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Abstract

Algorithms are described and Maple implementations are provided for finding all quandles of order n,
as well as computing all homomorphisms between two finite quandles or from a finitely presented quandle
(e.g., a knot quandle) to a finite quandle, computing the automorphism group of a finite quandle, etc. Several
of these programs work for arbitrary binary operation tables and hence algebraic structures other than
quandles. We also include a stand-alone C program which finds quandles of order n and provide URLs for
files containing the results for n = 6, 7 and 8.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In 1980, David Joyce introduced a new algebraic structure dubbed the quandle. Quandles
are tailor-made for defining invariants of knots since the quandle axioms are essentially the
Reidemeister moves written in algebra. Associated to any knot diagram, there is a quandle called
the knot quandle which is a complete invariant of knot type up to homeomorphism of topological
pairs.

The history of quandle theory is a story of rediscovery and reinvention. Quandles and
their generalization, racks, have been independently invented and studied by numerous
authors (Brieskorn, 1988; Fenn and Rourke, 1992; Joyce, 1982; Mateev, 1982, etc.) and
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classification results for various subcategories of quandles have been obtained by various authors
(Graña, 2004; Nelson, 2003). In Ho and Nelson (2005), the third listed author and a coauthor
described a way of representing finite quandles as matrices and implemented algorithms for
finding all finite quandles, removing isomorphic quandles from the list, and computing the
automorphism group of each quandle. As we later learned, some of our work has duplicated
the efforts of others (Ryder, 1992; Lopes and Roseman, 0000; Carter et al., 2004).

This paper is intended to reduce future duplication of effort by describing the algorithms
for computation with finite quandles implemented in Ho and Nelson (2005) and other recent
projects, as well as an improved algorithm for finding quandle matrices. The C source for
our implementation of this algorithm as well as Maple implementations of algorithms for
computing with finite quandles and the lists of quandle matrices of order 6, 7 and 8 are available
for download at http://www.esotericka.org/quandles. Additional Maple code corresponding to
current and future projects will be made available at the same site, such as an algorithm for
finding all Alexander presentations of a quandle when such exist (Murillo et al., 0000).

2. Quandles, quandle matrices, and homomorphisms

Definition 1. A quandle is a set Q with a binary operation F : Q × Q → Q satisfying

(i) for every x ∈ Q we have x F x = x ,
(ii) for every x, y ∈ Q there is a unique z ∈ Q such that x = z F y, and

(iii) for every x, y, z ∈ Q we have (x F y) F z = (x F z) F (y F z).

If (Q, F) satisfies (ii) and (iii), Q is a rack.

Axiom (ii) says that F is right-invertible; for every y ∈ Q, the map fy : Q → Q defined
by fy(x) = x F y is a bijection (indeed, a quandle automorphism). Denote the inverse map as
f −1
y (x) = x G y. Then (Q, G) is also a quandle, called the dual of (Q, F); not only is G self-

distributive, but it is an easy exercise to check that F and G distribute over each other.
Standard examples of quandles include groups, which are quandles under conjugation g Fh =

h−1gh as well as n-fold conjugation g F h = h−nghn , denoted as Conj(G) and Conjn(G)

respectively, and Alexander quandles, which are modules over the ring Λ = Z[t±1
] of Laurent

polynomials in one variable with integer coefficients, with quandle operation given by

x F y = t x + (1 − t)y.

A finite quandle Q may be specified by giving its quandle matrix MQ , which is the matrix
obtained from the operation table of Q = {x1, x2, . . . , xn} (where the entry in row i column j
is xi F x j ) by dropping the xs and keeping only the subscripts. In Ho and Nelson (2005) it is
noted that, unlike arbitrary binary operation tables or indeed even rack tables, quandle axiom
(i) permits us to deduce the column and row labels from the elements along the diagonal of a
quandle matrix.

