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Abstract

The tripleability of the category of crosseecubes is studied. The leading cotriple homology of
these homotopyn + 1)-types is investigated, describing it as Hopf type formulas.
© 2005 Elsevier B.V. All rights reserved.
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Itis well known that there exist elegant algebraic models of connected CW-spaces whose
homotopy groups are trivial in dimensions more thaa 1, called homotopyn + 1)-
types. These algebraic models are'egitoups introduced by Loday ifi18], generalising
the notion of crossed modules firstly given by Whiteheg@4#j as a means of representing
homotopy 2-types, or equivalently more combinatorial algebraic systems, cressbes,
invented by Ellis and Steiner ii9]. A number of papers of the last years are dedicated to
the investigation of homological properties of these objects.

In [8] Ellis and in[2] Baues introduced and investigated the (co)homology of crossed
module as the (co)homology of its classifying space, neglecting its algebraic structure.
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In [16] Ladra and Grandjean gave the first approach to an internal homology theory of
crossed modules taking into account its algebraic structure.

Later, in[4] Carrasco et al. made the observation that the category of crossed modules is
an algebraic category, that is, there is a tripleable “underlying” functor from the category of
crossed modules to the category of sets, implying a purely algebraic construction and study
of cotriple (co)homology theory.

In [10] Grandjean et al. gave a connection of these two homology theories of crossed
modules by the dimension shifting isomorphism, whilst[5h Casas et al. have recently
generalised this result to higher pattern for’egtoups.

The aim of this paper is to investigate the homology of homotepy 1)-types from
a Hopf formulas point of viepwsing a purely algebraic method wifold Cech derived
functors introduced if6] (see alsq12]).

The Cech derived functors of group valued functors were introducdddh(see also
[11,6]) as an algebraic analogue of tBech (co)homology construction of open covers of
topological spaces with coefficients in sheaves of abelian groupf3geSome applica-
tions ofCech derived functors to classical group (co)homology théotiieory, non-abelian
homology of groups and Lie algebras and Conduché-Ellis homology of precrossed modules
were given if19,20,13-15]In [12] (see alsd6]) the notion of theCech derived functors
has been generalised to that of thdold Cech derived functors of group valued functors
(wherem is a fixed non-negative integer). Based on this notion a new purely algebraic
method for the investigation of higher integral group homology is givefsjr(see also
[12]).

In the current paper thex-fold Cech derived functors of group valued functors from
the category of crossawcubes is treated. In particular, we calculatette m-fold Cech
derived functor of the certain abelianization funct@b from the category of crossed
cubes to the category of groups, implying the expression of the cotriple homology of crossed
n-cubes (cdt-groups) as generalised Hopf type formulas. Our main result has the form:

Main Theorem (Generalised Hopf Type FormulasLet.# be a crossed n-cube aréits
projective exact m-presentation. Then there is an isomorphism

ﬂie(m) Rén) n l_[BUC:()ﬂ[%((A)B’ %(@)C]
[Tacim T Tsuc=mMica R Niga RED

whereR! = Ker(X(¥) — X({i})) fori € (m).

Hm+1(f/[) =

This result generalises the Hopf formulas for higher integral group homdRjdisee
also[6]) and Hopf formula for the second CCG-homology of crossed modd]es

We are setting up the followingotations and ConventionBor a non-negative integer
we denote byn) the set of firsh natural numbergl, .. ., n}. For any sef its cardinality
is denoted byA|. Foraandb elements of a groufig, b] is the commutatoaba b1, We
denote byGr andSetthe categories of groups and sets, respectively.

We begin by the examination of two equivalent algebraic models of homdtopyl)-
types, cdt-groups and crossatcubes[18,9], recalling some needed results and notions
for our future purpose.
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Recall from[18] that a cdt-group is a groufs together with 2 endomorphisms;, ¢; :
G — G, 1<i<n, such that

tisi =si, sit;=t, [Kers;,Kert;]=1 foralli,
Sisj =S8, [Lit; =1jl;, Sil; =1;s; fOI’i;ﬁj.

A morphism of cat groupsf : (G,s;.t;) — (G',s/,t/) is a group homomorphism
f G — G'satisfyings! f = fs; andt] f = fr; for 1<i <n. We obtain the category of
caf’-groups denoted bgat".

