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Abstract

H-matrices appear in various areas of science and engineering and it is of vital importance to have an
Algorithm to identify the H-matrix character of a certain matrix A € C"™". Recently, the present authors
have proposed a new iterative criterion (Algorithm AH) to completely identify the H-matrix property of an
irreducible matrix. The present work extends the previous Algorithm to cover the reducible case as well.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of H-matrices is very important for the numerical solution of linear systems of
algebraic equations arising in various applications. E.g., in the Linear Complementarity Problem

* Corresponding author. Tel.: +30 24210 74908; fax: +30 24210 74923.
E-mail addresses: alanelli@math.uoc.gr (M. Alanelli), hadjidim @inf.uth.gr (A. Hadjidimos).
! The work of this author was funded by “Herakleitos” Operational Programme for Education and Initial Vocational
Training 2002-2005.
2 Part of the work of this author was funded by the Program Pythagoras of the Greek Ministry of Education.

0024-3795/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.1aa.2007.12.020


https://core.ac.uk/display/81927852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/laa
mailto:alanelli@math.uoc.gr
mailto:hadjidim@inf.uth.gr

2762 M. Alanelli, A. Hadjidimos / Linear Algebra and its Applications 428 (2008) 2761-2777

(LPC), in the Free Boundary Value Problems in Fluid Analysis, etc. [2]. The most common way
to define an H-matrix A € C'*" is the following:

Definition 1.1. A € C™" is an H-matrix if and only if (iff) there exists a positive diagonal matrix
D € R*" so that AD is (row-wise) strictly diagonally dominant, that is

n
laiild; > Y aijldj, i =1(Dn. (LD)
j=L j#i

For the identification of an H-matrix, many criteria have been proposed the majority of which
are iterative ones (see, e.g. [6,10,9,11,12,5,1]). This is because direct criteria seem to have high
computational complexities. The only iterative criterion that takes into account the sparsity of A
is the one in [5], where an extension of the compact profile technique of [8] was developed and
can also be used in the present case.

The new Algorithm in this paper extends Algorithm AH in [1] to cover the reducible case as
well, since the latter was constructed to deal with irreducible matrices only.

In Section 2, basic notation, terminology and statements are presented. In Section 3, Algorithm
AH is illustrated and some explanations on it are given. In Section 4, use of combinatorial matrix
theory allows us to solve the problem of the general p x p block reducible case. In Section 5,
we propose a new Jacobi type iterative criterion for identifying H-matrices (Algorithm AHZ2).
Contrary to Algorithm AH the convergence of the new Algorithm is guaranteed for all irreducible
and reducible matrices. Finally, in Section 6, we present a number of numerical examples worked
out with both Algorithms AH and AH2.

2. Preliminaries and background material

For our analysis some definitions are recalled and a number of useful statements are given.
Most of them can be found in [2,7,16,19].

Definition 2.1 [2]. A matrix A € R™" is called an M-matrix if it can be written as A = s/ — B,
where B > 0 and p(B) < s, with p(.) denoting spectral radius. (Note: In Definition 2.1 and in
this context an M -matrix is always nonsingular.)

Lemma 2.1 [16]. Let A € R™" be an irreducible M -matrix, then its inverse exists and is a strictly
positive matrix, that is A"l > 0.

Lemma 2.2. If A € R"" is an M-matrix so is PAPT, where P isa permutation matrix.
Lemma 2.3 [16]. Any principal submatrix of an M-matrix A € R"" is also an M-matrix.

Definition 2.2 [2]. The comparison matrix of amatrix A € C™" is the matrix .# (A) with elements

P |ai:l, ifi =j=1()n,
Y7 lagl, ifi,j=1(n, i # j.

Lemma 2.4 [16]. A matrix A € C*" is an H-matrix iff its comparison matrix is an M -matrix.

Lemma 2.5. A matrix A € C*" is an H-matrix iff the Jacobi iteration matrix associated with its
comparison matrix is convergent.
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Lemma 2.6. Amatrix A € C*" isnotan H-matrix iff there exists at least one principal submatrix
of A that is not an H-matix.

Lemma 2.7. Let A € C*", witha;; #+ 0, i = 1(1)n,and B=E A, where E =diag(ey, e2, ..., ey)
€ C"" be any nonsingular diagonal matrix. Let J4 and Jg be the Jacobi iteration matrices
associated with A and B, respectively. Then J4 and Jp are identical.

Definition 2.3 [16]. Let A € R™", A > 0, be an irreducible matrix and k be the number of
eigenvalues of A of modulus equal to its spectral radius p(A). If k = 1, then A is primitive. If
k > 1, then A is cyclic of index k.

Definition 2.4 [2]. Index of a given matrix A € C™", denoted by index(A), is the smallest
nonnegative integer such that rank (A%) = rank(A*+1).

Lemma 2.8 [2]. If A € R™", A > 0, is an irreducible matrix with positive trace, Y :_, ai; > 0,
then A is primitive.

