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SUMMARY

Membrane protein-enriched extracellular vesicles
(MPEEVs) provide a platform for studying intact
membrane proteins natively anchored with the cor-
rect topology in genuine biological membranes.
This approach circumvents the need to conduct
tedious detergent screens for solubilization, purifica-
tion, and reconstitution required in classical mem-
brane protein studies. We have applied this method
to three integral type I membrane proteins, namely
the Caenorhabditis elegans cell-cell fusion proteins
AFF-1 and EFF-1 and the glycoprotein B (gB) from
Herpes simplex virus type 1 (HSV1). Electron cryoto-
mography followed by subvolume averaging allowed
the 3D reconstruction of EFF-1 and HSV1 gB in the
membrane as well as an analysis of the spatial distri-
bution and interprotein interactions on the mem-
brane. MPEEVs have many applications beyond
structural/functional investigations, such as facili-
tating the raising of antibodies, for protein-protein
interaction assays or for diagnostics use, as bio-
markers, and possibly therapeutics.

INTRODUCTION

Membrane proteins are a central subclass of the proteome

(Wallin and von Heijne, 1998). They are involved in many essen-

tial biological processes, including cell signaling, cell adhesion,

transport across the lipid bilayer, transduction of energy, and im-

mune response. As such, membrane proteins are implicated in

many disorders and are key targets for diagnostics and thera-

peutics. Prerequisite to conducting any research into membrane

protein function is the successful production of the protein of in-

terest in a functional form. Producing intact membrane proteins

is an inherently challenging task due to their requirement for a

lipid environment, and while remarkable achievements have

been made in the past several years toward the production of

membrane proteins, the requirement for lipidic environment re-

mains a severe restriction to the structure determination of these

otherwise desirable targets (Moraes et al., 2014). Most proce-

dures developed involve isolating the protein by detergent

solubilization, followed by a purification step and subsequent
Stru
reconstitution into an artificial membrane e.g., liposomes, bi-

celles, or nanodiscs (Denisov et al., 2004; Whiles et al., 2002).

These procedures are highly time consuming and suffer from

further drawbacks, including low yields and high cost. Perhaps

most importantly, preserving the correct topology of membrane

proteins is often crucial for their function but is very difficult to

achieve during reconstitution experiments. Additionally, the bio-

logical relevance of in vitro model systems is limited by the rela-

tive simplicity of the lipid composition of the artificial membranes

when compared to native membranes that comprise a consider-

ably more diverse range of lipids, often with specific ratios that

can also form local subdomains (Simons and Ikonen, 1997).

Membrane enveloped viruses have been successfully used as

a platform for displaying intact membrane proteins on their sur-

face. This approach is referred to as pseudotyping, a process in

which the native virus surface protein is replaced with the protein

of interest. This gives rise tomembrane proteins that are properly

folded and oriented on cell-derived membranes. Vesicular sto-

matitis virus (VSV) is a favorable platform for the pseudotyping

approach with well-demonstrated success (Whitt, 2010). Sim-

pler systems that circumvent the related biosafety laboratory

requirements for work with VSV pseudotypes are virus-like par-

ticles (VLPs) that have been likewise applied successfully to

display membrane proteins (Noad and Roy, 2003). However,

an inherent limitation of the virus-based and VLP approaches

is the need for viral components. Additionally, integral mem-

brane proteins with bulky cytoplasmic domainswill not be readily

packed into either pseudotyped viruses or VLPs due to steric

hindrances from the virus capsid or matrix proteins. Further-

more, in these cases the cytoplasmic domain of the membrane

protein is potentially altered.

With the aforementioned limitations in mind, we have de-

veloped an alternative approach that provides high yields of

cell-derived, membrane protein-enriched extracellular vesicles

(MPEEVs). The basis for this approach is the utilization of the

recently characterized biological process of membrane vesicle

secretion (György et al., 2011). Extracellular vesicle secretion

seems to be a universal and evolutionary conserved process un-

der both physiological and pathological conditions. Chemical

vesiculants like paraformaldehyde in combination with dithio-

threitol can induce release of giant plasma membrane vesicles.

