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In this paper we propose a simple, robust and accurate nonlinear a posteriori stabilization 
of the Discontinuous Galerkin (DG) finite element method for the solution of nonlinear 
hyperbolic PDE systems on unstructured triangular and tetrahedral meshes in two and three 
space dimensions. This novel a posteriori limiter, which has been recently proposed for the 
simple Cartesian grid case in [62], is able to resolve discontinuities at a sub-grid scale and 
is substantially extended here to general unstructured simplex meshes in 2D and 3D. It can 
be summarized as follows:
At the beginning of each time step, an approximation of the local minimum and 
maximum of the discrete solution is computed for each cell, taking into account also 
the vertex neighbors of an element. Then, an unlimited discontinuous Galerkin scheme of 
approximation degree N is run for one time step to produce a so-called candidate solution. 
Subsequently, an a posteriori detection step checks the unlimited candidate solution at 
time tn+1 for positivity, absence of floating point errors and whether the discrete solution 
has remained within or at least very close to the bounds given by the local minimum 
and maximum computed in the first step. Elements that do not satisfy all the previously 
mentioned detection criteria are flagged as troubled cells. For these troubled cells, the 
candidate solution is discarded as inappropriate and consequently needs to be recomputed. 
Within these troubled cells the old discrete solution at the previous time tn is scattered 
onto small sub-cells (Ns = 2N + 1 sub-cells per element edge), in order to obtain a set of 
sub-cell averages at time tn . Then, a more robust second order TVD finite volume scheme 
is applied to update the sub-cell averages within the troubled DG cells from time tn to 
time tn+1. The new sub-grid data at time tn+1 are finally gathered back into a valid cell-
centered DG polynomial of degree N by using a classical conservative and higher order 
accurate finite volume reconstruction technique.
Consequently, if the number Ns is sufficiently large (Ns ≥ N + 1), the subscale resolution 
capability of the DG scheme is fully maintained, while preserving at the same time an 
essentially non-oscillatory behavior of the solution at discontinuities. Many standard DG 
limiters only adjust the discrete solution in troubled cells, based on the limiting of higher 
order moments or by applying a nonlinear WENO/HWENO reconstruction on the data at 
the new time tn+1. Instead, our new DG limiter entirely recomputes the troubled cells by 
solving the governing PDE system again starting from valid data at the old time level 
tn , but using this time a more robust scheme on the sub-grid level. In other words, 
the piecewise polynomials produced by the new limiter are the result of a more robust 
solution of the PDE system itself, while most standard DG limiters are simply based on a 
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mere nonlinear data post-processing of the discrete solution. Technically speaking, the new 
method corresponds to an element-wise checkpointing and restarting of the solver, using a 
lower order scheme on the sub-grid. As a result, the present DG limiter is even able to cure
floating point errors like NaN values that have occurred after divisions by zero or after the 
computation of roots from negative numbers. This is a unique feature of our new algorithm 
among existing DG limiters.
The new a posteriori sub-cell stabilization approach is developed within a high order 
accurate one-step ADER-DG framework on multidimensional unstructured meshes for 
hyperbolic systems of conservation laws as well as for hyperbolic PDE with non-
conservative products. The method is applied to the Euler equations of compressible gas 
dynamics, to the ideal magneto-hydrodynamics equations (MHD) as well as to the seven-
equation Baer–Nunziato model of compressible multi-phase flows. A large set of standard 
test problems is solved in order to assess the accuracy and robustness of the new limiter.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Discontinuous Galerkin (DG) finite element method was introduced for the first time in a seminal paper by Reed 
and Hill [117] in the context of linear scalar neutron transport equations. A well-known series of papers by Cockburn 
and Shu [33,32,31,29,34] has subsequently established a solid background for its application to general nonlinear systems 
of hyperbolic conservation laws in one and multiple space dimensions. A remarkable property of the DG method is that 
it satisfies a local cell entropy inequality even for higher orders of accuracy, provided that the numerical flux used at 
the element boundaries is a monotone entropy flux. From the local cell entropy property, it is trivial to prove that the DG 
method is stable in L2 norm, see the paper by Jiang and Shu [81] for the nonlinear scalar case and its subsequent extensions 
to nonlinear systems [18,77]. However, despite this very interesting nonlinear stability property, the DG method is still a 
linear scheme in the sense of Godunov [71], hence even the DG method needs some sort of nonlinear limiting to avoid the 
spurious oscillations, i.e. Gibbs phenomenon, in the presence of discontinuities.