Theorem 2.1 [7]. If A € C™" and if A, u € o (A), with . # w, then any left eigenvector of A
corresponding to | is orthogonal to any right eigenvector of A corresponding to A.

Theorem 2.2 [16]. Let A € R™", A > 0, be an irreducible matrix. Then, its spectral radius p(A)
is a simple (positive) eigenvalue of A (the Perron root) and a positive eigenvector (the Perron
vector) is associated with it.

Theorem 2.3 [16]. For any given irreducible matrix A € R™", A > 0, let P* be the hyperoctant
of vectors x > 0. Then, for any x € P*, either

S aix; S aiix;
“min {# < p(A) < max S=t L
i=1()n Xi i=1()n Xi

or

n
L
ZJ;W = p(A), i = 1(Dn.

1

Algorithm AH [1] is based on a modification of the well-known Power Method (see, e.g.
[18] and more specifically [4] and [7]), applied to a nonnegative, irreducible and primitive n x n
matrix. The Power Method Theorem and the one on which Algorithm AH is based are stated
below.

Theorem 2.4 (The Power Method). Let A € C*", with its eigenvalues satisfying
A1l > |Aj],  j =2(Dn.

Define
x® = Ax*®D k=1,2,3,..., forany x© e C"\{0}. (2.1)
Assume that x© has a nonzero component along the eigenvector corresponding to 1. Then
Ax®)y.
AL = lim AX)i o %0, i=1n. (2.2)

k— 00 X~(k)
i



2764 M. Alanelli, A. Hadjidimos / Linear Algebra and its Applications 428 (2008) 2761-2777

Theorem 2.5 [1]. For any given irreducible and primitive matrix A € R*", A > 0, let A\ = p(A)
andlet A = SJ S~ beits Jordan canonical form, with J = diag(Jy, Ja, . .., Jp), Ji e C"M i =
1(D)p, Zle n; =n,andwith S = [s1 .52 53 ... s,] being the matrix of the principal vectors of A.
Then, any x € P*, analyzed along the principal vectors s;, i = 1(1)n, has a positive component
along the Perron vector s| corresponding to the Perron root 1.

3. Algorithm AH and main statements

The new algorithm (Algorithm AH2) we are to propose is an extension of Algorithm AH and
as is proved converges also in a finite number of iterations. The latter Algorithm is illustrated
below after some definitions are given.

For both Algorithms the following matrices are needed. A sequence of positive diagonal
matrices D(k), that will be defined in the Algorithm, and A®,

p®, k=0,1,2,..., DO=1, (3.1

AR = (Dhk=DY=1AGk=D k=D =123 ..., AQ = (diag(a))7'A, (3.2)
assuming a;; # 0, i = 1(1)n. From (3.1) and (3.2), it is readily seen that

a® =1, i=1n, k=01,2,... (3.3)

Algorithm AH
INPUT: An irreducible matrix A := [g;;] € C*".

OUTPUT: D =DOpD...pk ¢ Dp-14, =Dy or ¢ D43 if A is or is not an H-matrix,
respectively.

1. If q;; =0forsomei € {1,2,...,n}, “Aisnot an H-matrix”, STOP; Otherwise
2.Set D =1,A0 = (diag(A))"'A, DO =1,k =1
3. Compute D = DDV A® = (D*k=D)=1 gGk=D) pk=1) = [afj’.‘)]

k K, . k k
4. Compute Si( ) = Z?:l, i |ai(j)|’ i =1()n, s(k) = min;—((1)n si( ), S(k) = max;=[()n sl.( )
5. 1fs® > 1, “A is not an H-matrix”, STOP; Otherwise
6. If S® < 1, “A is an H-matrix”, STOP; Otherwise
7.1 §© = s® «_z/(A) is singular”, STOP; Otherwise
8. Set d = [d;], where

1+ sl-(k) .
dl‘ = m, 1= 1(1)]’1

9. Set DX = diag(d), k =k + 1; Go to Step 3. END
For Algorithm AH the following two statements were proved in [1]:

Theorem 3.1. Let A € C*" be an irreducible matrix. Then, Algorithm AH always terminates
in a finite number of iterations (except, maybe, when det(.4 (A)) = 0).

39 A denotes the class of all positive diagonal matrices D so that AD is strictly diagonally dominant.
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Theorem 3.2. Let A € C*" be any irreducible matrix. If Algorithm AH terminates in a finite
number of iterations, then its output is correct.

