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Abstract

By applying the bisection and trisection method to Jacobi’s triple product identity, we establish several identities factorizing sum
and difference of infinite products, which lead, in turn, to new and elementary proofs for twenty identities of Rogers—Ramanujan
type.
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For two complex x and g, the shifted-factorial of x with base ¢ is defined by
(x;9)o=1 and (x;¢),=(10—-x)1—xq)--- (1 —xq"il) for n € N.

When |¢g| < 1, we have two well-defined infinite products

o]

@ oo =[[(1—¢*x) and  (x:q)n = (x: @)oo/ (xq": q) -
k=0

For the sake of brevity, the product of shifted factorials is abbreviated to
[, B viqln = (@ (B @n -+ (Vi @i
Following Gasper and Rahman [5], the basic hypergeometric series is defined by

o0
mys—r (Ao, at, ..., ar; qly
gz| =Y [=1g@)PT "
} ,;{ } [g.b1, ... bs: qln

]+¢ aOa a]""’ ar
s by, ..., bs

where the base g will be restricted to |g| < 1 for nonterminating g-series.
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There are several important identities in the theta function theory, two of which are Jacobi’s triple product iden-
tity [9]

+o00
Y =1"gDx" =1q.x.9/x: g1 0.1)

n=—oo

and the celebrated quintuple product identity [4]

+o00
[9.2.9/2: qlooc[q2%. q/7% %] o= Y {1 — 30 (g2 /)" (0.2a)
oo ”
= > {1- (/D)0 (¢23)" (0.2b)

where the former has played fundamental role in the proof of Rogers—Ramanujan identities:

i an _ 1 ond S qn2+n _ 1
=@ On 14.9% Pl (@ On 424701

The similar identities expressing infinite sums as infinite products are generally said to be Rogers—Ramanujan type.
Their proofs require deep understanding of g-series and classical partition theory. Therefore direct and more accessible
proofs have been desirable.

The purpose of this paper is to present a very elementary approach to a class of twenty Rogers—Ramanujan type
identities. By employing bisection and trisection method to Jacobi’s triple product identity, we shall derive several
identities factorizing sum and difference of two infinite products. Then their combinations with Euler’s g-exponential
formulae, the g-binomial expansion, the g-Gauss theorem and the g-Kummer theorem will lead to new and elementary
proofs for twenty identities of Rogers—Ramanujan type.

1. Bisection of the Jacobi triple products

For a natural number a and an integer ¢, define two infinite sums by

X(a,c):= Zq4ak2+20k _ [q8a’ _ghatle _gha=2c, qsa]oo’
k

Y(a,c) = Zq4ak2_4ak+20k — [an’ _qZC’ _an—Zc; an]oo.
k

When asc (mod 2), applying Jacobi’s triple product identity (0.1), we have

X(a,c)+¢° Y, c)= ankz-i-ck — [q2a’ _qa-‘rc’ —q°¢, q2a]oo’
k

X(a,c) _qa—L‘Y(a’C) — Z(_l)kqakz—‘rck — [an’qa+c’qa—c; qza]oo’
k

which result in the following two equations:

[~a" ~4* g™ ] +[4°7 0" (12
2 8 da+2c __da-2c. 8
- (q2a;612a)oo [C] it —-q “ Lv_q “ C;q a]oo’ (I.1b)
AR A N A A (1.1
2qa—C

8 2 8a—2 8
T @240 4™~ =]

They will be specialized to more concrete equations in order to derive identities of Rogers—Ramanujan type.

(1.1d)

00"
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1.1. Casea=2andc=1in(l.1)

The corresponding equations read as:

2
(4:9%) o+ (-9:0%) o = ——5—1a"% —4° —4"%: ¢"°] .. (1.22)
(g% 9% o0
2q
(~4:4) 0 = (4:4°) o = o gy 4% —a% —a" 0 "] . (1.20)
(4% 9% o0
A. Recall g-binomial theorem [5, 1I-3]
1¢0|:a q;x:|=M where |x| < 1, (1.3)
- (x5 9)oo
which can be specified as
-1 5 (—61;612)00
190 ’q :q} =
[ - (45970
Then the linear combinations
-1
1il¢o[ . \qz;q}
lead us to the following identities:
(—q%:q )m 1 (—¢:4%or 16 6 10, 16
1+ q" = 9°,—q",—q ";q , (1.42)
Z (% 9% (4% 4H) oo [ Ja
(—4%: qHm @dD r 16 2 14 16
(-1 g" = 7' —q*. —q":¢"] .. (1.4b)
Z @ D im (qz;qz)oo[ I8

