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Abstract

The tripleability of the category of crossedn-cubes is studied. The leading cotriple homology of
these homotopy(n + 1)-types is investigated, describing it as Hopf type formulas.
© 2005 Elsevier B.V. All rights reserved.
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It is well known that there exist elegant algebraic models of connected CW-spaces whose
homotopy groups are trivial in dimensions more thann + 1, called homotopy(n + 1)-
types. These algebraic models are catn-groups introduced by Loday in[18], generalising
the notion of crossed modules firstly given by Whitehead in[24] as a means of representing
homotopy 2-types, or equivalently more combinatorial algebraic systems, crossedn-cubes,
invented by Ellis and Steiner in[9]. A number of papers of the last years are dedicated to
the investigation of homological properties of these objects.

In [8] Ellis and in[2] Baues introduced and investigated the (co)homology of crossed
module as the (co)homology of its classifying space, neglecting its algebraic structure.
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In [16] Ladra and Grandjeán gave the first approach to an internal homology theory of
crossed modules taking into account its algebraic structure.

Later, in[4] Carrasco et al. made the observation that the category of crossed modules is
an algebraic category, that is, there is a tripleable “underlying” functor from the category of
crossed modules to the category of sets, implying a purely algebraic construction and study
of cotriple (co)homology theory.

In [10] Grandjeán et al. gave a connection of these two homology theories of crossed
modules by the dimension shifting isomorphism, whilst, in[5] Casas et al. have recently
generalised this result to higher pattern for catn-groups.
The aim of this paper is to investigate the homology of homotopy(n + 1)-types from

a Hopf formulas point of view, using a purely algebraic method ofm-fold Čech derived
functors introduced in[6] (see also[12]).

The Čech derived functors of group valued functors were introduced in[19] (see also
[11,6]) as an algebraic analogue of theČech (co)homology construction of open covers of
topological spaces with coefficients in sheaves of abelian groups (see[23]). Some applica-
tions ofČech derived functors to classical group (co)homology theory,K-theory, non-abelian
homology of groups and Lie algebras and Conduché-Ellis homology of precrossed modules
were given in[19,20,13–15]. In [12] (see also[6]) the notion of theČech derived functors
has been generalised to that of them-fold Čech derived functors of group valued functors
(wherem is a fixed non-negative integer). Based on this notion a new purely algebraic
method for the investigation of higher integral group homology is given in[6] (see also
[12]).

In the current paper them-fold Čech derived functors of group valued functors from
the category of crossedn-cubes is treated. In particular, we calculate themthm-fold Čech
derived functor of the certain abelianization functor�Ab from the category of crossedn-
cubes to the category of groups, implying the expression of the cotriple homology of crossed
n-cubes (catn-groups) as generalised Hopf type formulas. Our main result has the form:

Main Theorem (Generalised Hopf Type Formulas). LetM be a crossed n-cube andX its
projective exact m-presentation. Then there is an isomorphism

Hm+1(M)�

⋂
i∈〈m〉 Ri〈n〉 ∩∏B∪C=〈n〉[X(∅)B,X(∅)C]∏
A⊆〈m〉(

∏
B∪C=〈n〉[

⋂
i∈A Ri

B,
⋂

i /∈A Ri
C]) , m�1,

whereRi = Ker(X(∅) → X({i})) for i ∈ 〈m〉.

This result generalises the Hopf formulas for higher integral group homology[3] (see
also[6]) and Hopf formula for the second CCG-homology of crossed modules[4].

We are setting up the followingNotations and Conventions: For a non-negative integern
we denote by〈n〉 the set of firstn natural numbers{1, . . . , n}. For any setA its cardinality
is denoted by|A|. Foraandbelements of a group,[a, b] is the commutatoraba−1b−1. We
denote byGr andSet the categories of groups and sets, respectively.

We begin by the examination of two equivalent algebraic models of homotopy(n + 1)-
types, catn-groups and crossedn-cubes[18,9], recalling some needed results and notions
for our future purpose.
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Recall from[18] that a catn-group is a groupG together with 2n endomorphismssi, ti :
G → G, 1� i�n, such that

tisi = si, si ti = ti , [Ker si,Ker ti] = 1 for all i,
sisj = sj si , ti tj = tj ti , si tj = tj si for i �= j.