However, these agents have severe effects on the integrity of

the proteins and thus often limit the use of such preparations

to study membrane biophysics (Sezgin et al., 2012). The here

presented approach does not require any vesiculants or viral

components.
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Figure 1. Analysis of MPEEVs by SDS-PAGE

(A) Vesicle preparation with Herpes simplex virus 1 (HSV1) glycoprotein B (gB).

gB appears as prominent band at a molecular weight of �110 kDa.

(B) Vesicle preparation with the C. elegans fusion proteins EFF-1 and AFF-1,

the proteins appear as predominant bands at a molecular weight of �97 kDa.
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RESULTS AND DISCUSSION

MPEEV Production and Characterization
To produce extracellular vesicles enriched with a specific

membrane protein, adherent mammalian cells were transfected

with the gene corresponding to the full-length protein of interest

in a standard expression vector using an actin promoter. The

overexpression of the protein resulted in the accumulation of

MPEEVs in the growth medium (for details, see the Experimental

Procedures). The source compartment of the vesicles might

vary from protein to protein. The MPEEVs were then separated

from producer cells by differential centrifugation of the

supernatant.

We have applied this method to three integral membrane pro-

teins, namely the Caenorhabditis elegans cell-cell fusion pro-

teins AFF-1 and EFF-1 and the glycoprotein B (gB) from Herpes

simplex virus type 1 (HSV1). To estimate the relative enrichment

of the corresponding membrane protein in the MPEEVs, an

aliquot of the vesicle preparation was loaded on SDS-PAGE

(Figure 1). While some contaminants were observed, a major

band at the expected molecular weight was clearly apparent

for each of the three different samples. Based on the SDS-

PAGE, the estimated yield from one T175 flask was 50–

100 mg of protein. To further quantify the relative enrichment

and analyze the nature of the contaminants, the MPEEVs
Figure 2. Visualization by of MPEEVs by Cryo-EM

Projection images of vesicles collected from the culture medium of cells transfe

full-length AFF-1 (B; defocus �5 mm); full-length EFF-1 (C; defocus �5 mm) and
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were analyzed by mass spectrometry using an exponentially

modified protein abundance index (emPAI) (Table 1). The emPAI

analysis verified that the corresponding membrane protein of in-

terest is the most abundant protein in the respective vesicle

preparation, correlating well with the SDS-PAGE results. Impor-

tantly, no other membrane proteins were detected and most of

the other proteins found were contaminants, either from the

serum added to the cell culture medium or from the transfection

reagent.

To characterize the protein incorporation in the membrane,

the vesicles were imaged with electron cryomicroscopy (cryo-

EM) and electron cryotomography (cryo-ET). The size and

morphology of the vesicles were dependent on the displayed

protein (Figure 2). For HSV1 gB and AFF-1, the vesicles were

mostly spherical and �100 nm in diameter. EFF-1 vesicles

were generally smaller in diameter and had variable morphol-

ogies. In the case of HSV1 gB, we observed elongated spikes

protruding from the membrane (�16 nm; Figure 2A). In

the case of AFF-1 and EFF-1, the vesicle membranes were

uniformly covered with an �12–14 nm thick protein layer that

appeared to consist of discrete densities protruding radially out-

ward from the membrane (Figures 2B and 2C). In control vesicle

preparations, where the cells were transfected with an expres-

sion plasmid for cytosolic yellow fluorescence protein (YFP),

notably �1003 less vesicles were secreted. These vesicles

could be seen to display only very small, extra-membranous

densities, which were clearly different from those observed for

the MPEEVs (Figure 2D versus Figures 2A–2C). This indicates

that our experimental system is highly suitable for specifically

displaying topologically correct membrane proteins, and vesicle

secretion is induced by the expression of the membrane pro-

teins. Furthermore, to demonstrate the stability of these prepa-

rations, we have successfully imaged vesicles after storage in

buffer at 4�C for over 2 months without noticing any decay.

This characteristic might be crucial for a number of nonstructural

applications.