In most cases, the DG method is used in the so-called method of lines (MOL) framework, i.e. first only a spatial dis-
cretization is carried out, while time is still kept continuous. The resulting semi-discrete scheme leads to a nonlinear ODE 
system, which is then typically advanced in time via explicit TVD Runge–Kutta schemes, see the work of Shu & Osher 
[125,126] and Gottlieb & Shu [72]. The resulting method is consequently called Runge–Kutta DG (RKDG) scheme. For an 
overview of existing DG schemes see [30,35,74]. However, explicit RKDG schemes suffer from a very severe time step re-
striction, where the maximum admissible Courant number typically scales as approximately 1/(2N + 1), if N denotes the 
polynomial degree of the approximation of the DG scheme. Alternative explicit time discretizations for DG methods have 
been proposed, which lead to so-called fully-discrete one-step schemes that do not require any intermediate Runge–Kutta 
stages. The resulting methods are the Lax–Wendroff DG method [112], the ADER-DG1 method [129,56,47] and the STE-DG 
method [98,70]. For a detailed comparison of different explicit one-step time discretizations of DG schemes see [69]. Un-
fortunately, all the fully-discrete DG schemes mentioned before suffer from an even more severe stability restriction than 
the RKDG method. A space-time discontinuous Galerkin scheme has been introduced by Van der Vegt et al. in [135,136,92]
and has subsequently been analyzed by Feistauer et al. in [66,27]. The space-time DG method is theoretically of arbitrary 
high order of accuracy in both space and time and is provably unconditionally stable. However, these schemes are implicit, 
they require the solution of a global nonlinear system for the unknown degrees of freedom, which might result difficult for 
big meshes, large PDE systems or for high polynomial approximation degrees. In order to reduce the complexity of globally 
implicit space-time DG schemes, a local space-time DG approach has been forwarded in [51,75,47]. This method is only 
locally implicit and therefore requires only the solution of small nonlinear systems that can be easily handled element-wise. 
The local space-time DG approach leads again to an explicit scheme that is subject to a CFL condition on the time step for 
explicit one-step DG schemes, but it replaces the cumbersome Cauchy–Kovalewski procedure that has been previously used 
in Lax–Wendroff DG, ADER-DG and STE-DG schemes.

There is a vast literature on limiters for the discontinuous Galerkin finite element method, and only a very short and 
non-exhaustive review on this topic can be given here. A common point of many DG limiters is to apply first an unlimited 
DG scheme and to evolve the discrete solution to the new time level. Then, an appropriate indicator detects so-called trou-
bled cells, i.e. those elements of the computational domain that need limiting, see for example [84,94,97,138]. For detected 
troubled cells, the degrees of freedom of the discrete solution are then typically modified by some sort of nonlinear postpro-
cessing after each time step, e.g. by a TVD/TVB limiting [33,32,31,29], or via a nonlinear ENO/WENO/HWENO reconstruction 
[115,113,114,6,146,87,86,148,147,83,76,6] or by a so-called moment limiting [116,2,94,97,101,141,42–44].