A morphism of catn groupsf : (G, si, ti) → (G′, s′
i , t

′
i ) is a group homomorphism

f : G → G′ satisfyings′
if = f si andt ′if = f ti for 1� i�n. We obtain the category of

catn-groups denoted byCatn.
Later, in [9], the higher dimensional analogues of crossed modules were introduced,

called crossedn-cubes.
A crossed n-cube of groupsis a familyM = {MA : A ⊆ 〈n〉} of groups together with

homomorphisms�i : MA → MA\{i} for i ∈ 〈n〉,A ⊆ 〈n〉 and functionsh : MA ×MB −
→ MA∪B for A,B ⊆ 〈n〉, such that ifab denotesh(a, b) · b for a ∈ MA andb ∈ MB

with A ⊆ B, then for alla, a′ ∈ MA, b, b′ ∈ MB , c ∈ MC andi, j ∈ 〈n〉, the following
conditions hold:

�i (a) = a if i /∈A,

�i�j (a) = �j�i (a),
�ih(a, b) = h(�i (a),�i (b)),
h(a, b) = h(�i (a), b) = h(a,�i (b)) if i ∈ A ∩ B,

h(a, a′) = [a, a′],
h(a, b) = h(b, a)−1,

h(a, b) = 1 if a = 1 or b = 1,
h(aa′, b) = ah(a′, b)h(a, b),
h(a, bb′) = h(a, b)bh(a, b′),
ah(h(a−1, b), c)ch(h(c−1, a), b)bh(h(b−1, c), a) = 1,
ah(b, c) = h(ab, ac) if A ⊆ B ∩ C.

A morphism of crossedn-cubes,� : M → N, is a family of group homomorphisms
{�A : MA → NA,A ⊆ 〈n〉} commuting with the�i and theh-functions. The resulted
category of crossedn-cubes of groups will be denoted byCrsn.

According to[18] the category of cat1-groups is equivalent to that of crossed modules
and the category of cat2-groups to that of crossed squares. One of the main result of[9]
says that the categoriesCrsn andCatn are equivalent. Namely, one has the following.

Theorem 1. There are inverse equivalences of categories

Crsn
�n

�
�n

Catn

given by

�n(M) =
∨

A⊆〈n〉
MA�{h(a, b) = [a, b] for all a ∈ MA, b ∈ MB,A,B ⊆ 〈n〉},

M ∈ Crsn
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and

�n(G)A =
⋂
i∈A

Ker si ∩
⋂
i /∈A

Im si, G ∈ Catn, A ⊆ 〈n〉.

Note that in this paper we mainly prefer to use crossedn-cubes instead of catn-groups,
except those cases when using of catn-groups will make things easier to understand.

The following example of a crossedn-cube appears naturally from normal(n+ 1)-ad of
groups.

Example 2. LetGbe a group andN1, . . . ,Nn be normal subgroups ofG. LetMA=⋂i∈A Ni

for A ⊆ 〈n〉 (hereM∅ is understood to meanG); if i ∈ 〈n〉, define�i : MA
i∈A−→MA\{i}

to be the inclusion and givenA,B ⊆ 〈n〉, let h : MA × MB → MA∪B be given by
the commutator:h(a, b) = [a, b] for a ∈ MA, b ∈ MB . Then{MA : A ⊆ 〈n〉,�i , h} is
a crossedn-cube, called theinclusion crossed n-cubegiven by thenormal (n + 1)-adof
groups(G;N1, . . . , Nn).

Now we give the notion of a crossedn-subcube, which is consistent with the categorical
notion of subobject in the categoryCrsn. We say that a crossedn-cubeM′ is a crossed
n-subcubeof M if M′

A is a subgroup ofMA, the homomorphism�′
i : M′

A → M′
A\{i} and

the functionh′ : M′
A × M′

B −→ M′
A∪B are the restrictions of�i : MA → MA\{i} and

h : MA × MB −→ MA∪B respectively for everyi ∈ 〈n〉, A,B ⊆ 〈n〉.
Moreover, a crossedn-subcubeM′ of M is said to be anormal crossed n-subcubeif

h(a, b′) ∈ M′
A∪B andh(a′, b) ∈ M′

A∪B for all a ∈ MA, b′ ∈ M′
B , a′ ∈ M′

A, b ∈ MB .
Let � : M → N be a morphism of crossedn-cubes and Ker� denote the family

{Ker�A : A ⊆ 〈n〉} of groups, which essentially is a normal crossedn-subcube ofM.
Now we give the example which will play an important role in the sequel.