Example 1. Let Q = R4, the dihedral quandle of order 4, which has underlying set Q = {x1 =

0, x2 = 1, x3 = 2, x4 = 3} with quandle operation xi F x j = x2 j−i (mod4). Then Q has operation
table

x1 x2 x3 x4

x1 x1 x3 x1 x3
x2 x4 x2 x4 x2
x3 x3 x1 x3 x1
x4 x2 x4 x2 x4

and hence matrix MR4 =


1 3 1 3
4 2 4 2
3 1 3 1
2 4 2 4

 .

http://www.esotericka.org/quandles
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A map φ : Q → Q′ from a quandle Q = {x1, . . . , xn} to a quandle Q′
= {y1, . . . , ym}

may be represented by a vector v = (φ(x1), φ(x2), . . . , φ(xn)) ∈ Q′n . Such a vector v then
represents a homomorphism iff φ(xi F x j ) = φ(xi ) F φ(x j ), that is, iff we have

v[A[i, j]] = B[v[i], v[ j]]

for all xi , x j ∈ Q where A = MQ , B = MQ′ , and the notation M[i, j] indicates the entry of M
in row i column j .

In Fenn and Rourke (1992), presentations of quandles by generators and relations are defined.
In Nelson (2005), it is observed that all finitely presented quandles may be written with a short
form presentation in which every relation is of the form a = b � c where � ∈ {F, G}. In particular,
a knot quandle has a presentation with n such short relations where n is the number of crossings
in the diagram. Moreover, we may assume (rewriting if necessary) that every relation is written
in the form a = b F c and that no two relations of the form a = b F c and a′

= b F c are present,
since if a = b F c and a′

= b F c are both present we can replace every instance of a′ with a and
remove the generator a′ without changing the presented quandle; in particular, if our quandle is
a knot quandle, Reidemeister type I moves1 induce such a replacement.

Definition 2. Let Q = 〈1, 2, . . . , n | a1 = b1 F c1, . . . , am = bm F cm, m ≤ n2
〉 be a short form

quandle presentation such that no two relations of the form ai = bi F ci and a j = bi F ci with
ai 6= a j are present. The matrix M P ∈ Mn(Z) with

M P[i, j] =

{
k k = i F j a listed relation
0 otherwise

is the matrix of the presentation Q. Note that a quandle matrix for a finite quandle is the matrix
of a presentation of a finite quandle, so this definition generalizes the notion of quandle matrices
to finitely presentable quandles.

Example 2.

M PK Q =

0 3 0
0 0 2
1 0 0


The pictured trefoil knot diagram has quandle presentation 〈1, 2, 3 |1 = 2F3, 2 = 3F1, 3 = 1F2〉.

The relations are determined at a crossing by looking in the positive direction of the overcrossing
strand indicated by the given orientation; the relation is

(left-hand undercrossing) = (right-hand undercrossing) F (overcrossing).

See Fenn and Rourke (1992) or Nelson (2005) for more.

This matrix representation gives us a convenient way to do computations involving quandles,
including the quandle counting invariant for knot quandles or other short form quandles with
respect to a finite target quandle. The next section describes algorithms for doing computations
with quandles and refers to implementations in Maple (Nelson, 0000) and C (Henderson, 0000).

1 Reidemeister moves are described in Nelson (2005) and many other works.
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3. Algorithms

The goal of the computations in Ho and Nelson (2005) was to find all quandles of a given finite
order. Originally, we wrote separate programs for each value of n; Nelson (0000) includes one
example of such an implementation, quandleslist5. We later wrote a more general program
which works for arbitrary n, though due to the large number of columns to be checked, for values
of n ≥ 6 we decided to implement a stand-alone version suitable for distributed computing.

The algorithm implemented in quandleslist takes a number n and generates a list of all
n × n standard form quandle matrices. A matrix M ∈ Mn(Z) is a quandle matrix in standard
form iff it satisfies the following three conditions:

(i) for i ∈ {1, . . . , n}, M[i, i] = i ,
(ii) every column in M is a permutation of {1, . . . , n}, and

(iii) for every triple 1 ≤ i, j, k ≤ n we have M[M[i, j], k] = M[M[i, k], M[ j, k]].

To guarantee that conditions (i) and (ii) are satisfied, we start by getting a list of all
permutations of {1, . . . , n}. The program listperms takes a number n and produces a list of
all permutations ρ ∈ Σn , represented as vectors [ρ(1), ρ(2), . . . , ρ(n)], in the dictionary order.