m=0

B. Recall Euler’s first g-exponential formula (cf. [5, p. 10])

(& q>oo _Z

Then its combinations with
1q)oo £ 1 qd)oo
T DL £ (VT =T ﬁ‘g_qz)(ﬁ D

give rise to the following bisection series identities:

where |&]| < 1.
¢ (@9

00 m 8 3 _ 5.8
Z q _lg° —q", q,q]oo, (1.5a)
=0 @ Dom (@5 @)oo
x m 8 7.8
_ 19 74. 744"l (1.5b)

—~ (¢ D1v2m (45 oo

C. Euler’s second g-exponential formula (cf. [5, p. 11]) reads as

oo
(=D"&"
EDo=y ——q®.
> X_(:) (45 9)n
n=
The corresponding bisection series with respect to the parity of summation index leads to the following identities:

'S} _ 00
qm(Zm 1) qm(2m+l)

T ey~ (g
~ (@D = (@ Do >
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Letting & = £, /¢ and then factorizing the two expressions

(\/a§ Qoo = (_\/6; q) oo,

we recover the following identities of Rogers—Ramanujan type [11, Egs. 39 and 38]:

2
o ¢ 145 ¢ 4" ¢"lx
= T , (1.6a)
=0 @ Dom (4% 40
0 g2mm+1) B 4% ¢, —q": ¢%10e
= — , (1.6b)
— (@ D1vam (@7 470

where the first identity is actually due to Jackson [8, p. 170, the 5th equation]. It should be pointed out that the
derivation of these two identities just presented has previously been given by Andrews and Santos [2].

D. Recall the g-Kummer summation theorem [5, 1I-9]

a, c
2¢1[ qa/c

Through its following specification

where |g/c| < 1.

_q/] (@a/* qP)o0 ga, =43 qloo
(¢%a;qM o [qa/c,—q/c; gl

0 2
L@m (+my  (=q:9) (=g9:9°)
> g = g gt =
S CHOT (4 @)oo (4:97)
we may factorize the expressions
e 2
(7:97)o0
and recover two beautiful Rogers—Ramanujan type identities due to Gessel and Stanton [6, Egs. 7.13 and 7.15]:
1+Z( 45 m—1 (l+m)_( q; 9 )oo[q —g®. —q"%; 4] (1.7a)
= (@D (4% 4%)oo o
oo 2
(=4:9) ey (=4597)
Z 5 mqm+( ) = 2. 2 00[5116’ _‘127—‘114;‘116]00' (1.7b)
=@ Dm+ (973970
E. Recall the g-Gauss summation formula [5, II-8]
b
b1 [" } lefa.c/bigloo  yore tejabl < 1. (1.8)
[c,c/ab; qlso

Specializing it to

“1y2 ] Cadd
ld)l[ q ‘q’ q}_ (45 9%

and then computing the linear combinations
-1
£1+ 141 [ J ‘qz; —q]

we rederive two identities of Rogers—Ramanujan type [11, Eqgs. 72 and 69]:

- i (—qz;qz)m_lqmz _ 4147 41, —¢% —q'%: ¢'°] (1.92)
m=1 (G5 9)2m (q2; q2)°° ’ ’ ’ >~ |

00 2. 2 2
(=% ¢®m 2 (=4:97)

Do = e e =4 (o)

¢ (@3 @)om+2 @ Moo
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1.2. Casea=1andc=0in(1.1)

The corresponding equations read as

2 2 2
(-4 0+ (@:0°) o = oy -l 4 —a% %
4q

2\2 2\2 8 8 8. 8
—q:4 —\4q:9 =—5 > |19>—"9,—9:9 .
( )oo ( )oo (512; qz)oo[ ]oo
In view of the g-binomial theorem (1.3), we have

— —5:49)o0 —s, go
1¢0[_1 M}; £ @) _ (~£:9)

E Do ELgHoo

Letting & = £, /¢ and then considering the bisection series, we derive the following identities:

o]