Example 3. LetN be a crossedn-cube andR1, . . . , Rm be normal crossedn-subcubes of
N. LetA ⊆ 〈m + n〉, A1 = A ∩ {n + 1, . . . , n + m}, A2 = A ∩ 〈n〉 and considerMA =⋂

j∈A1
R
j−n
A2

(here
⋂

j∈∅R
j−n
A2

is understood to meanNA2); define�i : MA
i∈A−→MA\{i}

to be the inclusion
⋂

j∈A1
R
j−n
A2

↪→ ⋂
j∈A1\{i}R

j−n
A2

if i ∈ A1 and to be induced by�i :
R
j−n
A2

→ R
j−n
A2\{i} if i ∈ A2; let h : MA × MB → MA∪B be defined naturally by

commutators andh-functions of the crossedn-cubesN, R1, . . ., Rm. Then{MA : A ⊆
〈n〉,�i , h} is a crossed(m + n)-cube, called thecrossed(m + n)-cubeof groups induced
by thenormal(m + 1)-adof crossed n-cubes(N;R1, . . . , Rm).

Note that forn= 0 this construction agrees with Example 2, if we assume that a crossed
0-cube is just a group.

It will be shown that the categoryCrsn is an algebraic category (see also[5]), that is,
there is a tripleable forgetful functor fromCrsn to Set. In fact, we need only to construct
‘free’ cotriple in the categoryCrsn.

At first we construct the adjoint pair of functorsCrsn
U

�
F

Gr .
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Assume that the functorU : Crsn → Gr assigns to any crossedn-cubeM = {MA :
A ⊆ 〈n〉} the direct product of groupsMA, A ⊆ 〈n〉, i.e.,

U(M) =
∏

A⊆〈n〉
MA.

Now, define the functorF : Gr → Crsn as follows: for any groupG, let F(G) denote
the inclusion crossedn-cube induced by the normal(n + 1)-ad of groups(

∨
A⊆〈n〉 GA;

Kerp1, . . . ,Kerpn) (see Example 2), where
∨

A⊆〈n〉 GA is the sum of groupsGA = G,
A ⊆ 〈n〉 and

pi :
∨

A⊆〈n〉
GA −→

∨
B⊆〈n−1〉

GB, i ∈ 〈n〉,

are natural projections given by

pi =
{

1G : GA → GB if A ⊆ 〈n〉\{i},
0 otherwise,

where�i : 〈n〉\{i} → 〈n − 1〉 is the unique monotone bijection.

Proposition 4. The functor F is left adjoint to the functorU .

To prove this proposition we use the following easily verified facts requiring only care over
the notation. Given a crossedn-cubeM={MA : A ⊆ 〈n〉}, for anyB ⊆ 〈n〉 denote byMB

andMB the families{MA : A ⊆ 〈n〉, B ⊆ A} and{MA : A ⊆ 〈n〉, B∩A=∅} respectively.

ThenMB andMB have the structure of crossed(n − |B|)-cubes (see Proposition 5[21]).

Proof of Proposition 4. We claim that for any groupG, the homomorphism

u = {uA} : G −→
∏

A⊆〈n〉
F(G)A = UF(G),

whereuA : G → F(G)A=⋂i∈A Kerpi is given by the identity fromG toGA, is a universal
arrow fromG to the functorU .

LetM be a crossedn-cube and let�A : G → MA,A ⊆ 〈n〉 be homomorphisms defining
a homomorphism� : G → ∏

A⊆〈n〉MA = U(M). Then there is a commutative diagram
with splitting short exact sequences of groups:

Kerpi � ∨
A⊆〈n〉

GA

pi� ∨
B⊆〈n−1〉

GB

�̃i ↓ � ↓ ↓�i

�n−1(M{i}) � �n(M) � �n−1(M{i}),

where�∗ is the equivalence given in Theorem 1,�i is induced byGB
�A→MA with A ⊆

〈n〉\{i} such that�i (A)=B,� is induced byGA
�A→MA,A ⊆ 〈n〉 and̃�i is the restriction of�.