Structure Determination from MPEEVs
To generate a 3D reconstruction of themembrane proteins in the

context of the membrane we have applied cryo-ET with subse-

quent averaging of tomographic subvolumes. Subvolume aver-

aging is a method of aligning and averaging a large number of

extracted volumes that contain the structure of interest, in order

to greatly improve the signal-to-noise ratio (Briggs, 2013; Förster
cted with the expression plasmid for full-length HSV1 gB (A; defocus �3 mm);

cytosolic YFP (D; defocus �5 mm). Scale bar represents 100 nm.
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Table 1. Major Proteins Identified by Mass Spectrometry in the Vesicles Preparations and Their Relative Abundance

Protein Namea
NCBI

Accession Mass (Da)

HSV1 gB AFF-1 EFF-1

Scoreb emPAIc
Rel. Abund.d

(%) Scoreb emPAIc
Rel. Abund.d

(%) Scoreb emPAIc
Rel. Abund.d

(%)

Envelope glycoprotein

B (HSV1)

1353200 100,875 16,873 70.91 27.6

Protein AFF-1 anchor

cell fusion failure-1

(C. elegans)

193204255 68,617 974 2.07 33

Protein EFF-1, isoform

a (C. elegans)

71982882 75,494 1004 1.66 16

Histone H2B homolog 156371481 24,545 225 1.78 28 392 1.78 17

Actin familye 178045 26,147 2,918 46.51 18.1 221 1.05 17 185 0.35 3

Hemoglobin fetal

subunit beta

62460494 15,963 998 33.03 12.9 95 0.78 12 234 1.62 15

Pyruvate kinase PKM 146345448 58,378 2,081 18.19 7.0

Tubulin beta-3 chain 12963615 50,842 1,422 17.00 6.6 134 0.37 3

14-3-3 protein zeta 82197807 27,929 625 16.42 6.4

Ras-related protein

Rap

75077355 21,040 356 13.03 5.1

Annexin A2 113951 38,937 1,730 12.89 5.0

T-complex protein 1

subunit zeta

115305833 58,376 405 10.15 4.0

Class-III intermediate

filaments

138535 53,754 1,500 9.64 3.8

Tubulin alpha 116256086 50,804 1,614 9.10 3.5

Histone cluster 1,

H2ag-like

291410763 27,347 141 1.00 10

Serum albumin 1351907 71,244 152 0.20 3 282 0.31 3

Galectin-3-binding

protein

81861611 65,270 272 0.41 7 315 0.63 6

60S acidic ribosomal

protein P2

133062 4,692 72 0.79 8

40S ribosomal protein

SA-like

296190805 32,906 182 0.47 4

Guanine nucleotide-

binding protein

subunit beta-2-like 1

5174447 35,511 170 0.56 5

Glyceraldehyde-3-

phosphate

dehydrogenase-like

488563203 35,942 190 0.55 5

Laminin-binding

protein

34234 31,888 197 0.49 5

aAll proteins other than gB of HSV1 and AFF-1 and EFF-1 of C. elegans are originating either from the BHK cells used to produce the vesicles or

contaminations, either from the serum added to the cell culture or transfection reagent.
bMascot score for confidence of protein identification is defined as the –log value of the probability P that this assignment is made by chance (Mackeen

et al., 2010).
cExponentially modified protein abundance index (emPAI) analysis (Ishihama et al., 2005; Trudgian et al., 2011).
dRelative abundance (Rel. Abund.) in respect to the proteins with the highest emPAI listed in this table.
eActin family representing gamma-actin, cytoplasmic actin 2, actin-cytoplasmic 1-like.
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et al., 2005). For the EFF-1 and gB structures (Figure 3), several

hundred subvolumes were automatically picked at the vesicle

surfaces using a local minimum search. These volumes were

then iteratively aligned and averaged in an unbiased, refer-

ence-free manner. The resulting 3D reconstruction of the elon-

gated spikes observed for gB showed a 3-fold symmetry and
Stru
was very similar to the postfusion crystal structure of gB (Held-

wein et al., 2006) and the 3D reconstruction of the ectodomain

bound to liposomes (Maurer et al., 2013) (Figure 3C). The result-

ing 3D reconstruction of natively-anchored EFF-1 had an asym-

metric elongated shape (Figure 3D). For further details on the

EFF-1 3D reconstruction, see Zeev-Ben-Mordehai et al. (2014).
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Figure 3. 3D EM Reconstruction of the Pro-

teins on the Membrane

(A and B) Central and tangential slices through a

tomogram of MPEEVs displaying gB (A) and EFF-1

(B). Scale bar represents 50 nm.

(C and D) Isosurface representation of the sub-

volume reconstruction of gB with the trimer crystal

structure (Protein Data Bank [PDB]: 2GUM) fitted

(C) and EFF-1 EM map with a protomer of EFF-1

crystal structure (PDB: 4OJC) flexibly fitted (D),

side (left) and top views (right) are presented.