The i th column in a standard form quandle matrix has entry i in the i th position. The program
listpermsi takes a pair of positive integers (n, i) and outputs a list of all permutations of
{1, 2, . . . , n} ρ ∈ Σn which fix the element i .

To test quandle axiom (iii), we note that the first time any triple (i, j, k) fails to satisfy the
axiom, we can exit the program and report that the matrix is not a quandle. This is implemented
in q3test.

For a fixed value of n, we can then simply run over a series of nested loops, testing each
resulting matrix for quandle axiom (iii), since by construction axioms (i) and (ii) are already
satisfied. The program quandleslist5 is an example of this.

The program quandleslist finds a list of all quandle matrices of a given size n. To find all
n×n quandle matrices for arbitrary n, quandleslist finds all control vectors v[i] with n entries
using listmaps, a program which takes two inputs a and b and outputs a list of all a-component
vectors with entries in {1, . . . , b}. Each entry in the control vector corresponds to a column in
the output matrix; for each such control vector, an n × n matrix M[i, j] is produced whose i th
column is L[n, i][v[i]], where L[n, i] is the output of listpermsi(n,i). These matrices are
then tested for quandle axiom (iii) using q3test. For completeness, we include a program which
tests a matrix for all three quandle axioms, qtest.

Since every n-component vector with entries in {1, . . . , m} can be interpreted as a map from
{1, . . . , n} to {1, . . . , m}, we can use listmaps to compute the set of all homomorphisms from
one finite quandle to another. Let A ∈ Mn(Z) be an n × n quandle matrix and B ∈ Mm(Z)

an m × m quandle matrix. Then the vector v ∈ Zn , 1 ≤ v[i] ≤ m, represents a quandle
homomorphism v : A → B iff

v[A[i, j]] = v(i F j) = v(i) F v( j) = B[v[i], v[ j]],

as noted in Section 2. The program homtest takes two quandle matrices and a vector and reports
whether the vector represents a quandle homomorphism or not.

The program homtest handles the case where A is either a finite quandle matrix or a
presentation matrix for a finitely presented quandle; in the former case, the program simply
tests whether the assignment of generators {1, . . . , n} in the quandle with presentation matrix A
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to elements {1, . . . , m} in the finite quandle B satisfy the relations defining A by ignoring any
zero entries in A.

We make use of nextmap, a procedure which takes as input a vector v and number n and
returns the next m-component vector with entries in {1, 2, . . . , m} in the dictionary order, to get
a list of all homomorphisms from the quandle with matrix A to the quandle with matrix B in
the program homlist. The program homcount counts the number of homomorphisms from one
finite quandle to another. If A is a knot quandle presentation matrix, then homcount computes
the quandle counting invariant, i.e., the number of quandle colorings of the knot diagram defining
A by the finite quandle B. Alternate methods of computing the quandle counting invariant for
finite Alexander quandles are described in Dionı́sio and Lopes (2003).

After the first version of this paper was completed, we implemented a much faster algorithm
for finding quandle homomorphisms, homlist2. This program uses a |B|-component vector
with entries in {0, 1, . . . , |A|} as a template for a homomorphism, with 0 entries acting as blanks
to be filled in. The program keeps a working list of such templates, systematically filling in
zero values and propagating the value through the template using homfill. The procedure
homfill takes as input a quandle matrix B, a quandle presentation matrix A and a template
vector v and systematically checks every pair of entries for the quandle homomorphism condition
v[A[i, j]] = B[v[i], v[ j]], filling in zeros where possible and reporting “false” if a contradiction
is found.

Since an isomorphism is a bijective homomorphism, and a bijective map is represented by a
permutation v : {1, . . . , n} → {1, . . . , n}, we can test whether two quandles given by matrices are
isomorphic by running through the list of permutations of order n and testing to see whether any
are homomorphisms. The program isotest returns “true” the first time it finds an isomorphism
and “false” if it gets through all n! permutations without finding an isomorphism.2

Replacing listmaps in homlist2 with permute(n) and setting B = A gives us the
automorphism group of the quandle with matrix A, autlist, represented as a list of permutation
vectors.