If A € C™" is irreducible, with a;; # 0, i = 1(1)n, and we set as in Algorithm AH

—1
A® = (diag@* ", af "V, . afD))
x AR diag(@ " a* P d% D), with d© =e, (3.4)
AR =1+B®, k=012,... (3.5)

where e € R”" is the vector of ones and | X | denotes the matrix whose elements are the moduli of the
corresponding elements of X. Note that B is the Jacobi matrix associated with the comparison
matrix of A, J ya). If in the Algorithm we allow k — oo then in the proofs of Theorems 3.1 and
3.2 it was also proved in [1], among others, that

Corollary 3.1. Under the assumptions and notations so far the Perron vector d of |A(0)| (and
B©) is given by

k
d = (klirrgo (]1 D<i>)) e. (3.6)

Corollary 3.2. Under the assumptions and notations so far there hold

im 1A®] e = H(14© Lo _di o
kli)n;olA le=p(|A"])e and kli)ngoaij = d_,'aij . 3.7

Algorithm AH was designed to work for irreducible matrices. However, we had observed that
it worked perfectly well for certain classes of reducible matrices. This motivated the investigation
of the effect of the application of Algorithm AH to reducible matrices a little further. So, we were
led to extend it and create Algorithm AH2 which is shown to converge for both irreducible and
reducible matrices and terminates in a finite number of iterations.

4. The general reducible case

To study the general p x p block reducible matrices we introduce some more theoretical mate-
rial. Although some of it holds for general n x n complex matrices we will restrict to nonnegative
matrices. Most of the basic material is taken from the works of Rothblum [13], Schneider [14],
Bru and Neumann [3] and also from the book of Berman and Plemmons [2].

Lemma4.1. Let A > 0, A € R™" be a reducible matrix. Then there exists a permutation matrix
P such that A can be reduced to a block triangular form

(A1 A - o Ay Alp
Ay o e Agp Aap

PAPT = R : o (4.1)
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where each block A;; € R"" i =1(1)p, Zle n; = n, is either irreducible or a 1 x 1 nullm-
atrix. This form is known as the Frobenius normal form.

Note : To be in agreement with the main body of Algorithm AH it will be assumed that in
@.1) ai; £ 0, i = 1(1)n, and that a;; are normalized so thata;; = 1, i = 1(1)n.

Definition 4.1. Let A > 0, A € R™". We define the (directed) graph of A, G(A), to be the
graph with vertices (nodes) 1(1)n, where an edge (arc) leads fromi to j iff a;; # 0.

Definition 4.2. Let A > 0, A € R™". For i, j € {1, ..., n}, we say that i has access to j if in
G (A) there is a path from i to j and that i and j communicate if ; has access to j and j has
access to i. (Note: Communication is an equivalence relation.)

Definition 4.3. The classes of A > 0 are the equivalence classes of the communication relation
induced by G(A). A class « has access to a class g if fori € « and j € B, has access to j. A
class is initial if it is not accessed by any other class and is final if it has access to no other class.
A class is basic if p(A[a]) = p(A), where A[«] is the submatrix of A based on the indices in «,
and nonbasic if p(A[a]) < p(A).

Remark 4.1. The blocks A;;, i = 1(1)p, in the Frobenius normal form (4.1) of A correspond
to the classes of A. From (4.1), every A > 0 has at least one basic class and one final class. The
class that corresponds to A;;, i = 1(1)p, is basic iff p(A;;) = p(A) and final iff A;; =0, j > i.
In particular, A is irreducible #ff it has only one (basic and final) class.

Theorem 4.1. Let A > 0, A € R"". Then to the spectral radius p(A) there corresponds a posi-
tive eigenvector iff the final classes of A are exactly its basic ones. (Note: As, e.g., in the case of
an irreducible matrix or of a block diagonal matrix with p(A;;) = p(A), i = 1(1)p.)

Theorem 4.2. Let A >0, A € R™". Then to the spectral radius p(A) there corresponds a
positive eigenvector and a positive eigenvector of AT iff all the classes of A are basic and
final.

Definition 4.4. Let A > 0, A € R™". The degree of A is v(A) = index(p(A)I — A). The null-
space N ((p(A)I — A’ is called the algebraic eigenspace of A and its elements are called
generalized eigenvectors.

Definition 4.5. Let A > 0, A € R*" and a1, ap, . .., a; be classes of A. The collection {a1, o,
..., o} is a chain from o to ak, if a; has access to a;j 11, i = 1(1)k — 1. The length of a chain
is the number of basic classes it contains. A class « has access to a class 8 in m steps if m is the
length of the longest chain from « to 8. The height of a class B is the length of the longest chain
of classes that terminate in 8.

Theorem 4.3. Let A > 0, A € R™" have spectral radius p(A) and m basic classesay, a3, . . ., Q.
Then the algebraic eigenspace of A contains nonnegative vectors xV, x® ... x"™  such that
the subvector x;'') > 0 iff a; has access to « j and any such collection is a basis of the algebraic

eigenspace of A. (Note: It is understood that xi(i) > 0.)
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1 2

Fig. 1. Block graph of A in (4.2).

Remark 4.2. Based on Definitions 4.4, 4.5 and Theorem 4.3 it is clear that the only “genuine”
eigenvectors of A, that is those nonnegative vectors x € R™”" for which Ax = p(A)x, correspond
to basic classes of height 1.