Later, in[9], the higher dimensional analogues of crossed modules were introduced,
called crossed-cubes.

A crossed n-cube of grougis a family .# = {.# 4 : A C (n)} of groups together with
homomorphismg; : # 4 — M a\iyfori € (n), A C (n) and functionss : A4 s x M p —
— M aup for A, B C (n), such that if"5 denoteSi(a, b) - bfora € .M, andb € M g
with A C B, thenforalla,a’ € M A,b,b' € My, c € M c andi, j € (n), the following
conditions hold:

pi(a)=aif i ¢ A,

Wik (a) = pjp;(a),

wih(a, b) =h(y;(a), u; (b)),

h(a, b) = h(u;(a), b) = h(a, y; (b)) if i € AN B,
h(a,a") =[a,a'],

h(a,b) =h(b,a)™ 1,

h(a,b)=1 ifa=1orb=1,

h(aa',b) =%h(a’, b)h(a, b),

h(a,bb') = h(a, b)’h(a, b'),

ahh(a=L, b), o)°h(h(c™L, a), b)’h(h(b~1, ¢),a) = 1,
apb,c)=hEb,%) if ACBNC.

A morphism of crossed-cubes,o. : .# — A", is a family of group homomorphisms
fopa : Ma — Na, A C (n)} commuting with they; and theh-functions. The resulted
category of crossen-cubes of groups will be denoted Byrs".

According to[18] the category of catgroups is equivalent to that of crossed modules
and the category of cagroups to that of crossed squares. One of the main res{® of
says that the categori€ss" andCat" are equivalent. Namely, one has the following.

Theorem 1. There are inverse equivalences of categories

P

Crs" = Cat"
Wﬂ

given by
" (M)= \| Ma/{ha,b)=1a,b]forall a €./ s.be.Mp A BCn)

AC(n)
M € Crs"
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and

P G)y = ﬂ Kers; N ﬂ Ims;, G eCat", AC (n).
icA i¢A

Note that in this paper we mainly prefer to use crossedbes instead of cagroups,
except those cases when using of'egitoups will make things easier to understand.

The following example of a crossedcube appears naturally from nornal+ 1)-ad of
groups.

Example 2. LetGbeagroupand/y,. .., N, be normal subgroups &. Let.# s=(");c4 N

for A € (n) (here.Zy is understood to meaB); if i € (n), definey; : .4 4 fed M iy

to be the inclusion and giveA, B C (n), leth : .4 x .4 — .4 pup be given by
the commutatori(a, b) = [a,b]fora € M, b € Mp. Then{dl s : A C (n), i;, h}is

a crossed-cube, called thénclusion crossed n-cubgiven by thenormal (n + 1)-ad of
groups(G; N1, ..., Np).

Now we give the notion of a crosseesubcube, which is consistent with the categorical
notion of subobject in the catego@rs". We say that a crossedcube.#’ is acrossed
n-subcubef . if .4, is a subgroup of// 4, the homomorphism; : .4y — ', ;, and
the functionh’ : .4’y x My — 'y are the restrictions of; : .# 4 — . 4\;;y and
h: My x Mg — Maup respectively for every € (n), A, B C (n).

Moreover, a crossed-subcube#’ of ./ is said to be anormal crossed n-subcubi
h(a,b") € M'y 5 andh(a’,b) € My gforalla e M b € My a € My, be Mp.

Leta : .4 — ./ be a morphism of crossettcubes and Kex denote the family
{Keraoy : A C (n)} of groups, which essentially is a normal crosseslibcube of/#.

Now we give the example which will play an important role in the sequel.

Example 3. Let./" be a crossed-cube andk?, ..., R” be normal crossed-subcubes of
N . LetAC (m+n),A1=AN{n+1...,n+m}, A»=AN (n) and consider# 4 =

ﬂjeAlRQ;" (hereﬂjegRIQ;" is understood to meart”,); definey, : ./, =5 M p\iy
to be the inclusior);c4, Ry," <> Mjeap R, 1f i € A1 and to be induced by; :

Rj;;" — Rg\"{i} if i € Ap;leth © Mp x Mp — M sup be defined naturally by

commutators anti-functions of the crossed-cubes./”, RY, ..., R™. Then{.#, : A C
(n), u;, h} is a crossedm + n)-cube, called therossed(m + n)-cubeof groups induced
by thenormal (m + 1)-adof crossed n-cubes/”; RY, ..., R™).

