² :Ž . Ž . Ž . Ž .w w

q rw g u y rw J g u y rTu G 0,Ž . Ž .Ž . Ž .w

from which it follows that

R u y rTu , J g u y rTu y g u² :Ž . Ž . Ž .w

q rw g u y rw J g u y rTu G 0. 3.18Ž . Ž . Ž .Ž . Ž .w

Since T is g-monotone, for all u, u g H,

y1r Tg J g u y rTu y T u , J g u y rTu y g u G 0. 3.19² :Ž . Ž . Ž . Ž . Ž .w w

Ž . Ž . Ž .Adding 3.17 , 3.18 , and 3.19 , we have

y1g u y g u , R u y rTu q rTg J g u y rTu² :Ž . Ž . Ž . Ž .w

y1G R u , R u y rTu q rTg J g u y rTu . 3.20² :Ž . Ž . Ž . Ž .w

Since T is a g-Lipshitz continuous operator with a constant d ) 0,

2² :Tu y T¨ , g u y g ¨ F d g u y g ¨ . 3.21Ž . Ž . Ž . Ž . Ž .

Ž . Ž . Ž .From 3.2 , 3.20 , and 3.21 , we obtain

y1R u y rTu q rTg J g u y rTu , R u² :Ž . Ž . Ž .w

2 y1s R u y r Tu y Tg J g u y rTu , R u² :Ž . Ž . Ž .w

2� 4G 1 y rd R u . 3.22Ž . Ž .

Ž . Ž .Combining 3.20 and 3.22 , we have

y1R u y rTu q rTg J g u y rTu , g u y g u² :Ž . Ž . Ž . Ž .w

2� 4G 1 y rd R u ,Ž .

the required result.
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� 4THEOREM 3.6. The sequence u generated by Algorithm 3.5 for generaln
Ž .monotone mixed ¨ariational inequalities 2.1 satisfies the inequality

2 2 2
g u y g u F g u y g u y g 2 y g y 2 rd R u ,Ž . Ž . Ž . Ž . Ž . Ž .nq1 n n

for all u g H . 3.23Ž .

Ž .Proof. From 3.15 and Algorithm 3.5, we have

2
g u y g uŽ . Ž .nq1

s g u y g u y g g u y rTu y J g u y rTuŽ . Ž . Ž . Ž .�n n n w n n

2y1qrTg J g u y rTu 4Ž .w n n

2 2F g u y g u y g 2 y g y 2 rd R u .Ž . Ž . Ž . Ž .n n

Following the technique of Theorem 3.3, one can easily show that the
approximate solution u obtained from Algorithm 3.5 converges tonq1
the exact solution u g H of the general monotone mixed variational in-

Ž .equality 2.1 .
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