The material presented so far suffices to develop our new Algorithm for p x p block reducible
matrices. For this we will draw some conclusions when the Power Method Theorem 2.4 and/or
Algorithm AH is applied to the reducible matrix A > 0, supposedly that A is in its Frobenius
normal form (4.1), witha;; = 1, i = 1(1)n.

(a) If the graph of A, G(A), consists of the union of the disjoint subgraphs g;(A), i =
1(1)k, 1 < k < p, then A can be written as A = diag(B11, B22, ..., Brk), where each B;;, i =
1(1)k, is reducible and is already in its Frobenius normal form. So, the terms initial, final, basic,
nonbasic, etc. have to be redefined for each of the new major blocks B;;, i = 1(1)k. Therefore,
the application of the Power Method Theorem 2.4 and/or of Algorithm AH to A is equivalent to
its application to each B;; separately. Obviously, if k = p, A is block diagonal with each block
being an irreducible matrix.

Example 1. Consider the matrix

A 0 0 Alg 0
0 Ax Axn 0 A
0 0 A33 0 Ass | . 4.2)
0 0 0 Ayy 0
0 0 0 0 Ass

A=

Itis seen that G(A) (Fig. 1) consists of two disjoint subgraphs. One has vertices the nodes {1, 4}
and the other subgraph the nodes {2, 3, 5}. So, there is an obvious block similarity permutation
that puts A into the form

A A Ay Ay Aps
M Bp=| 0 A Ass|. 43)
0 Ay

A = diag(B11, B22), where B1; = |:
0 0 Ass

Then, the Power Method Theorem (and Algorithm AH) is applied to By and B, separately.
(b) If A is of the form (4.1), with a;; = 1, i = 1(1)n, and its graph, G (A), does not consist of
a union of disjoint subgraphs. Then applying a block similarity permutation on A, say QAQT,
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preserving the Frobenius normal form, its basic classes are put, in increasing order of their heights,
into major principal blocks as final classes. If any two or more basic classes are of the same height
they are put in the same major principal block in any order. If there are nonbasic classes that
do not access any basic one they are put in a separate last major principal block. In this way, in
each major principal block with one or more final basic classes «,, all the nonbasic classes have
access to at least one of the e;’s. If there is a last major principal block of nonbasic classes, let it
be denoted by A, its graph G(A) is considered and depending on whether G(A) consists of the
union of disjoint subgraphs or not the procedure in (a) before or the present one is followed. The
rearrangement proposed is the one in [13] and [3], apart from the last major principal block of
nonbasic classes.

From the theory presented so far we can state, without any formal proof, the following propo-
sition whose validity will be made clear by a more general example.

Theorem 4.4. Under the assumptions of (b) previously, the application of the Power Method
Theorem 2.4 and/or Algorithm AH to the new form of A makes all row sums of the major
principal blocks corresponding to basic classes tend to p(A) in the limit. If there is a last major
principal block of nonbasic classes that do not have access to any basic one, let it be A, then,
by following the previous described rules and depending on G (A), the application of Algorithm
AMH makes the row sums of A tend to limits that are strictly less than p(A).

Having raised some basic issues in (a) and (b) above, we present and treat a more general
example, where all the previously raised issues will be discussed and made clear.

Example 2

[A;r O 0 0 A;s O 0 0 0 0 0 0 0 0 7
0 Ap 0 Ay O 0 0 0 0 0 0 0 0 0
0 0 A3z Azs O 0 0 0 0 0 0 0 0 0
0 0 0 Ags 0 A4 O 0 0 0 0 0 0 0
0 0 0 0 Ass Asg O 0 0 0 0 0 0 0
0 0 0 0 0 Ags Ag7 O 0 0 0 0 0 0
0 0 0 0 0 0 A77 A O 0 0 0 0 0
0 0 0 0 0 0 0 Agg Ago Ag o 0 0 0 0
0 0 0 0 0 0 0 0 Agg 0 Ag 11 Ag 12 0 0
0 0 0 0 0 0 0 0 0  Aio10 0 0 A10,13 Al10,14
0 0 0 0 0 0 0 0 0 0 Al 0 A3 An,14
0 0 0 0 0 0 0 0 0 0 0 A2 A3 A1214
0 0 0 0 0 0 0 0 0 0 0 0 A1313 A314

L O 0 0 0 0 0 0 0 0 0 0 0 0 Av4,14

4.4)