Note that fom = 0 this construction agrees with Example 2, if we assume that a crossed
0-cube is just a group.

It will be shown that the categor@rs" is an algebraic category (see a[§d), that is,
there is a tripleable forgetful functor fro@rs" to Set In fact, we need only to construct

‘free’ cotriple in the categorgrs”.
U
At first we construct the adjoint pair of functo@s" = Gr.
F
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Assume that the functay : Crs" — Gr assigns to any crossedcube.# = { ./ 4 :
A C (n)} the direct product of groupg/ 4, A C (n), i.e.,

Uly= ] A a.
AC(n)

Now, define the functor” : Gr — Crs" as follows: for any grougs, let F(G) denote
the inclusion crossed-cube induced by the normé&k + 1)-ad of groups(\/Agm Ga;

Ker p1, ..., Kerp,) (see Example 2), wher\Q’Agn) G 4 is the sum of group&i 4 = G,

A C (n)and

pi: \/ Ga— \/ Gs iem),
AC(n) BC(n—1)

are natural projections given by

_J16:Ga— Gp if AC (n)\{i},
710 otherwise

whered; : (n)\{i} — (n — 1) is the unique monotone bijection.
Proposition 4. The functor F is left adjoint to the functdr.

To prove this proposition we use the following easily verified facts requiring only care over
the notation. Given a crossaecube.#Z ={.# 4 : A C (n)},foranyB C (n) denote by/%B

and.#® the families|.Z 4 : A C (n), B C A}and{.Z 5 : A C (n), BN A=} respectively.
Then.#® and./#® have the structure of crosséd— | B|)-cubes (see Proposition$1]).

Proof of Proposition 4. We claim that for any groufs, the homomorphism

u="{up}:G — ]_[ F(G)4 =UF(G),
AC(n)

whereu, : G — F(G),=();c4 Ker p; is given by the identity fronG to G 4, is a universal
arrow fromG to the functorU.

Let.# be acrossed-cube andlety : G — .# 4, A C (n) be homomorphisms defining
a homomorphismx : G — HAgn)«/%A = U(). Then there is a commutative diagram
with splitting short exact sequences of groups:

pi

Ker p; — VV Ga \V Gsp
AC(n) BC(n—1)
Vi { Y \ ‘l’“r’i

A AL R AN A4}

where®* is the equivalence given in Theoremsi,is induced byG 28 U 4 with A €
(n)\{i} suchthab; (A)=B, yisinduced byG 4 hid M 4, A C (n)andy; isthe restriction of.
Itis easy to see that the homomorphismisduce the homomorphisiig : (), 4Ker p; —
(pn—|A|(%A).



272 J.M. Casas et al. / Journal of Pure and Applied Algebra 200 (2005) 267 -280

Now define the homomorphisi, : NicaKerp; — 4 4, A C (n) as the composition
of 7, andf, : @14 — i givenby. iy 2 it 4 for B D A, whereyig, , is the
composition of the homomorphism;/.,j:l, ..., |B\AJ,withanyi; € (B\A)\u,ﬁj{ik}.

Finally, it is easy to verify tha%: {?A} : F(G) — . is the uniqgue morphism of crossed
n-cubes withU ())u = o. [0

We denote by/1 : Gr — Setthe usual forgetful functor and b : Set— Gr its left
adjoint, the free group functor. Composing these two adjunctions,

U Ui
Crs" =2 Gr = Set
F Fr

we deduce the following.

Proposition 5. The underlying set functo# = U; o U : Crs" — Sethas a left adjoint
F =F o Fy: Set— Crs".

It is routine to verify that the catego@rs", n > 2, similarly to that of crossed modules
(i.e.,n =1) [4], has kernel pairs and coequalizers preserved and reflected by the famctor
Then by Proposition 5 and Linton’s criterion on tripleability’] the underlying set functor
 : Crs" — Setis tripleable.