1 ADER stands for arbitrary high order derivatives. The method was proposed by Toro and Titarev in [134] for the approximate solution of the generalized 
Riemann problem that consists of piecewise smooth initial data separated by a discontinuity.

http://creativecommons.org/licenses/by-nc-nd/4.0/


M. Dumbser, R. Loubère / Journal of Computational Physics 319 (2016) 163–199 165
A completely different and historically much older approach to limiting numerical schemes for nonlinear hyperbolic 
systems is the artificial viscosity (AV) method. It dates back to von Neumann and Richtmyer [107], who developed the 
AV approach in the 1940’s at Los Alamos National Laboratory. The basic idea of AV techniques is to add a purely artificial 
dissipative mechanism to the difference equations. The dissipation should be strong enough so that the shock transition 
would become a smooth one, hence spreading the shock over a small number of cells. In the context of discontinuous 
Galerkin finite element schemes, the artificial viscosity concept has become popular again, and the reader is referred to 
[118,110,17,99,36,45] for details.

Recently, a new concept to the problem of limiting has been proposed in the finite volume context, the so-called Multi-
dimensional Optimal Order Detection (MOOD) approach. The key idea is to run first a spatially high order accurate but 
unlimited finite volume scheme. This step produces a so-called candidate solution. Then, the validity of this candidate solu-
tion is tested a posteriori against a set of predefined admissibility criteria. The cells which pass all these criteria are marked 
as ‘acceptable’, while those who fail to pass an admissibility criterion are marked as ‘troubled’. The troubled cells and their 
neighbors are subsequently recomputed locally using a polynomial reconstruction of lower degree. In that way, a new candi-
date solution is obtained, which is then again tested against the admissibility criteria and, where necessary, the polynomial 
degree of the reconstruction is locally reduced again. In the worst case, a cell is updated with a robust and stable first 
order accurate Godunov-type finite volume scheme, which is supposed to produce always a valid (monotone and positivity-
preserving) solution under CFL condition. For more details about the MOOD paradigm in the finite volume context, the 
reader is referred to [28,40,41,100]. There is an obvious link between the MOOD concept in the finite volume framework 
and the typical strategy adopted in a classical DG limiter: in both approaches first a candidate solution is computed using 
a high order accurate unlimited scheme. Then, troubled cells are detected based on some criteria and the discrete solu-
tion is corrected. However, there is a fundamental difference: within a typical DG limiter the candidate solution is only 
postprocessed, either by a nonlinear TVD/TVB or an ENO/WENO/HWENO reconstruction or by some other sort of moment 
limiting. Classical DG limiters furthermore work only on one time level in order to detect and correct troubled cells. The 
MOOD approach on the other hand uses two time levels (the old one and the current one) for the detection of troubled 
cells. Second, the MOOD method really discards the candidate solution and recomputes a new one by starting again from the 
discrete solution at the old time level and by using a different and more robust numerical scheme. In technical terms this 
means that the code applies in the troubled cells in each time step an element-wise checkpointing and restarting, invoking 
at the restart a different scheme that is more adequate to handle shock waves and other nonlinear phenomena. The detec-
tion being based on two time levels and the local checkpointing and restarting makes the MOOD method [28,40,41,100] an 
a posteriori detection and correction approach.

Very recently, a high order one-step ADER Discontinuous Galerkin (DG) scheme that has been stabilized with a novel 
a posteriori sub-cell finite volume limiter for hyperbolic systems of conservation laws has been developed on simple uniform 
as well as on adaptive Cartesian grids in [62,143,142]. However, in more complex situations that typically arise in engi-
neering and geo-sciences, the use of an unstructured mesh may be mandatory due to the geometrical complexity of the 
computational domain. For this reason, it is the goal of this paper to extend the a posteriori sub-cell finite volume limiter 
originally developed in [62] to the case of unstructured meshes in two and three space dimensions, as well as to the case 
of non-conservative hyperbolic PDE. We will furthermore illustrate that the new sub-cell limiter is able to maintain the 
extraordinary resolution capabilities of the DG method not only in regions where the solution of the PDE is smooth, but 
also in the vicinity of steep fronts, shock waves and other discontinuities. With this new approach, it is indeed possible to 
resolve a shock wave or a contact discontinuity well within one single cell. For alternative subcell limiters in the context of 
high order discontinuous Galerkin finite element schemes, the reader is also referred to the work of Huerta et al. [80,23], 
Sonntag and Munz [128], Fechter and Munz [65] and Meister and Ortleb [103]. However, to the knowledge of the authors, 
none of the above mentioned methods has ever been extended and applied to high order DG schemes on unstructured 
tetrahedral meshes in three space dimensions.