Membrane is shown in light blue; protein in or-

ange. Scale bar represents 5 nm.

(E and F) Isosurface representations of the to-

mograms shown in (A and B). The subvolume

reconstruction and the membrane were placed

back into the determined position and orientation

of individual protein spikes such enabling analysis

of relative orientations and interactions. Scale bar

represents 50 nm.

See also Movies S1 and S2.
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In that study, it was shown that vesicles could have substantially

different morphologies, depending on the protein displayed and

the time point of harvest. Furthermore, imaging of vesicles un-

dergoing fusion revealed highly elusive membrane rearrange-

ments occurring during AFF-1- and EFF-1-mediated fusion

(Zeev-Ben-Mordehai et al., 2014).

Subvolume averaging, in addition to the 3D structure, pro-

vides the means to analyze the membrane proteins spatial dis-

tribution and to probe whether higher order assemblies are

apparent. This analysis was performed by subsequently back-

plotting the average structure into orientations and positions at

which the proteins were found on the membrane thus enabling

to visualize and assess the relative protein topology and inter-

protein interactions (Figures 3E and 3F; Movies S1 and S2 avail-

able online). For the examples presented, no ordered lattice or

preferred intermolecular interaction was observed in the case

of EFF-1. In the case of HSV1 gB some patches of trimers

showed preferred lateral interaction presumably mediated by

the trimer midregions as observed earlier for the soluble gB

ectodomain upon interaction with artificial liposomes (Maurer

et al., 2013).

In summary, the experimental system described here works

independent of detergents, vesiculants, and viruses, and as

such, we envisage MPEEVs being used in a broad number of ap-

plications. As the vesicles originate from cells, the intact mem-

brane protein is embedded in membranes with a native lipid

composition. MPEEVs can be potentially isolated from a wide

variety of cell-wall free cell types. The success in MPEEV pro-

duction relies on the overexpression of the protein of interest

and as a high level of expression is crucial, plasmids using a

strong promoter are required. The optimum time, posttransfec-

tion, for collecting the MPEEVs will vary for different proteins
1690 Structure 22, 1687–1692, November 4, 2014 ª2014 The Authors
and needs to be determined case by

case. However, this optimization is very

fast and high quality material can be

produced within a week as opposed to

several months or even years required

for solubilization and reconstitution-
based approaches. Here, results are presented for three type I

transmembrane proteins, the extent to which this method is

applicable for studying other families of membrane proteins re-

mains to be determined. As demonstrated here, the coupling

of this experimental system with techniques that are ideally

suited to study proteins within biological membranes such as

cryo-EM and cryo-ET enabled structural characterization of the

membrane protein of interest. Additionally, MPEEVs can be

used as highly protein-enriched, semipurified starting material

for classical detergent-based purification approaches currently

applied for structure determination by crystallography or NMR.

The applications for MPEEVs, however, are not limited to struc-

tural determination. They can credibly be used for a wide range

of exciting applications including antibody generation, protein-

protein interaction assays, diagnostics use, biomarkers, and

possibly therapeutics.

EXPERIMENTAL PROCEDURES

Vesicle Preparation

Adherent Baby Hamster Kidney cells (BHK-21, clone 13, ECACC 85011433)

were grown in a T175 flask; at �70% confluency, they were transfected with

either aff-1 (Avinoam et al., 2011), eff-1A (Avinoam et al., 2011), or HSV1 gB

(Pertel et al., 2001) gene in pCAGGS plasmid using Lipofectamine (Invitrogen).

Following a 2 hr incubation at 37�C and 5% CO2, the medium with the trans-

fection reagent was removed and replaced by 2% FBS/GMEM-CM (Invitro-

gen). Transfected cells were allowed to grow for 24 hr or 48 hr at 37�C and

5% CO2. Following the incubation, the medium was collected and cleared

from cell debris by centrifugation at 3,0003 g for 20 min and 4�C. The vesicles

were pelleted through a 20% sucrose cushion at 100,000 3 g, and resus-

pended in 25 mM HEPES pH 7.4, 130 mM NaCl. For AFF-1 and EFF-1 vesicle

preparations each 19 independent repeats were performed for gB 11 indepen-

dent repeats were performed. For every vesicle preparation, 2 aliquots were

analyzed by cryo-EM.
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Mass Spectrometry Analysis