Z =Lgom ,  (=4:q)

4 2 2. 4
- q 5 _q 5 _q 5 q )
(q: 9)2m ;900 [ ]°°

m=0
00

Z (—=4q;q)om 4" = (=45 @)oo
(G @) 142m (4 oo

[¢*. —q*. —a* 4*] .-
m=0
Instead, from the g-Gauss theorem (1.8), we have
~1, —1|, (—q: 993
201 ‘q ;q} =—>5 -
[ q (q:9»%

Then the linear combinations
-1, -1
+1+ ¢ [ q ‘612;4]

lead us to the following two identities:

00 2. ,2\2
(=979, (=4 9)oo
1+2 —q" = 7 —q* —q* 4% .
n; (43 @)om (4 @)oo [ e
— (=4%472% W (@iDeor s g 5 3
> =" =" —a" ¢"] .
= (@ 9)242m (@: @)oo

1.3. Casea=5andc=4in(1.1)

The corresponding equations read as:
[qlo’ g, _(]9;(]10]OO + [‘110"1"19;‘110]00 :2[6140’ 4", _q28;q40]oo’
[qlo’ —q,-¢% qlo]oo _ [qlo,q,qg; qlo]oo qu[qm’ 48, —g* q40]oo.

Applying these equations to the identity [11, Eq. 20]

et m?

34 (=41 4) s

= q*aHm @5 4D)o

5 19" —9.-4% ¢

2 3 5
4% ¢ g7 =
Jeo [¢%°, 9%, ¢'%; 4?1

[q

(1.10a)

(1.10b)

(1.11a)

(1.11b)

(1.12a)

(1.12b)

(1.13a)
(1.13b)

we find that the two bisection series, under the base replacement g — ql/ 4. result in the following identities of

Rogers—Ramanujan type [11, Egs. 98 and 94]:
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00 m? 10 2 8.,10
q _97.9°.4% g 1o 14 6. 20 114
. - . 9 499 |5 (1.14a)
0 (45 @)om (q; @)oo
00 m(m+1 10 3 7. .10
q ( + ) _ [q ’q 7q 7q ]OO 16 4. 20 1 14b
: = ; AN (1.14b)
=0 @ Drvam (q: @)oo

Both identities can be traced back to an earlier work by Rogers [10, Egs. 5 and 6], where the first identity can also be
found in Bailey [3, Eq. 1.4].

14. Casea=5andc=2in(1.1)

The corresponding equations read as:
[¢". -4’ =q":q"]  + (4" a.a": 9", =2[¢". —4"®. —¢**: ¢™] .. (1.15a)
[6]]0, _q3, —617; 6110]0O _ [qlo, q3, t]7; q10]oo — 26]3[6140, —614, _q36; q40] (1.15b)
As observed by Andrews and recorded by Alladi [1, p. 222] that the bisection series of another identity [11, Eq. 16]

et qm(2+m) B (—61;612)00

= @*aHm @5 9D)eo

00"

[0 q.q% %] = 7' —4% —47; 4"l
e ’ 00 [q207c]87t]12;q20]Oo

leads, under the base replacement ¢ — ¢'/4, to the following two identities of Rogers—Ramanujan type [11, Eqs. 99

and 96]:
— ¢""D 1q1%4,4%:¢" 0 1 s 20 o
——= . [4'% 4% 4], e
0 (617 Q)Zm (q’ q)oo
"2 q".4% 4% ¢t 15 2 20 o
. - R [ 454 ]oo' e
= (@ @)142m (@ D)o

These two identities have been found earlier by Rogers [10, Eqgs. 13 and 7], where the last one appeared also in
Bailey [3, Eq. 1.5].