The rest of the paper is organized as follows. In Section 2 we describe the governing PDE systems to be discretized in 
this article, as well as the unlimited ADER-DG scheme. In the following Section 3 we present the a posteriori detection of 
problematic cells along with the sub-cell finite volume scheme that is used to recompute the discrete solution in troubled 
cells at the aid of a more robust scheme that is used at the sub-grid level. Section 4 is entirely dedicated to the numer-
ical experiments which have been carried out. A large set of test problems has been simulated for three important PDE 
systems, namely the Euler equations of compressible gas dynamics, the ideal magnetohydrodynamics equations (MHD) and 
the seven-equation Baer–Nunziato model of compressible multi-phase flows. Some test problems involve smooth solutions 
in order to check, whether the designed high order of accuracy of our new method is achieved. Other tests contain dis-
continuities in order to assess the robustness of our method. We show in these examples that the sub-scale resolution 
capability of the DG method is properly maintained by the new a posteriori stabilization technique. The paper closes with 
some concluding remarks given in Section 5.

2. Unlimited one-step ADER-DG scheme

In this paper we will consider general non-linear systems of hyperbolic PDE, which can be expressed in the following 
compact form:
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∂Q

∂t
+ ∇ · F(Q) + B(Q) · ∇Q = 0, (1)

where Q = Q(x, t) ∈ Rν is the state vector; x = (x, y, z) ∈ � is the vector of spatial coordinates and � denotes the com-
putational domain; F(Q) = (f, g, h) is the nonlinear flux tensor that contains the conservative part of the PDE system and 
B(Q) · ∇Q is a genuinely non-conservative term. When written in quasilinear form, the system (1) becomes

∂Q

∂t
+ A(Q) · ∇Q = 0 , (2)

where the matrix A(Q) = ∂F(Q)/∂Q + B(Q) contains both, the Jacobian of the conservative flux, as well as the non-
conservative product. The system (2) is hyperbolic if for any unit-normal vector n with ‖n‖ = 1 the matrix An = A(Q) · n =
Rn(Q) �n(Q) R−1

n (Q) is diagonalizable with a diagonal matrix �n = diag(λ1, λ2, . . . , λi, . . . , λν) of real eigenvalues λi and a 
complete set of linearly independent right eigenvectors Rn .

The PDE system (1) is solved at the aid of a high order one-step ADER-DG method [112,47,50], which provides at 
the same time high order of accuracy in both space and time in one single step, without the need of any intermediate 
Runge–Kutta stages. The construction of fully-discrete high order one-step schemes is typical of the ADER approach, which 
was forwarded by Toro and Titarev in the finite volume context, see [134,131,132]. The scheme is written under the form 
of a one-step predictor corrector method [69], where the predictor step solves (1) within each element in the small (see also 
[73]) by means of an element-local space-time discontinuous Galerkin scheme. The corrector step is obtained by directly 
integrating a weak form of the governing PDE in time at the aid of the predictor. In the following we only summarize the 
main steps, while for more details the reader is referred to [47,60,75,69,16].