For the analysis of protein composition, vesicles were precipitated using chlo-

roform/methanol as described previously (Wessel and Flügge, 1984) followed

by in-solution trypsin digestion (Xu et al., 2008). The mass spectrometry anal-

ysis was performed by nano ultraperformance liquid chromatography tandem

mass spectrometry (UPLC-MS/MS) using a nano Acquity UPLC system

coupled to a QTOF premier (Waters) as described previously (Mackeen

et al., 2010). MS/MS spectra were searched against the National Center for

Biotechnology Information (NCBI) database and proteins identified quantified

in a relative fashion using the empirically modified abundance index (emPAI)

approach as described (Ishihama et al., 2005; Trudgian et al., 2011) (Table

1). For each vesicle type (gB, EFF-1, AFF-1), mass spectrometry analysis

was performed from two independent preparations and found to be highly

similar. The data given in Table 1 is the result from one of these experiments.

Electron Cryo Microscopy Data Collection

Microscopy was performed at either 200 keV or 300 keV using a TF30 ‘‘Polara’’

electronmicroscope (FEI) equipped with a QUANTUM 964 postcolumn energy

filter (Gatan) operated in zero-loss imaging mode. A 50 mm C2 aperture and a

20 eV energy-selecting slit were used. Projection images and tilt series were

recorded on a 4 k3 4 k CCD camera or K2 summit direct detector at a nominal

magnification of 95,0003 or 77,0003 resulting in a calibrated pixel size of

0.38 nm or 0.28 nm at the specimen. Tilt series were collected at 200 kV or

300 kV using SerialEM (Mastronarde, 2005) at a defocus of –2 mm in 3� or 4�

increments covering an angular range from –60� to 60�. The total electron

dose for the tilt series was kept between 60 and 80 electrons/Å2.

Tomographic Reconstructions

Tomographic reconstructions were calculated in IMOD (Kremer et al., 1996)

using weighted back-projection (Sandberg et al., 2003).

Subvolume Picking

Subvolumes were picked using a local minima search on 43 binned and

Gaussian-filtered versions of the tomograms as described (Zeev-Ben-Morde-

hai et al., 2014). In brief, all local minima with intensities lower than 2 SD below

the mean, and within �150 Å of the manually segmented vesicle membrane,

were considered as particles to be averaged, resulting in 1,973 subvolumes

for EFF-1 and 1,380 subvolumes for gB. Initial orientations of the sub-volume

‘‘boxes’’ were approximated as normal to the membrane. Using PEET version

1.9 (Nicastro et al., 2006), five iterations of alignment against the initial average

of all 1,973 subvolumes were performed on unmasked particles, in order to

refine the picking while aligning the membrane as well as the particle. For

EFF-1, the 801 subvolumes giving cross-correlation scores above the mean

were subsequently used for subvolume averaging. For gB, 748 subvolumes

from the two tomograms giving the most consistent averages were used. Us-

ing UCSF Chimera (Pettersen et al., 2004), the orientations and positions of

these subvolumes were visualized concurrently with the filtered tomogram

maps to validate the results of the picking process.

Subvolume Averaging

Averaging was performed using PEET version 1.9 (Nicastro et al., 2006). The

picked subvolumes for each protein were split into two evenly sized groups

(based on even and odd particle indices) for the averaging and the final FSC

calculation. For each of these four groups (two for EFF-1, two for gB) the

average of all particles in the group was used as the initial template. Six itera-

tions of refinement of the positions and orientations with successively finer

sampling increments while including progressively higher spatial frequency in-

formation were applied, with the particles masked to remove the membrane

and neighboring particles. The resulting structures from the two independent

refinements were aligned and the resolution determined using Fourier shell

correlation (FSC). The gB reconstruction went through four more iterations

of refinement with 3-fold symmetry applied.

The final structure, created by refining and averaging all 801 subvolumes for

EFF-1 and all 748 subvolumes for gB, was low-pass filtered using a Gaussian

curve with a width matching the FSC curve. The membrane structure from the

initial picking and the final particle structure were then plotted back into their

relative positions on the original tomogram.
Stru
UCSF Chimera (Pettersen et al., 2004) was used for visualization, rigid body

fitting of the crystal structure, and preparation of the figures.
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