It is easy to see that the homomorphisms�̃i induce the homomorphisms̃�A : ⋂i∈AKerpi →
�n−|A|(MA).
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Now define the homomorphism̃̃�A : ⋂i∈AKerpi → MA, A ⊆ 〈n〉 as the composition

of �̃A and�A : �n−|A|(MA) → MA given byMB

�B\A→ MA for B ⊇ A, where�B\A is the

composition of the homomorphisms�ij , j=1, . . . , |B\A|, with anyij ∈ (B\A)\∪j−1
k=1{ik}.

Finally, it is easy to verify that̃̃� = {̃̃�A} : F(G) → M is the unique morphism of crossed
n-cubes withU(̃̃�)u = �. �

We denote byU1 : Gr → Set the usual forgetful functor and byF1 : Set→ Gr its left
adjoint, the free group functor. Composing these two adjunctions,

Crsn
U

�
F

Gr
U1
�
F1

Set,

we deduce the following.

Proposition 5. The underlying set functorU = U1 ◦ U : Crsn → Sethas a left adjoint
F = F ◦ F1 : Set→ Crsn.

It is routine to verify that the categoryCrsn, n�2, similarly to that of crossed modules
(i.e.,n= 1) [4], has kernel pairs and coequalizers preserved and reflected by the functorU.
Then by Proposition 5 and Linton’s criterion on tripleability[17] the underlying set functor
U : Crsn → Set is tripleable.

It is well known for an algebraic categoryC the obvious inclusion functor of the category
of abelian group objectsAbC ↪→ C has left adjointAb : C → AbC, called the abelianiza-
tion functor, which plays a fundamental role in the description of homology of objects in
the categoryC. Namely, thekth homology of an objectX ∈ C is defined to beLkAb(X),
whereLkAb denotes thekth derived functor ofAb [22].

An abelian group object inCrsn, an abelian crossedn-cube, is a crossedn-cube whoseh
maps are trivial[6]. The abelianization functor

Ab(n) : Crsn −→ AbCrsn, (1)

is given by:

(a) forA ⊆ 〈n〉

Ab(n)(M)A = MA∏
B∪C=A DB,C

,

whereDB,C is the subgroup ofMA generated by the elementsh(b, c),h : MB×MC →
MB∪C=A for all b ∈ MB , c ∈ MC ,

(b) if i ∈ 〈n〉, the homomorphism̃�i : Ab(n)(M)A → Ab(n)(M)A\{i} is induced by the
homomorphism�i ,

(c) for A,B ⊆ 〈n〉, the functionh̃ : Ab(n)(M)A × Ab(n)(M)B → Ab(n)(M)A∪B is
induced byh and therefore is trivial,

for anyM = {MA : A ⊆ 〈n〉,�i , h} ∈ Crsn.



J.M. Casas et al. / Journal of Pure and Applied Algebra 200 (2005) 267–280 273

The equivalent abelian group object to abelian crossedn-cube in the categoryCatn is just
a catn-group whose underlying group is abelian, which is called abelian catn-group (see
also[5]). Moreover, the abelianization functor

Ab(n) : Catn −→ AbCatn (2)

sends a catn-groupG= (G, si, ti) to the abelian catn-group(G/[G,G], si , ti), wheresi and
ti are induced bysi andti .

Given a crossed moduleM, the corresponding cat1-group(G, s, t) has an internal cate-
gory structure within the categoryGr . The objects are the elements ofN = Im(s)= Im(t),
the morphisms are the elements ofG, the source and target maps aresandt. The morphisms
g andh are composable ift (g)= s(h) and their composite ish ◦ g = hs(h)−1g. The nerve
of this category forms the simplicial groupE(M)∗ which is called the nerve of the crossed
moduleM [18] (see also[21]).

Now define the functor

E(m) : Crsn −→ SimplCrsn−m(the category of simplicial crossed (n-m)-cubes),

(3)

1�m�n, as follows: given a crossedn-cubeM, consider an associated catn-groupG, which
is equivalent to a crossed(n−m)-cube endowed withmcompatible category structures.Then
by applying the nerve structureE to them-independent directions, this construction leads
naturally to anm-simplicial crossed(n−m)-cube. Then the simplicial crossed(n−m)-cube
E(m)(M)∗ is the diagonal of thism-simplicial crossed(n − m)-cube.

Note that this construction depends upon the sequence of them-independent directions.
In Proposition 2 of[6] it is established that the abelianization of a crossed module com-

mutes with its nerve. We provide more general result for functors (1) and (3), which plays
essential role to obtain generalised Hopf formulas for the homology of crossedn-cubes.