Itis well known for an algebraic catego@/the obvious inclusion functor of the category
of abelian group objectbC — C has left adjoin®Ib : C — 2UbC, called the abelianiza-
tion functor, which plays a fundamental role in the description of homology of objects in
the categonC. Namely, thekth homology of an objeck e C is defined to beZ; Ab(X),
where ', 2Ub denotes théth derived functor oRIb [22].

An abelian group object i€rs", an abelian crosseadcube, is a crossattcube whosé
maps are trivia[6]. The abelianization functor

AL™ : Crs" — ABCrs", (1)
is given by:

(a) forA C (n)
M 4

W (MY )= —— 2
40 HBUC:ADB,C

whereDp ¢ isthe subgroup of/ 4 generated by the elemewt®, ¢),h : M px M c —
M Buc=4 forallb € M p,c € M,

(b) if i € (n), the homomorphisr; : ALY (4) 4 — ALY (M) 4\y;y is induced by the
homomorphismy;,

(c) for A, B C (n), the functioni : AL (L), x Ao (M)g — W™ (M) 4 p IS
induced byh and therefore is trivial,

forany.#/ = {4 : A C (n), u;, h} € Crs".
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The equivalent abelian group object to abelian crosseuabe in the categor@at" is just
a cat'-group whose underlying group is abelian, which is called abelidhgatup (see
also[5]). Moreover, the abelianization functor

AL™ : Cat" — AbCat" 2)

sends a cétgroupG = (G, s;, 1;) to the abelian cdtgroup(G/[G, G], 5, t;), wheres; and
1; are induced by; andy;.

Given a crossed modulé, the corresponding cagroup(G, s, ¢) has an internal cate-
gory structure within the categofyr. The objects are the elements/dt= Im(s) = Im(z),
the morphisms are the elements3fthe source and target maps aendt. The morphisms
g andh are composable if(g) = s(h) and their composite i o g = hs(h) 'g. The nerve
of this category forms the simplicial group(.#),. which is called the nerve of the crossed
module.# [18] (see als¢21]).

Now define the functor

E™ : Crs" — GimplCrs"~™(the category of simplicial crossed (n-m)-cubes),
3)

1<m<n,asfollows: given acrossedcube 7, consider an associated€ajroupG, which
is equivalentto a crosseéd—m)-cube endowed witthcompatible category structures. Then
by applying the nerve structuieto them-independent directions, this construction leads
naturally to aqmm-simplicial crossedn —m)-cube. Then the simplicial crosséd—m)-cube
E™ (), is the diagonal of thisn-simplicial crossedn — m)-cube.

Note that this construction depends upon the sequence afthdependent directions.

In Proposition 2 of6] it is established that the abelianization of a crossed module com-
mutes with its nerve. We provide more general result for functors (1) and (3), which plays
essential role to obtain generalised Hopf formulas for the homology of crossebes.

Proposition 6. Letn >0, m >1 and.# be a crossedn + m)-cube. Then there is an iso-
morphism of simplicial crossed n-cubes

AL EM™ (), = EM™MAT™ (i),

whereE™ functors in both sides of the isomorphism are applied to the same directions

Proof. To simplify things, according to Theorem 1, instead of the crogsed m)-cube
/I we use its equivalent object, éat’-group,G = (G, s;, t;) = "™ (/). The proof will
be done by induction om.

Letm =1 andn = 0, then the assertion reduces to Propositifs] 2This case plays the
key role in the whole proof.

In fact, form =1,n >1 and for the cé&tt1-groupG, let us fix some € (n + 1) and apply
the functorE @ to this ‘direction’. By the definition, the simplicial cagroup ,E® (%), is
just the simplicial groufe (Y1(G, s, 1)), endowed witm compatible category structures
induced by the respective structural endomorphisms; (0<j<n + 1, j # k) of the
cat*t1-groupG. The fact that the abelianization of a &agroup is just the abelianization
of underling group endowed with induced structural endomorphism and our key fact above
completes the assertion in this case.
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Proceeding by induction, we suppose that the assertion is true forl and we will
prove it form.