1.5. Casea=3andc=1in(1.1)

The corresponding equations read as:

2
(-4, % @'l + 10,07 0 ) = 5 5—[a" a7 —a"s 4],
(q vq )OO
2q
[-¢.—-¢* ], —a.4% 4] = ——5—[d" —a.—¢": "],
(4°:97) o0
Similarly, combining “+1” with the identity [11, Eq. 6]
i CLdn we _ 47 ~4.~4* 'l _ [-4.-4"1 ") w17
= (@ Dm(q:qPm (43 oo [9. 9% ¢*)oo

we obtain the following two further identities [11, Eqs. 58 and 56]

o0 P 2 _ .5 _7.,12
1+ Z ( q: CI)mle qm2 — [q ’ q ’ q ,‘1 ]OO’ (1183)
R CHPACH T (@590
i (=4 Dm wriom _ 142 =0, =41 4% (1.18b)
= (@ Dm+1(q: 4P mt) (¢ @)oo

It should be pointed out that the errors appeared in the original sums of Slater [11, Egs. 6 and 56] have been corrected
respectively by (1.17) and (1.18b).
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1.6.

Finally, define two infinite products by

x o= [q12,q5,q7; qlz]oo _ Z(_l)kq12(§)+5k’
Y:=[q"q.9" Z( 1)fg PG+,

Then for ¢ = %1, considering the Jacobi triple product

X+qgey= [—q3, —qe, £q°; —q3]oo = Z(—l)(g)qS(g)J“ksk

k
we get the following two equations:
[-4*.—-q.¢% @] o + [~ 0. —a* =4’ ] . =2[9"%. ¢”. 4" ¢"?] . (1.192)
[-4°. —q.94% -4’ - [-4°. 9. —a*: =4, =24[q4"*.q.9": ¢"*] . (1.19b)
Observe that the two identities [11, Egs. 4 and 25]:
o 2 2
@ 9Dm w2 (@90 [ 2 2
1 4 =519 9, —q,q 5 (1203)
mzz% @* q*m (@400 [ b
S 2 2
(=49 Im 2 (=4:9)o0or 6 3 3. 6
g = q9°,97.97:4 (1.20b)
mX:;) @*: q*m @ 4%)oo [ Jes

may be unified as

Z m (@5 0%)m o = (454D {[qz, 4. =440, E=+1, (L.21)
0 (‘1 q4)m (q2;q2)oo [q6, —q3,—q3;q6]oo, e=—1,
where (1.20a) follows easily from the special case of the g-Gauss theorem (1.8):
2
q7 _M)Z :| [_qv CI/M‘21|
201 sq/M | =
[ g2 e q/ —q% q/M | N
Then two equations (1.19a) and (1.19b) together with the equivalent products
e=+1 = [-¢.-q.4% -] =(:9%) (9% q°) Ja*. —a.—a:4*] ,
e=—1 = [-¢’.q.,—¢% =] o= (04°) o (-0% 4°) 4% —4°. —a: 4°) ;
give rise to the following identities of Rogers—Ramanujan type [11, Egs. 53 and 55]:
i (45 4H)2m S 9% 4°.q"; 41 (1.223)
= (g% q%)om @*qMee
i @ aD)142m amimsry _ 19".4.9"19" 1 (122b)
= (g% qH142m (@* g%

2. Trisection of Jacobi-triple products

For a natural number a and an integer ¢ with |c| < a, the Jacobi triple product identity asserts that

ank2+ck — [q2a’ _qa—i—c’ _qa—c; q2a]oo =6+ qa+6@l +q“_c@71
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where the ®@-functions are defined through the trisection of the series:

2
Oola, c] Zq9ak +3ck _ 18a’ _q9a+30’ _q90—3C; qISa]

00’

9ak®+6ak+3ck __ 18a 3a—3c 15a+3c. ,18a
O1la,c] Z [q ,—q ‘, —q 5 q ]oo,

k

2 b N —_ -
O_ila,c]l:= ZqQak —6ak+3ck _ [q18a’ _q3a+3L’ _q15a 36; q18a]
k

o
2.1. Casec=a

The corresponding ®-functions become

U(a) ::@O[a’a]z[qISa’_q&z’ q ’qISa]
V(a) = @1[a,a]/2=[q18“,—q180, q 7q18a:|

According to the Jacobi triple and quintuple product identities, we get the relations

2a. ,2a
Ua) +q*V(a) = M[_qh; q2u]3

(—4%%; ¢*") o oo’
@ ¢
Ua) —2¢%V(a) = —— 1 [—4%: 4%] .
(—=4°%; 4°%) oo

which lead us to the following two equations

2[_q2a; q2a]3 + [_qéa; q6a]oo -3 (—q “ q2u)oo [q18a’ _q6a’ _q12a; q18a]