Proposition 6. Let n�0,m�1 andM be a crossed(n + m)-cube. Then there is an iso-
morphism of simplicial crossed n-cubes

Ab(n)E(m)(M)∗�E(m)Ab(n+m)(M)∗,

whereE(m) functors in both sides of the isomorphism are applied to the same directions.

Proof. To simplify things, according to Theorem 1, instead of the crossed(n + m)-cube
M we use its equivalent object, catn+m-group,G= (G, si, ti)=�n+m(M). The proof will
be done by induction onm.

Letm= 1 andn= 0, then the assertion reduces to Proposition 2[6]. This case plays the
key role in the whole proof.

In fact, form=1,n�1 and for the catn+1-groupG, let us fix somek ∈ 〈n+1〉 and apply
the functorE(1) to this ‘direction’. By the definition, the simplicial catn-group ,E(1)(M)∗, is
just the simplicial groupE(�1(G, sk, tk))∗ endowed withn compatible category structures
induced by the respective structural endomorphismssj , tj (0�j�n + 1, j �= k) of the
catn+1-groupG. The fact that the abelianization of a catn-group is just the abelianization
of underling group endowed with induced structural endomorphism and our key fact above
completes the assertion in this case.
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Proceeding by induction, we suppose that the assertion is true form − 1 and we will
prove it form.

By the construction,E(m)(M)∗ is the diagonal of the bisimplicial crossedn-cube induced
by applying the crossed module nerve constructionE(1) to the simplicial crossed(n + 1)-
cubeE(m−1)(M)∗. Hence one has

E(m)(M)k = E(1)(E(m−1)(M)k)k,

for all k�0. Using the inductive hypothesis one has isomorphisms

Ab(n)E(m)(M)k =Ab(n)E(1)(E(m−1)(M)k)k�E(1)Ab(n+1)(E(m−1)(M)k)k
�E(1)(E(m−1)(Ab(n+m)(M))k)k = E(m)(Ab(n+m)(M))k. �

Now we construct the cotriple homology of crossedn-cubes (catn-groups). We refer to
the work of Barr and Beck[1] for the background about cotriple (co)homology.

The above constructed pair of adjoint functorsSet
F
�
U
Crsn induces the cotripleF ≡

(F, �, 	) on the categoryCrsn by the obvious way:F = FU : Crsn → Crsn, 	 : F →
1Crsn is the counit and� = FuU : F → F2, whereu : 1Set → UF is the unit of the
adjunction.

Using the general theory of cotriple homology due to[1], define thekth homology of
a given crossedn-cubeM as the(k − 1)th cotriple derived functor of the abelianization
functorAb(n)

Hk(M) = LF
k−1Ab

(n)(M), k�1.

Let P be the projective class induced by the‘free’ cotripleF, namelyX ∈ P if and only
if there exists a morphism� : X → F(X) such that	X� = 1X. It is well known that
derived functors relative to the cotriple are isomorphic to the derived functors relative to
the projective class induced by the cotriple[11]. Thus there is an isomorphism

LF
kAb

(n)�LP
k Ab

(n).

Recall also that an objectP of a categoryC is projective if given a regular epimorphism
f : X�Y , each morphismg : P → Y can be lifted to a morphismh : P → X such that
f h = g. We say thatC has enough projective objects if any objectX admits a projective
presentation, i.e., there exists a regular epimorphismP → X with P a projective object. If

C is a tripleable category with the adjunctionSet
F

�
U

C, thenF(X),X ∈ Set, is a projective

object and the natural morphismFU(C) → C, C ∈ C, is a regular epimorphism inC,
implying thatC has enough projectives. It is also known that the projective class of all
projective objects in the algebraic categoryC coincides with the projective classP induced
by the adjunction and regular epimorphisms are justP-epimorphisms.

It is easy to check that ifM∗ is a F-cotriple resolution of a crossedn-cubeM, then

M
〈n〉\A∗ is a projective resolution ofM〈n〉\A for A ⊆ 〈n〉, A �= 〈n〉. Hence

Hk(M)A = Hk(M
〈n〉\A)〈|A|〉, k�1.
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Therefore the interest of our investigation is the groupHk(M)〈n〉, which we denote by
Hk(M). If we define the functor� : Crsn → Gr by �(M) = M〈n〉 for M ∈ Crsn, then

Hk(M) = LF
k−1(�Ab

(n))(M), k�1.