Suppose that A in (4.4) is already in its normalized Frobenius normal form (4.1). Its graph
G (A) (Fig. 2), which does not consist of the union of disjoint subgraphs, contains fourteen classes
(o1, a2, . .., a14) and suppose that the basic ones are a5, «g, a8, @10, ®12. Making the previously
suggested block similarity permutation, say QAQT, we have the new block matrix below and
which, to simplify the notation, is denoted again by A
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) 1
3
10
13 14
Fig. 2. Block graph of A in (4.4), where the basic classes are encircled.
[An Ais| 0 0 0 0O 0 0 o 0 0 0 0 0 ]
0 Ass 0 0 0 Asg 0 0 0 0 0 0 0 0
0 0 Apn 0 Ay O 0 0 0 0 0 0 0 0
0 0 0 A3z Az O 0 0 0 0 0 0 0 0
0 0 0 0 Ay Ag 0 0 0 0 0 0 0 0
0 0 0 0 0 Aes | As7 O 0 0 0 0 0 0
0 0 0 0 0 0 A77 A7g 0 0 0 0 0 0
0 0 0 0 0 0 0 Agg Ag 10 Asgo 0 0 0 0
0 0 0 0 0 0 0 0 Ap10 O 0 0 A10,13 Al0,14
0 0 0 0 0 0 0 0 0 Agg Ag 12 Ag 11 0 0
0 0 0 0 0 0 0 0 0 0 A 0 A3 A4
0 0 0 0 0 0 0 0 0 0 0 At Az Annis
0 0 0 0 0 0 0 0 0 0 0 0 A13.13 Al1314
L 0 0 0 0 0 0 0 0 0 0 0 0 0 Al4,14 |
4.5)

As is seen, we have made a block partitioning in the new form of A so that the first four major
principal blocks have in each of them the basic classes as final, while all three diagonal blocks
of the fifth major principal block are nonbasic. Note that the heights of the basic blocks (classes)
in the new block partitioning are 1, 2, 3, 4, 4, as they were before, so index(p(A)I — A) =4,
with the last two basic classes a1 and «12 belonging to the fourth major principal block. By virtue
of Theorem 4.3, the new A has one nonnegative eigenvector and three nonnegative generalized

eigenvectors as follows:
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— TnT 0T 0T 0T T 0T 0T 0T T T T T 1T
x=[xFxTof of of o 0T of of of of of of of 1T,

TnT nT 0T OnT nT nT T (T 1T
y= [yl yS y2 y3 y4 Yo 0 Ong Onm Ong 0n12 On“ 01113 0n14] ’ (4 6)

u= [u1 Us ug uz u}; ug u7 ug OLO OZ9 0,1:12 OE” 0,1;13 OEM]T,

v = [V} v vy V3 Vg g b7 Vg Vig Vg Vi Oy, Oy O T
where any nonzero subvector is positive. To find the left eigenvector(s) of A we have to find the
eigenvector(s) of AT. The graph of AT is nothing but that of Figure 2, where the arrows on it
point in the opposite directions. This means that the heights of the various basic classes in AT
will be the complements of those in A with respect to the highest previous height increased by
one (v(A) + 1 =4+ 1 =15). The nonbasic classes that were in the fifth major principal block
will have height 0. Thus, the basic class(es) of AT that have height 1, according to Remark 4.2,
will give the left eigenvector(s) of A corresponding to p(A). This will be the one associated with
the classes a1g and «12. Those associated with the basic classes s, ag, ag will give generalized
eigenvectors (see Theorem 2.3.20 of [2]). By writing down analytically the 14 block equations
from ATv' = p(A)v’ it is found out that the aforementioned left eigenvectors are

T T
v’ = [0, 07, 0y, O, O, OF O, 07 vl O vy O, vy vy 1T, @7

where v/, and v}, are the Perron vectors of AIO 10 @and A12 12> Tespectively, and

vi3 = (p(A)Iny; — A% 13" l(Alo 13 10 + A12 13 12) >0,
vig = (p(A) Iy, — 14 14)7 (AIO 1450 + A12 14V + A13 1413) > 0.

From (4.6) and (4.7) one readily gets that

Vix=0, vTy=0, vu=0, vTv>o. (4.8)
Suppose, without loss of generality, the new A undergoes one more similarity transformation,
with permutation matrix Q so that QA QT denoted by A agam is put in its Jordan canonical
form and at the same time indicates that v € A" ((p(A)I; — A) ),wherel =n —ny| —ni3 —ni4.
More specifically, the first / components of v, let them constitute the subvector ¥ € R/, will be
such that v € ,/V((,O(A)Il - A[Ol] , 05, a3, 04, 0g, 7, A8, X0, X9, 0[12])4).4 Itis

p(A) 1
p(A) 1
Alx yuvss ... syl =[xyuvss ... s,] p(A) 1 , 4.9)
p(A)
| S
from which one takes
Ax =p(A)x, Ay=x+pA)y, Au=y+p(Au, Av=u+p(A)v. (4.10)

IL is reminded that the vectors x, y, u, v used in (4.9), are the ones in (4.6) premultiplied
by Q. Let d© = e, and suppose that d¥ is written as a linear combination of the generalized
eigenvectors of S. It will be d© = 51 x + noy + n3u + nav + Y '_snis;. Forming vTd® = 0
and taking into account (4.8) and Theorem 2.5 we have 0 < v’ Ta0 — n4v’Tv , from which

4 The second author would like to express his sincere thanks to Professor Hans Schneider [15] for making clear to him
a point regarding the index of a nonnegative matrix in a 2 x 2 block reducible case.