~ (@7 %) o
2a
3 (—q%*; ¢*%)
[_q2a;q2a]oo _[ q ’q ] 2a — 2a 00[ ISa’_qISa’_qISa;qISa]OO.
(q ’ )OO
They are essentially equivalent to the equations specified with a = 1/2:
(=4:9)
2-q: 93+ (-0% %) =3—""[¢". 4. —¢% ¢°] .. @.1a)
(45 @)oo
(=4:9)
(—4: D% — (-4%4%) oo =34 2[4°. -4°. -4°:¢°] .. (2.1b)
(4: @)oo

With w # 1 being a cubic root of unity, we can specify the g-Gauss summation theorem (1.8) as
2¢1 |:60, w . _q] _ (—q3, q3)00
—q I (—4: D)3

Then the last two equations allow us to compute

2

e

2 2
2+z¢1[“’ ¢ } and 1—2¢1[“” ¢ )q;—q].
—-q —-q
The resulting equations can be stated as the following g-series identities:
o 3. .3 m 2
G’ 97 )m-19 (q:97) 9 3 6. 9
I+ ) (=" = =999 | (2.2a)
2 @ Dm-1G%Dm  @* 9o [ J
0 3. .3 m 2
(@597 )mq (g:97)
> =" = = = [¢°,—4", —4°; ¢°] - (2.2b)

— @ Dm@* gD 14m  (@% 4P
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2.2. Casec=0

The corresponding ©@-functions read as
U(a) := Ogla, 01 =[q"%*, —¢**, —¢**: ¢"*] ..
V(a) == 01la,0]=[¢", —¢*, —¢"* ¢"%] .

Applying again the Jacobi triple and quintuple product identities, we can factorize the following linear combinations:

(q2a a)oo 2073

U 24 V(a) = 49 Joor_pa. 2a]}

(@ +24"V@ = = qa;qz )OO[ q“:q7],
a (6] ‘oo 3a. 6a

Ua) — g%V 2 1 or gl ,

) @ =g 2a)oo[ Al I

which lead us to the two factorization equations:

a.,2a13 4o 3a. 6a _3(_‘1{1;‘12“)00 184 9 9a. 18a
[—a“:a™ ] +2[-a™:q™] = m[q A MY el NS

[_ 3a. 6a] —3 a(_qa§q2a)oo[ 18¢ _ 3a _ 15a. ISa]
99 lo= 2a. ,2a L R L
(‘] 7q )(X)

They are essentially equivalent to the equations specified with a = 1:

[—4%: %], -

o 203 4b _3(61;612)00 18 9 9. 18 23

(@) #2007 =3 3 2 —l47 07474 ] (2.32)
(q: 9%

(4% 4% — (4:4%)2 =34 (q2q )°° [¢"%. 474" q"]... (2.3b)

For the same cubic root w of unity, specify the g-Gauss theorem (1.8) as

> 3. 6
w, W 2 G797
201 ‘q ;Q:| =51 -
[ q (a: 973

Then from the linear combinations
2 2
w, w,
1+22¢1[ g \qz;q} and —1+2¢1[ y ]qz;q]

we can establish the following g-series identities:

1+2i % q®)m-19" :(—q;q)oo[qlg ¢ ¢% q"] (2.42)
=@ D@ gIm-1 (@5 Do T .

o0

3 @°4")mg" _ Do s
=@ D22m (@ qPm (@ Do

aq"q" (2.4b)

3. Bisection of identities due to Gessel-Stanton

Applying the bisection method to the identities of Gessel-Stanton type, this section will further rederive six
Rogers—Ramanujan type identities.

3.1.

Gessel and Stanton [7, Eq. 3.10] found the following strange identity:
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i( 0 4N s _ (-4147)0

5 2 3 5
q q°,9°,97;q (3.1a)
P CAT (qz;q2)oo[ Js

_14".4% 4% [0
(@* 4" oo
In view of (1.13a) and (1.13b), applying the bisection method to (3.1a)—(3.1b) and then performing the base replace-

ments ¢ — ¢'/% and ¢ — ¢'/* respectively for the series consisting of even and odd terms, we obtain the following
identities of Rogers—Ramanujan type [11, Eqgs. 46 and 97]

—4.-q%q"]... (3.1b)

o0
4 Dm w2y _ G Door 5 4 s 7 3 10
— 4 YV=——"19".49,.9 ;4 X999 , (3.2a)
mzz% (@: 9)2m (@ 9)oo [ Joo x| o
(=49 14m _s3mom _ (44 Do0r 10 3 7. 10 16 4. 20
q = q9°.9°.9":q x (4" q% ¢*] .. (3.2b)
miz;) (qZ; C]2)1+2m (qZ; qz)oo [ ]oo [ ]oo

We remark that the right member of the last equation is simpler than the original expression of two-terms difference
due to Slater [11, Eq. 97].