Now we consider them-fold Čech derivatives of functors from the category of crossed
n-cubes to the category of groups, whilst the general situation has been dealt in[12] (see also
[6]). In particular, we give an explicit computation of them-fold Čech derived functors of the
functor�Ab(n) : Crsn → AbGr , implying a purely algebraic approach to the homology
groups of crossedn-cubes from a Hopf type formula point of view.

Let m be a natural number. The subsets of〈m〉 are ordered by inclusion. This ordered
set determines in the usual way a categoryCm. For every pair(A,B) of subsets with
A ⊆ B ⊆ 〈m〉, there is the unique morphism
AB : A → B in Cm.

Anm-cubeof crossedn-cubesis a functorX : Cm → Crsn.Amorphismbetweenm-cubes
X,Y : Cm → Crsn is a natural transformation� : X → Y.

Note that a crossedn-cube of groups gives ann-cube on forgetting structure, but there is
a reversal of the role of the indexA. The top corner of a crossedn-cube isM〈n〉, that in an
n-cube isX(∅).

Example 7. Let (M∗, d0
0,M) be an augmented simplicial object in the categoryCrsn. A

naturalm-cube of crossedn-cubesM(m) : Cm → Crsn, m�1 is defined by the following
way:

M(m)(A) = Mm−1−|A| for all A ⊆ 〈m〉,
M(m)(
AA∪{j}) = d

m−1−|A|
k−1 for all A �= 〈m〉, j /∈A,

whereM−1 =M, �(k)= j and� : 〈m− |A|〉 → 〈m〉\A is the unique monotone bijection.

An m-cube of crossedn-cubesX determines a normal(m + 1)-ad of crossedn-cubes
(X(∅);R1, . . . , Rm), whereRi = KerX(
∅

{i}), i ∈ 〈m〉. This (m + 1)-ad will be called the
normal(m + 1)-ad of crossed n-cubes induced byX.

Given anm-cube of crossedn-cubesX. It is easy to see that there exists a natural morphism

of crossedn-cubesX(A)
�A−→ limB⊃A X(B) for anyA ⊆ 〈m〉, A �= 〈m〉.

Definition 8. Let M be a crossedn-cube. Anm-cube of crossedn-cubesX will be called
anm-presentation of the crossed n-cubeM if X(〈m〉) = M. Anm-presentationX of M is
calledprojectiveif the crossedn-cubeX(A) is a projective crossedn-cube for allA �= 〈m〉
and calledexactif the morphism�A is a regular epimorphism for allA �= 〈m〉.

The following lemma is straightforward.

Lemma 9. Let (M∗, d0
0,M) be an augmented simplicial object in the categoryCrsn and

suppose that�0(M∗) = M. Then(M∗, d0
0,M) is an exact simplicial resolution ofM if

and only if the m-cube of crossed n-cubesM(m) is an exact m-presentation ofM for all
m�1.
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Given a crossedn-cubeM and a morphism� : Q → M of the categoryCrsn. TheČech
augmented complex(Č(�)∗, �,M) for � is the following augmented simplicial crossed
n-cube

· · ·
−→
...

−→
Q×M · · · ×MQ

−→
...

−→
· · ·

−→
−→
−→

Q×MQ
−→
−→ Q

�−→ M,

thus

Č(�)k = Q×M · · · ×MQ︸ ︷︷ ︸
(k+1)-times

for k�0.

Now let X be anm-presentation of the crossedn-cubeM. Applying Č above, in the
m-independent directions, this construction leads naturally to an augmentedm-simplicial
object in the categoryCrsn. Taking the diagonal of this augmentedm-simplicial object
gives the augmented simplicial crossedn-cube(Č(m)(X)∗, �,M) called anaugmented m-
fold Čech complex forX, where� = X(
∅

〈m〉) : X(∅) → M. In caseX is a projective exact

m-presentation ofM, then (Č(m)(X)∗, �,M) will be called anm-fold Čech resolution
ofM.

Definition 10. Let T : Crsn → Gr be a covariant functor. Definekthm-fold Čech derived
functorLm-fold

k T : Crsn → Gr , k�0, of the functorT by choosing for eachM in Crsn,
a projective exactm-presentationX and setting

Lm-fold
k T (M) = �k(T Č(m)(X)∗),

where(Č(m)(X)∗, �,M) is them-fold Čech resolution of the crossedn-cubeM for the
projective exactm-presentationX of M.