M. Alanelli, A. Hadjidimos / Linear Algebra and its Applications 428 (2008) 2761-2777 2771

n4 > 0, and so d© has a positive component along the generalized eigenvector v. Using succes-
sively relations (4.10) we can obtain by induction that

Akx = pk (A)x,

Aky = (’1‘) P (A)x + pH(A)y,
Ay = <’;> P 2(A)x + <’f) oK 1(A)y + pF(A)u,

Ay = (’;) PF3A)x + (’;) PH2(A)y + (’1‘) 1A+ o (A

Therefore,
Ok K\ m k _m k N4
Akd —p(A)[n1+<1>p +<> 2(A)+<>p3(14)j|x
. 14
+p (A)|:r)2+() (A () Z(A)]y 4.12)

k k n4 k ni
+0(4) [n3+(1> p(A)]qup (A)nav + p <A>Z PR

@.11)

. . Ak+140)y . v .
Forming the ratios Wﬁ)))j-’ for all j’s that do not correspond to the rows of the fifth major

principal block (11th, 13th and 14th block rows), then, for the Power Method Theorem 2.4 and/or
Ak+1400)y .
fifth major principal block. A formal proof for the aforementioned convergence in a general case,
which is an “obvious” extension of the present one, is to be given elsewhere. Here, we simply
note the following: For the first 1 4 15 rows, one has to divide both terms of the fractions by k*
before one takes limits, as k — o0. For the next ny + n3 + n4 + ng rows one has to divide both
terms by k2, for the following n7 + ng rows by k, while for the subsequent n19 + ng 4+ n12 rows
one takes limits without any further division by a power of k. Recall that all the aforementioned
rows are actually in the positions the similarity permutation by Q has brought them. On the other
hand, it is readily seen that Algorithm AH applies to the fifth major principal block, A, quite
independently of its application to all the previous ones. So, we have to consider G (A), which, in
the present case, does not consist of the union of disjoint subgraphs, and define the terms basic,
nonbasic, initial, final, etc classes for A locally. If, e.g., p(Ala13]) > p(Ala11]), p(Ala14]) then
by Theorem 4.4 and the previous analysis we know that for k — oo the limiting row sums of the
first and second block rows of A will equal p(A13,13) while those of the last block row will equal
0 (A14,14).
Before we close this section we mention in passing that Corollaries analogous to Corollaries
3.1 and 3.2 can be stated formally. In the case of Example 2, the analogous to Corollary 3.1 will
give that

d=00)d, d= [d ET]T (4.13)

where

k
T @)
di _khm (1_[ Dn —nj|—ni3—ni4 €n—ni1—ni3—nis»

i=1

Algorithm AH, we have limg_, oo = p(A), except for the rows corresponding to the
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o>

k
= lim (1_[ D;(zl])1+n13> €nyi+n3> (4.14)

i=1
k

= klingo (1_[ D’('l])4> Enig-
i=I

It should be noted that ‘71 is the Perron vector of Alay, as, a3, aq, 0g, @7, g, 010, &9, X12], 3;
is the Perron vector of Alaq1, o13] and dé is the Perron vector of Ala 4], where A is the original
matrix in its Frobenius form given in (4.4). The analogous statement to Corollary 3.2 will give
that

w

lim A® e = (Q0)diag(0(A) In—nyy—ni3—nis-
k—00
XP(A13,13) s 0 (A14,18) 1) (Q Q) e, (4.15)

ow_dio
klin;oaif = dja,/, i, j=1(1)n.

5. The new algorithm

Based on the theory, the analysis and Example 2 of the previous section, we are ready to make
some observations and present our new Algorithm which will be called Algorithm AH2.

(a) Suppose that A € C™", a;; # 0, i = 1(1)n, is irreducible or reducible, with its Frobenius
normal form (4.1) being normalized so that a;; = 1, i = 1(1)n, and that all its basic classes are
final. Then application of Algorithm AH, as k — oo, will give as a limit a similar matrix whose
all block rows will have row sums equal to p (A). This means that the new Algorithm must coincide
with Algorithm AH.

(b) Suppose that A, as before, is reducible, with its Frobenius normal form (4.1) being normal-
ized and that not all its basic classes are final. Then, application of Algorithm AH, as k — oo,
will bring us to a situation similar to that of Example 2 of Section 4. Namely, some of the block
rows of the limiting matrix will have row sums equal to p(A) while some others will have them
strictly less than p(A). So, we have to distinguish two subcases.

(bl) Suppose that the application of Algorithm AH to A, as k — oo, gives that all limiting
block rows have sums s; = limg_, o sl.(k) >1,i =1(1)n, (the si(k)’s are defined in Step 4 of
Algorithm AH) or all limiting block rows have sums s; < 1, i = 1(1)n. Then Algorithm AH
makes the correct identification for A, that is “A is not an H-matrix” and “A is an H-matrix”,
respectively.