3.2.

Gessel and Stanton [7, Eq. 3.11] found also another strange summation formula:

o (680N 0 (41D s 4 s .
4. 2. 2 [q’q’q’q]oo 3a
k=0 (qu) (Q»Q)oo
[6116,614;6120]00 10 3 710
T 4. —¢. —q":4"] . (3.3b)

By means of (1.15a) and (1.15b), we can similarly derive from the bisection series of the last equation the following
two identities of Rogers—Ramanujan type [11, Egs. 44 and 100]

i 4 Dm_ 304y _ (4 Do

5 2 3.5 9 10
q 49 oo X 1975959 [0 (3.4a)
= (4 9)1+2m (45 @)oo [ o J

o =4:9Dm 3w _ (434D 10 o 10 12 8. 20

" = 5[4 ", 4,9 54 x1q54% 97 | (3.4b)
";0 (% q%)2m @ oo [ o Js

where the last formula corrects a misprint appeared in Slater [11, Eq. 100].

3.3

For two sequences defined by

3k2—k 3k2—2k
and g = q
(7:9Pr(q* M1

q
(4% qPi-1(q% gk

A=

consider the following two equations obtained respectively from (3.2a) with ¢ — ¢? and (3.2b):
3k2—k 3k2+k 3k2—k(1 gt

)
Zz.qzzt:quz +Zq )

Al 4% Mk S ;g% g = (@% 4Pr(G%; M1

=2

k=0

3k2+k

+ D = i),

2 4
@%@ a5



784 W. Chu, C. Wang / J. Math. Anal. Appl. 339 (2008) 774-784

3k242k 3k2—2k 3k2—2k ¢, 4k 142k
+ —1
Z q Z q n Z q (g q )

) 4 b, A B}
50 @ aer1@hqDe =0(@ g a0 7

(@ 4)r+1(g% 4D
q3k272k
N ,; @ @ g;‘){um s
Then the telescoping method shows that the two sums on A; and wy just displayed result in zero, in view of
Aozkl_i)rglokk =0 and /L():kl_iglouk =0.

We therefore derive from (3.2a) and (3.2b) the following two further identities of Rogers—Ramanujan type [11, Eqs. 62
and 95]:

o0

(=g Pm m2+(4m) (=45 Qoo 5 4 5 7 3. 10

— 1 g ) =—"""""1¢".9.9" ¢ x[a".a: "] (3.5a)
mg%)(q;q)lJer (4 9 oo [ o )
00 2 2

(=4:9m _3m>—2m _ (=939 )0 10 3 7. 10 16 4. 20

q = q'%.q.q":q x [¢'%, q* ¢*°] . (3.5b)
mXZ:O(qz;qz)zm RS [ o 1 Js
Interestingly, if we consider the following combination:

(—4* 4%) . xEq. 3.50)|,_. 5 +9(—4% ¢°) , x Eq. 3.5b)],_ 45, (3.6)

then we find a third strange identity similar to Gessel and Stanton [7, Eqs. 3.10 and 3.11]:

00 8+4k. 8 .2
(—q + 140 3k2—dk+1 (—=9:9) 0 [6]5 qz 6]3'615]
4. 4 - 2. 2 ) ) ) 00
= @hak (4% q%)o0

where the right member corresponding to (3.6) has been simplified, according to the quintuple product identity (0.2a)—
(0.2b), as follows:

q[q40’q127q28;q40]oo[q64’q16;q80]00 + [q40,q8,q32;q40]oo[q56,q24;qgo]oo
_ [qlo’ —q, —qg;qlo]w[qlz,qg;qzo]w — (=2 @)oo X [qs,qz,qS;qS]oo.
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