By the constructionk ™ (.#),. is the diagonal of the bisimplicial crosseaube induced
by applying the crossed module nerve constructiéh to the simplicial crosse¢h + 1)-
cubeE™=V(#),. Hence one has

E™ (), = EDE" Y (M),
for all k >0. Using the inductive hypothesis one has isomorphisms

QIb(")E(”’)(ﬂ)k — mb(’Z)E(l)(E(m_l)(ﬂ)k)k ~ E(l)QIb(n+1)(E(m—1) (M)
;E(l)(E(m—l)(sub(rH»m)(eﬂ))k)k _ E(m)(mb(ner) (M))y. O

Now we construct the cotriple homology of crossedubes (cdt-groups). We refer to
the work of Barr and BecKl] for the background about cotriple (co)homology.

The above constructed pair of adjoint funct@st= Crs" induces the cotriplédd =
U

(F, 4, t) on the categonCrs" by the obvious wayF = #% : Crs" — Crs", t : F —
1crsn is the counit andd = Fu% : F — F2, whereu : 1set — X is the unit of the
adjunction.

Using the general theory of cotriple homology dug1h define thekth homology of
a given crossed-cube./Z as the(k — 1)th cotriple derived functor of the abelianization
functor 20b™

H ()= L5 0 ), k=1

Let P be the projective class induced by the'free’ cotriplenamelyX e P if and only
if there exists a morphism : X — [F(X) such thattya = 1y. It is well known that
derived functors relative to the cotriple are isomorphic to the derived functors relative to
the projective class induced by the cotrifild]. Thus there is an isomorphism

LA™ = 2P AL,

Recall also that an objeBtof a categonC is projective if given a regular epimorphism
f : X—Y, each morphisng : P — Y can be lifted to a morphisra : P — X such that
fh = g. We say thaC has enough projective objects if any objécadmits a projective
presentation, i.e., there exists a regular epimorphitsp+ X with P a projective object. If

F
Cis atripleable category with the adjunctiSet= C, thenF (X), X € Set, is a projective
U

object and the natural morphisiU(C) — C, C € C, is a regular epimorphism i@,
implying thatC has enough projectives. It is also known that the projective class of all
projective objects in the algebraic categ@rgoincides with the projective clagsinduced
by the adjunction and regular epimorphisms are fastpimorphisms.

It is easy to check that if#, is a[F-cotriple resolution of a crossescube.#, then

M4 is a projective resolution of7™\A for A € (n), A # (n). Hence

Hoi (M) g = A (M) 4y, k=1
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Therefore the interest of our investigation is the grotip(.#) ,, which we denote by
Hy (). If we define the functos : Crs" — Gr by a(.#) = M () for .4 € Crs", then

Hy (M) = L} (e (), k>1.

Now we consider then-fold Cech derivatives of functors from the category of crossed
n-cubes to the category of groups, whilst the general situation has been {&2]t(see also
[6]). In particular, we give an explicit computation of timefold Cech derived functors of the
functor eAb™ : Crs" — ADBGr, implying a purely algebraic approach to the homology
groups of crossed-cubes from a Hopf type formula point of view.

Let m be a natural number. The subsets(mf are ordered by inclusion. This ordered
set determines in the usual way a categOyy. For every pair(A, B) of subsets with
A C B C (m), there is the unique morphisprg :A— BinCy.

An m-cube of crossed n-cubies functorX : C,, — Crs". A morphism between m-cubes
X, 9 : C, — Crs"is a natural transformation: X — 9).

Note that a crossedtcube of groups gives amcube on forgetting structure, but there is
a reversal of the role of the indéx The top corner of a crosseecube is.# ), that in an
n-cube isX(9).

Example 7. Let (A s, dg, /) be an augmented simplicial object in the categors”. A
naturalm-cube of crossed-cubes.#™ : Cn — Crs", m>1is defined by the following
way:

MM (A ) =di M forall A # (m), ji¢ A,

where.Z 1= .4, 0(k)=jandd : (m —|A|) — (m)\A is the unigue monotone bijection.