(b2) Suppose that the application of Algorithm AH to A, as k — oo, gives that some limiting
block rows have sums s; > 1 while some others have sums s; < 1. Then Algorithm AH cannot
make any identification for A, which should have been “A is not an H-matrix”. This is the only
case where Algorithm AH needs modification in such a way as to cope with the situation just
described.

To present our new Algorithm, let
N = {12, ...} N = Np(a®) = {i eN:s® > 1}, (5.1)

where n(()k) = np(AD) the cardinality of N(()k).
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Algorithm AH2
INPUT: A matrix A := [a;;] € C"" and a maximum number of iterations allowed (*‘maxit”)

OUTPUT: D = DO pM...pk ¢ Dp-14 = Dy or ¢ Dy if Aisorisnot an H-matrix, respec-
tively.

1. If a;; = 0 for some i € N, “A is not an H-matrix”’, STOP; Otherwise
2.Set D =1, A" = (diag(A))~'A, DO =1 k=1
3. Compute D = DD* =D A®) = (pk=D)=14Gk=D pGk-1) — [a(k)]
4, Computes( ) Zj 1, jei |a1] [, i = 1(Dn, s% = min;— 1(On S ) s — max;=1(1y § (k)
5. 1fs® > 1, “A is not an H-matrix”, STOP; Otherwise
6. If S® < 1,“A is an H-matrix”, STOP; Otherwise
7.1 §© = s® _«_z/(A) is singular”, STOP; Otherwise
8. Set d = [d;], where
1+ s(k)
i = l—i-S(k)’ i=1()n

9. Set D% = diag(d), If k < maxit, k =k + 1, Go to Step 3; Otherwise

10. Determine N(iter) nd n (iter)

11.Ifn mer) =1, “Inconcluswe increase maxit”, STOP; Otherwise

12. Compute
n(()iler)
it t 1 PR it
si(;er) _ Z la 1(16;;')' j= l(l)n(ler), ij,i € N(()ler)
=1, I#j

13. If si(]i_ter) 1, j = l(l)n(lter), ije N(()iter), “A is not an H-matrix”, STOP; Otherwise
14. Update Ngter) (by discarding i; € Ngter) < 1)and n(ner) Go to Step 11. END

Sij

A couple of explanations should be given regarding the Algorithm above:

(a) In cases (a) and (b1) described in the observations preceding Algorithm AH2 the exit of
the Algorithm from one of the Steps 5, 6 or 7 is guaranteed, since then the new Algorithm is
nothing but Algorithm AH, provided, of course, that “maxit” is big enough.

(b) In case (b2) the exhaustion of “maxit” means one of two things. Either the Algorithm
converges very slowly, in which case “maxit” should be increased, or the matrix is not an H-
matrix. To check if A is not an H-matrix we appeal to Lemma 2.6. So, we consider the principal

submatrix of A that consists of the n(lter)

sums sl.(j °D restricted to the submatrix in question, are > 1. If all these n((;ter) rows of the principal
submatrix satisfy the same inequalities, then this submatrix is not an H-matrix. Hence, by Lemma
2.6, A is not an H-matrix. If not all the rows of this submatrix satisfy the previous inequalities

{{ . .
then we discard the rows (and columns) whose sums s(1 ) are < 1, we update our information

rows and the corresponding columns for which the

by considering a strictly smaller principal submatrix whose rows have sums s(jner) 1. This
procedure leads to either the conclusion that a smaller principal submatrix is not an H-matrix in
which case nor is A or to a 1 x 1 submatrix in which case no conclusion can be drawn and so
“maxit” should be increased.
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We close this section by stating two theorems the proofs of which can be directly drawn from
the analysis made so far and from the corresponding proofs of theorems in [1] already presented

in Section 3 as Theorems 3.1 and 3.2.

Theorem 5.1. Let A € C*" be any given matrix. Then Algorithm, AH2 always terminates (except,
maybe, when det(.# (A)) = 0) in a finite number of iterations.

Theorem 5.2. Let A € C™" be any given matrix. If Algorithm A H2 terminates in a finite number
of iterations, then its output is correct.
6. Numerical examples

To cover all possible cases that were studied previously we have examined many examples
some of which are given below.

Example 1. The irreducible matrix A of the example of [5]:
-1 apn 0 0 0

0.5 -1 0 -06 0

A= 0 -0.1 1 0 0.5
0 0.5 0 1 -0.5

-02 01 03 0 -1

For ajp = 1.146392, by application of Algorithm AH (or Algorithm AH2) we have as
OUTPUT: “A is NOT an H-matrix”, s = 1.00000002036218.
Example 2. For the irreducible matrix:

1 0.01 0.02 0.01 0.03 0.01
0.05 1 0.1 0.02 0.01 0.01
0.01 0.01 1 1.001 0.01 0.01
0.01 0.03 1.002 1 0.01 0.02|°
0.02 0.01 0.02 0.01 1 0.1
0.07 0.01 0.01 0.01 0.01 1

by application of Algorithm AH we have OUTPUT: “A is NOT an H-matrix”, sr(nli?l) =

1.00163711553673, whereas by application of Algorithm AH2 the OUTPUT is the same in
8 iterations. Specifically, A®[3, 4] is not an H-matrix.