In Ho and Nelson (2005), a slightly different method of determining the automorphism group
of a quandle was used. Specifically, permuting the entries of a quandle matrix A by a permutation
ρ applies an isomorphism to the defined quandle, but the new matrix now has its rows and
columns out of order. To restore the order, we conjugate by the matrix of the permutation; the
resulting matrix was called ρ(A) in Ho and Nelson (2005). In particular, a permutation ρ is an
automorphism of A iff ρ(A) = A. To compute Aut(A) in Ho and Nelson (2005), we ran a loop
over the list of permutations given by listperms and noted which ones preserved the original
matrix A. Here, we include a program stndiso which computes the standard form matrix ρ(A)

given a quandle matrix A and a vector v representing the permutation ρ.
Finally, once we have a list of quandle matrices of order n, we want to choose a single

representative from each isomorphism class. The program reducelist takes a list of quandle
matrices and compares them pairwise with isotest, removing isomorphic copies and outputting
a trimmed list. The program reducelist works for short lists; an improved algorithm,
implemented as reducelist2, is better for longer lists, but neither is sufficient to reduce the
rather lengthy lists of quandles of order 7 and 8 in a reasonable amount of time.

We note that several of these programs, notably homtest, homlist, homlist2, homcount,
isotest, autlist, and reducelist, are not quandle-specific but apply as written to any binary

2 A faster version of this program using orbit decompositions of finite quandles is described in Nelson and Wong
(0000).
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Table 1
Number of complete matrices tested

n 5 6 7 8

Total search space 8.0 × 106 3.0 × 1011 1.0 × 1020 4.1 × 1030

With early testing 8400 715680 1.0 × 108 n/a
With forward propagation 1154 53500 5.0 × 106 7.7 × 108

Total quandles 404 6658 152900 5225916

Table 2
Number of tests pruned with early testing

Column 2 3 4 5 6

n = 5 186 8736 14626 – –
n = 6 4728 1090404 8418374 1187556 –
n = 7 154680 2.3 × 108 1.8 × 1010 3.8 × 109 1.8 × 108

Table 3
Number of times columns constrained beyond axiom (i)

Column 3 4 5 6 7

n = 5 164 179 290 – –
n = 6 3558 4396 3348 5020 –
n = 7 115872 228384 91452 82910 117430

operation defined using a matrix as an operation table. These facts are exploited in Murillo et al.
(0000), in which the authors give a program which determines all Alexander structures on a
quandle, if there are any, using matrices to represent the Cayley table of an abelian group.

We have also implemented a stand-alone version of quandleslist, written in C (see
Henderson (0000)); it writes a list of quandle matrices in Maple format to an output file.

In our initial version of the stand-alone program, several instances of the program could be
run in parallel on networked machines using a control file to ensure that separate instances do not
repeat the same computations. However, sufficient improvements were made to the algorithm by
pruning the search space that the current version can handle the n = 8 case on a single processor,
though the n = 9 case is still out of reach even with a large network.

The first improvement was to introduce a partial test versus axiom (iii) after generation of
each column. In many cases we can find entries that violate the axiom well before the entire
matrix is generated, which allows vast portions of the search space to be pruned.

The second improvement was to notice when all of the interior coordinate values as well as
the left-hand side value of the axiom (iii) equality have been computed, but the right-hand side
value has not. In this case we can constrain a row of a future column to be equal to the left-
hand side value. This reduces the number of rows that must be permuted when searching that
column, which further prunes the search space. The earlier these constraints are added, the more
the pruning effect is magnified. For example, with n = 7 and all else held equal, adding a single
constraint to column 3 saves (6! − 5!) ∗ ((6!)4) or 2.3 × 1016 tests, whereas adding a constraint
to column 7 saves only 6! − 5! or 600 tests.

The effect of the two improvements can be seen in Tables 1–3. It is interesting to note
that although there is nothing in the program to prevent it (and reasonable amount of code to
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encourage it), we never add constraints to column 2, nor do we ever add more than one constraint
per column, or detect addition of conflicting constraints.
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