An m-cube of crossed-cubesX determines a normdln + 1)-ad of crossed-cubes
(X(0); RY, ..., R™), whereR' = Ker%(p{”i}), i € {m). This (m + 1)-ad will be called the
normal (m + 1)-ad of crossed n-cubes induced ¥y

Given arm-cube of crossed-cubesX. Itis easy to see that there exists a natural morphism

of crossedh-cubesX(A) A limpg-4 X(B) forany A C (m), A # (m).

Definition 8. Let.# be a crossed-cube. Anm-cube of crossed-cubesX will be called
anm-presentation of the crossed n-cul#if X((m)) = .#. An m-presentatiorX of .# is
calledprojectiveif the crossed-cubeX(A) is a projective crosseatcube for allA # (m)
and calledexactif the morphismu, is a regular epimorphism for all £ (m).

The following lemma is straightforward.

Lemma 9. Let (A#,, dg, /) be an augmented simplicial object in the categrg" and
suppose thato(A ) = M. Then(M ., dg, ) is an exact simplicial resolution o# if
and only if the m-cube of crossed n-cub@$™ is an exact m-presentation o for all
m=1.
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Given a crossed-cube.# and a morphism : 2 — ./ of the categonCrs". TheCech
augmented comple¢C (o)., o, .#) for o is the following augmented simplicial crossed
n-cube

N —_ .
. —> o
DX - Xy 2 Lo — 9% 49 N 2 — M,
—> — —>

thus

é(oc)k =9% y--x y2 fork=0.
—_——

(k+1)-times

Now let X be anm-presentation of the crossedcube.Z. Applying C above, in the
mrindependent directions, this construction leads naturally to an augmerdedplicial
object in the categorgZrs". Taking the diagonal of this augmentedsimplicial object
gives the augmented simplicial crossedube(é(m)(3€)*, o, /) called anaugmented m-
fold Cech complex fok, whereo = %(p‘?m)) : X(¥) — A .In caseX is a projective exact

m-presentation of#, then(é(m)(%)*, a, /) will be called anm-fold Cech resolution
of .

Definition 10. Let T : Crs" — Gr be a covariant functor. Defiréh m-fold Cech derived

functorfff'fOIdT : Crs" — Gr, k>0, of the functofT by choosing for each/ in Crs",
a projective exaatn-presentatiorX and setting

gz/l-fold T({%) — Tck(Té(m) (x)*)u

Where(é("”(?i)*, a, /) is themfold Cech resolution of the crossedcube.# for the
projective exactm-presentatiorX of .Z.

Note that by[12] (see also Theorem 1[6]) the m-fold Cech derived functors are well
defined.

Lemma 11. Let X be an m-presentation of a crossed n-cube of groups. There is an isomor-
phism of simplicial crossed n-cubes

C™ X)), =xE™ ),

where./" is the crossedm + n)-cube of groups given by the norm@at + 1)-ad of crossed
n-cubes X(%); R, ..., R™) induced byX.

Proof. Directly follows from Lemma 196]. [

The following theorem gives the calculation of timth m-fold Cech derived functors of
the functoreb™ : Crs" — ALGr C Gr.
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Theorem 12. Let.# be a crossed n-cube ar¥éits projective exact m-presentation. Then
there is an isomorphism

Nicwm Riny N T puc—im [X@) 5, X@D)c]
[acim TTsuc—mNicaRy NigaRED

whereR! = Ker(X(¥) — X({i})) fori € (m).

gﬁ-fdd (GQIb(n)) (M) =~

Proof. Using Lemma 11,2"0ld (5916 (_17) ~ m,, (a206™ E@ (_1"),), where A is
the crossedn + m)-cube of groups induced by the nornmiad + 1)-ad of crossea-cubes
(X(¥); RY, ..., R™).Hence Proposition 6implies an isomorphiSﬁjﬁ'fOld (A (M) =~
T (GE™MALH™ (47 ). Then, by Proposition 1] (see also Proposition 3[48]),

g%'fom(aﬁlb(”))(%)% ﬂ Ker(b" ™ (A7)

leim)
I
=L ™ () (ntm\ (1)) (4)

Now we set up the inductive hypothesis. ket= 1, then

1
~Ker ( Riw . .
[TacwTTsuc=mMicaRp MNigaReD
X))
% > -
[Tauc=m XD, X@)c]
_ Riy N TTpuc—m X@) 5, X@)c]
[TacwTTsuc=mMicaRp MigaReD
Proceeding by induction, we suppose that the result is true ferl and we will prove

it for m.