Example 3. Consider the following reducible matrix already in its Frobenius normal form with
unit diagonal elements, whose basic classes are a», «3 are not both final

1 0001[0 0 0] 0 003
002 1 |0 0 0]001 0
0 0 [ 1 0 01]003 00l
0 0 [20 1 0 |005 00l
0 0 |0 4 1003 002
0 0 [0 0 0] 1 4

L0 0 |0 0 0] 1 1
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It can be found out that

p(A[1]) <1 < p(A[2]) = p(A33) = p(A)
and O1p = O. For this matrix we have that OUTPUT: “A is NOT an H-matrix”, Sr(n()i)n =
1.26837418775458, with Algorithm AH. However, that A is not an H-matrix can be obtained
with Algorithm AH2 in 2 iterations. Specifically, A®)[6, 7] is not an H-matrix.

Example 4. Consider the following reducible matrix already in its Frobenius normal form with
unit diagonal elements:

1] 0 0 0 0 0 03 08| O 0]
0| 1 01002 0.01 0.01 0 0 ]02 03
010.1 1 0.1 0.2 0.03 0 0 |03 02
0] 0 0 1 0.01 1.02 0 0 |01 038
0] 0 0 1 1 0.1 0 0 |01 02
0] 0 0 | 001 0.1 1 0 0 |08 04
0] 0 0 0 0 0 1 1 0 0
0] 0 0 0 0 0 025 1 0 0
0] 0 0 0 0 0 0 0 I 25

0] 0 0 0 0 0 0 0 |16 1 |

and
p(A11) = p(Ag4) < p(A22) = p(A33) = p(Ass) = p(A).

It works only with Algorithm AH2 and it can be found out that “A is NOT an H-matrix” in 1
iteration. Specifically, A [4,5, 6,9, 10] is not an H-matrix.

Example 5. Consider the matrix in (4.4) with block submatrices:

| ) 1 2 0.1

1 0.3
Ay = 095 1] Ap =[1], Ay;=]01 1 01, Ay= [15 1 }
L= 0.2 03 1 ’

1 36 172 105
455 = 0.4 1]’ A“’:[o.z 1]’ A77=[0.5 1}’

1 0.32 1 0.4 1 2.25
Ags = 45 1 } Agg = [o.s 1 } Ato,10 = [0.64 1 }
1 0.1 1 72 1 0.2
A = [0.2 1 } ., Apnn= [0.02 1 ] A313 = [6.05 1 } ,

1 0.1 0.1 0.03
Alg 14 = |: :| A5 = |: } . A =[0.01 0.05],

11.025 1 0.02 0.01
0.002  0.01
A3s = 10.003 0.004 |, Ag= [883 88?] » Ase = |:00112 00 112] ’
0.05 0.6 ' ' ' '

02 0.1 0.15 025 0.1 0.1
A‘”‘[o.z 0.3}’ A78_[0.2 0.1] A89_[0.2 0.2]’

02 0.3 02 0.1 0.1 0.3
A&W:[oz 04]’ A"’“:[oz, 01]’ A‘“z:[oz 02]’
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0.1 0.2 02 03
A3 =10 0.3]’ A1°’14:[o.4 0.5]

(0.2 0.1 0.1 0.1
A3 = 03 04], A11,14:|:01 01],

Ao _[015 02857 _Tois 02] [0l 02
253 =10025 0350 M7 lo1 o1] “PMT 03 04

and basic classes a5, ag, og, @10, ¢¢12, With
p(A) > p(A13,13) > p(A14,14) > 1.

OUTPUT: “A is NOT an H-matrix”, s\ = 1.05000000000000, with Algorithm AH, and
the same result in 1 iteration, with Algorithm AH2. Particularly, AWM[15, 16] is not an H-matrix.

Example 6. Similar to Example 5 except that

1 0.2 1 0.1
A3z = |:0.8 1 } Alg,14 = [04 1 }

p(A) > 1> p(A1313) > p(A11,11),  p(A14,14).

Obviously Algorithm AH does not work. On the other hand, OUTPUT: “A is NOT an H-
matrix” in 1 iteration with Algorithm AH2. Particularly, A(V[15, 16] is not an H -matrix.

and

Example 7. Similar to Example 5 except that

1 16 1 32 11
A55=[0.4 1] A“:[o.z 1] A10*10=[0.64 1]’

1 0.2 1 0.1
A313 = [0 g 1 ] Ag14 = |:04 1 ]

1> p(A) > p(A13,13) > p(A11,11),  p(A14,14).

OUTPUT: “A 1S an H-matrix”, 5o = 0.28796103805572, with either Algorithm.

and
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