Note that by[12] (see also Theorem 16[6]) them-fold Čech derived functors are well
defined.

Lemma 11. LetX be an m-presentation of a crossed n-cube of groups. There is an isomor-
phism of simplicial crossed n-cubes

Č(m)(X)∗�E(m)(N)∗,

whereN is the crossed(m+ n)-cube of groups given by the normal(m+ 1)-ad of crossed
n-cubes(X(∅);R1, . . . , Rm) induced byX.

Proof. Directly follows from Lemma 19[6]. �

The following theorem gives the calculation of themthm-fold Čech derived functors of
the functor�Ab(n) : Crsn → AbGr ⊆ Gr .
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Theorem 12. LetM be a crossed n-cube andX its projective exact m-presentation. Then
there is an isomorphism

Lm-fold
m (�Ab(n))(M)�

⋂
i∈〈m〉Ri〈n〉 ∩∏B∪C=〈n〉[X(∅)B,X(∅)C]∏
A⊆〈m〉(

∏
B∪C=〈n〉[

⋂
i∈ARi

B,
⋂

i /∈ARi
C]) , m�1,

whereRi = Ker(X(∅) → X({i})) for i ∈ 〈m〉.

Proof. Using Lemma 11,Lm-fold
m (�Ab(n))(M)��m(�Ab

(n)E(m)(N)∗), whereN is
the crossed(n + m)-cube of groups induced by the normal(m + 1)-ad of crossedn-cubes
(X(∅);R1, . . . , Rm). Hence Proposition 6 implies an isomorphismLm-fold

m (�Ab(n))(M)�
�m(�E(m)Ab(n+m)(N)∗). Then, by Proposition 14[6] (see also Proposition 3.4[18]),

Lm-fold
m (�Ab(n))(M)�

⋂
l∈〈m〉

Ker(Ab(n+m)(N)〈n+m〉

�̃l−→Ab(n+m)(N)〈n+m〉\{l}). (4)

Now we set up the inductive hypothesis. Letm = 1, then

L1-fold
1 (�Ab(n))(M)

�Ker

(
R1〈n〉∏

A⊆〈1〉(
∏

B∪C=〈n〉[
⋂

i∈ARi
B,
⋂

i /∈ARi
C])

−→ X(∅)〈n〉∏
B∪C=〈n〉[X(∅)B,X(∅)C]

)

= R1〈n〉 ∩∏B∪C=〈n〉[X(∅)B,X(∅)C]∏
A⊆〈1〉(

∏
B∪C=〈n〉[

⋂
i∈ARi

B,
⋂

i /∈ARi
C]) .

Proceeding by induction, we suppose that the result is true form − 1 and we will prove
it for m.

Let us considerl ∈ 〈m〉 and denote byX{l} the restriction of the functorX : Cm → Crsn

to the subcategory ofCm consisting of all subsetsA ⊆ 〈m〉 with l /∈A. It is easy to check

thatX{l} is a projective exact(m− 1)-presentation of the crossedn-cubeX(〈m〉\{l}) which
itself is projective crossedn-cube. Since the values ofm-fold Čech derived functors of any
functor for an object belonging to the projective class are trivial, our inductive hypothesis
implies that

L(m−1)-fold
m−1 (�Ab(n))(X(〈m〉\{l}))

�

⋂
i∈〈m〉\{l}Ri〈n〉 ∩∏B∪C=〈n〉[X(∅)B,X(∅)C]∏
A⊆〈m〉\{l}(

∏
B∪C=〈n〉[

⋂
i∈ARi

B,
⋂

i /∈ARi
C]) = 1. (5)

Now from (4) and (5) one can easily deduce the required isomorphism.�
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Finally we give the proof of our main theorem which expresses the homology of crossed
n-cubes as Hopf type formulas generalising to that of recently obtained in[6] for the non-
abelian derived functors of group nilization functors and the Hopf formula for the second
CCG-homology of crossed modules[4].

Proof of Main Theorem. Let (F∗, d0
0,M) be a projective simplicial resolution ofM in

the categoryCrsn and consider the short exact sequence of augmented simplicial groups

1 1 1 1
↓ ↓ ↓ ↓

· · ·
−→
.
.
.

−→
D(Fm)

d̃m0,〈n〉−→
.
.
.