Let us considet € (m) and denote b)%m the restriction of the functak : C,, — Crs"
to the subcategory af,, consisting of all subsets C (m) with [ ¢ A. Itis easy to check

thatx" is a projective exaaim — 1)-presentation of the crosseecubeX((m)\{/}) which

itself is projective crossen-cube. Since the values otfold Cech derived functors of any
functor for an object belonging to the projective class are trivial, our inductive hypothesis
implies that

=277l (Gupm) (x((m)\ (1))
N Nicimniy Ry N suc=im XD g, X@)cl L
 TacopnTTsoc=mNicaRs NigaReD

Now from (4) and (5) one can easily deduce the required isomorphi&m.

®)
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Finally we give the proof of our main theorem which expresses the homology of crossed
n-cubes as Hopf type formulas generalising to that of recently obtainigd far the non-
abelian derived functors of group nilization functors and the Hopf formula for the second
CCG-homology of crossed modulpy.

Proof of Main Theorem. Let (Fy, dg, M) be a projective simplicial resolution o# in
the categonCrs" and consider the short exact sequence of augmented simplicial groups

1 1 1 1
{ { \: )
dlll(ﬂ) .
: 1
— - — dO,(n) d8< )
. — ,(n
D(Fn) L) —. D) =" peM)
— — - dflv
d/m\/ 1,(n)
m,(n)
1 1 { |
dgl(”) 1
- - - do_@ @Q ()
Fm, () : = Fp (n) _, fo (n) - %(lﬂ
— — - at
am 1,(n)
m,(n)
\ A \: )
— —
() . () — ) )
oAby o 0Ab"™ (ry) _ oAb (ryy —»  oUL" M)
— — -
{ { \ |
1 1 1 1

whereD(.#) denotes the group| 5 ,c_,)[-# 5, % c] for any crossed-cube.#.
By the induced long exact homotopy sequence, one has the isomorphisms of groups

e

-1 -1
ﬂ:nzo Kerd?{n)

T oAD" (F,) = ——— o —. m>1. (6)
o
dir:,(n)(mi=0 Kerdiifl(n))

Since% is the restriction of:ll.’% to D(Fy,,), Ker% = Kerd;flm) N D(F,,). Hence

N/ Kerd! F= (" Kerd!", ) N D(F,,—1) and(/g'Keral",, = ("5 Kerd!" )N
D(Fy).

Since the shift of simplicial objeck; is the contractible augmented simplicial object
(Dec(F,), d§, Fo) (see[7]), by Lemma 9 then-cube of crossed-cubesDec(F)™ is a
projective exact-presentation ofp. Hence, by Theorem 12 one has

g;’;_fOId(JQIb(n))(FO)
NicmKerd™y oy N sucy[Fm, s Fin,cl _
[Tacim T Tsuc=mMicaKerd™, ,.MigaKerd?™, .1

~

1, m>1,
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implying the equality

ﬂ Kerd;" ﬂ l_[ m B> Fun, C]
ie(m)

BUC=

- 1_[ H [ﬂKer " 1B,ﬁKerdl lc} C om>1, @
(n)

AC(m) \BUC= i€A i¢gA

Since(Fy, ., d8,<n>, A (n) is an aspherical augmented simplicial grouf}, ,, ((M;

Kerd!" 1 ) =icim Kerd;"_‘lin), m > 1. Using this fact and Lemma[8], by (7) it is easy
to see that one has an equality

Ay ny (ﬂ Kerdﬁm)
i=0

n

AC(m) \BUC=(n) LicA i¢A
=[] I1 |:ﬂ Kerd!7' . () Kerd" 114
AC(m) \BUC=(n) Liea i¢A
Thus by (6) one has
(N Kerd!H N T puc—im Fn-1. 5 Fu-1.¢]
[acin TTpuc—mlNicaKerd 1t NigaKera 1

Using again Lemma 9 and Theorem 12 completes the prddf.

Hm+1(rﬂ) =
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