−→
d̃m
m,〈n〉

· · ·
−→
−→
−→

D(F1)

˜
d1
0,〈n〉−→
−→̃

d1
1,〈n〉

D(F0)

˜
d0
0,〈n〉−→ D(M)

↓ ↓ ↓ ↓

· · ·
−→
.
.
.

−→
Fm,〈n〉

dm0,〈n〉−→
.
.
.

−→
dm
m,〈n〉

· · ·
−→
−→
−→

F1,〈n〉

d1
0,〈n〉−→
−→

d1
1,〈n〉

F0,〈n〉
d0
0,〈n〉−→ M〈n〉

↓ ↓ ↓ ↓

· · ·
−→
.
.
.

−→
�Ab(n)(Fm)

−→
.
.
.

−→
· · ·

−→
−→
−→

�Ab(n)(F1)
−→
−→ �Ab(n)(F0) → �Ab(n)(M)

↓ ↓ ↓ ↓
1 1 1 1

,

whereD(M) denotes the group
∏

B∪C=〈n〉[MB,MC] for any crossedn-cubeM.
By the induced long exact homotopy sequence, one has the isomorphisms of groups

�m�Ab(n)(F∗)�
⋂m−1

i=0 Ker d̃m−1
i,〈n〉

d̃mm,〈n〉(
⋂m−1

i=0 Ker d̃mi,〈n〉)
, m�1. (6)

Sinced̃mi,〈n〉 is the restriction ofdmi,〈n〉 to D(Fm), Ker d̃mi,〈n〉 = Kerdmi,〈n〉 ∩ D(Fm). Hence⋂m−1
i=0 Ker d̃m−1

i,〈n〉 =(
⋂m−1

i=0 Kerdm−1
i,〈n〉 )∩D(Fm−1) and

⋂m−1
i=0 Ker d̃mi,〈n〉=(

⋂m−1
i=0 Kerdmi,〈n〉)∩

D(Fm).
Since the shift of simplicial objectF∗ is the contractible augmented simplicial object

(Dec(F∗), d1
0, F0) (see[7]), by Lemma 9 them-cube of crossedn-cubesDec(F )(m) is a

projective exactm-presentation ofF0. Hence, by Theorem 12 one has

Lm-fold
m (�Ab(n))(F0)

�

⋂
i∈〈m〉Kerdmi−1,〈n〉 ∩∏B∪C=〈n〉[Fm,B, Fm,C]∏

A⊆〈m〉(
∏

B∪C=〈n〉[
⋂

i∈AKerdmi−1,B
,
⋂

i /∈AKerdmi−1,C
]) = 1, m�1,
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implying the equality⋂
i∈〈m〉

Kerdmi−1,〈n〉
⋂ ∏

B∪C=〈n〉
[Fm,B, Fm,C]

=
∏

A⊆〈m〉

 ∏
B∪C=〈n〉

[⋂
i∈A

Kerdmi−1,B
,
⋂
i /∈A

Kerdmi−1,C

] , m�1, (7)

Since(F∗,〈n〉, d0
0,〈n〉,M〈n〉) is an aspherical augmented simplicial group,dmm,〈n〉(

⋂
i∈〈m〉

Kerdmi−1,〈n〉)=
⋂

i∈〈m〉Kerdm−1
i−1,〈n〉,m�1. Using this fact and Lemma 8[6], by (7) it is easy

to see that one has an equality

d̃mm,〈n〉

(
m−1⋂
i=0

Ker d̃mi,〈n〉

)

= dmm,〈n〉

 ∏
A⊆〈m〉

 ∏
B∪C=〈n〉

[⋂
i∈A

Kerdmi−1,B
,
⋂
i /∈A

Kerdmi−1,C

]
=

∏
A⊆〈m〉

 ∏
B∪C=〈n〉

[⋂
i∈A

Kerdm−1
i−1, B

,
⋂
i /∈A

Kerdm−1
i−1, C

] .

Thus by (6) one has

Hm+1(M)�
(
⋂m−1

i=0 Kerdm−1
i,〈n〉 ) ∩∏B∪C=〈n〉[Fm−1,B, Fm−1,C]∏

A⊆〈m〉(
∏

B∪C=〈n〉[
⋂

i∈AKerdm−1
i−1, B

,
⋂

i /∈AKerdm−1
i−1, C

]) .

Using again Lemma 9 and Theorem 12 completes the proof.�
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