2.1. Data representation and spatial discretization

The computational domain � is discretized by an unstructured mesh composed of conforming simplex elements denoted 
by Ti , where the index i ranges from 1 to the total number of elements NE . The Ti are triangles in two space dimensions 
and tetrahedra in the three-dimensional case. The union of all elements represents the triangulation (tetrahedrization) of 
the computational domain,

T� =
NE⋃
i=1

Ti, (3)

and is also called the main grid in the following. We will further denote the cell volume by |Ti | =
∫

Ti
dx. The discrete solution 

of PDE (1) is denoted by uh(x, tn) ∈ Uh and is represented by piecewise polynomials of maximum degree N ≥ 0. Within each 
cell Ti we have

uh(x, tn) =
M∑

l

�l(x)ûn
l,i := �l(x) ûn

l,i, x ∈ Ti, (4)

where we have introduced the classical Einstein summation convention over two repeated indices. The approximation space 
Uh of piecewise polynomials up to degree N is spanned by the basis functions �l = �l(x). Throughout this paper we use 
the orthogonal Dubiner-type basis for simplex elements, which is a so-called modal basis, detailed in [46,89,30]. The symbol 
M denotes the number of degrees of freedom per element and is given by M = (N + 1)(N + 2)/2 in two space dimensions 
and by M = (N + 1)(N + 2)(N + 3)/6 in three space dimensions, respectively. The basis functions are conveniently defined 
in a reference simplex element Te , defined by the nodes �1 = (0, 0), �2 = (1, 0) and �3 = (0, 1) in the two-dimensional 
case and by �1 = (0, 0, 0), �2 = (1, 0, 0), �3 = (0, 1, 0) and �4 = (0, 0, 1) in the three-dimensional case, respectively. The 
vertices that define Ti in the physical coordinate system are denoted by X1, X2, X3 and X4, respectively. The mapping from 
the reference element to the physical element is then given in the general 3D case by the simple linear transformation

x = X1 + (X2 − X1) ξ + (X3 − X1)η + (X4 − X1) ζ, (5)

where ξ = (ξ, η, ζ ) is the coordinate vector in the reference system and from which the 2D case can be obtained by simply 
setting ζ = 0.

2.2. Local space-time predictor

The discrete solution uh(x, tn) is now evolved in time according to an element-local weak formulation of the governing 
PDE in space-time, see [51,47,75,60,69,16]. The local space-time Galerkin method is only used for the construction of an 
element-local predictor solution of the PDE in the small, hence neglecting the influence of neighbor elements. This predictor 
solution will subsequently be inserted into the corrector step described in the next section, which then provides the appro-
priate coupling between neighbor elements via a numerical flux function (Riemann solver) and a path-conservative jump 
term for the discretization of the non-conservative product. To simplify notation, we define
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〈 f , g〉 =
tn+1∫
tn

∫
Ti

f (x, t)g(x, t)dx dt, [ f , g]t =
∫
Ti

f (x, t)g(x, t)dx, (6)

which denote the scalar products of two functions f and g over the space-time element Ti × [
tn; tn+1

]
and over the spatial 

element Ti at time t , respectively. Within the local space-time predictor, the discrete solution of equation (1) is denoted 
by qh = qh(x, t). We then multiply (1) with a space-time test function θk = θk(x, t) and subsequently integrate over the 
space-time control volume Ti × [

tn; tn+1
]
. Inserting qh , the following weak formulation of the PDE is obtained:〈

θk,
∂qh

∂t

〉
+ 〈θk,∇ · F (qh) + B(qh) · ∇qh〉 = 0. (7)

The discrete representation of qh in element Ti × [tn, tn+1] is assumed to have the following form

qh = qh(x, t) =
∑

l

θl(x, t)q̂n
l,i := θlq̂

n
l,i, (8)

where θl(x, t) is a space-time basis function of maximum degree N . For the basis functions θl we use the nodal basis given 
in [47], that consists in the Lagrange interpolation polynomials passing through a set of pre-defined space-time nodes. In 
principle, any basis can be used. However, the use of a nodal basis is computationally more efficient compared with a modal 
basis. After integration by parts in time of the first term, eqn. (7) reads

[θk,qh]tn+1 − [
θk,uh(x, tn)

]tn −
〈

∂

∂t
θk,qh

〉
+ 〈θk,∇ · F (qh) + B(qh) · ∇qh〉 = 0. (9)

Note that the high order polynomial data representation of the DG scheme uh(x, tn) is taken into account in (9) as initial 
condition of the element-local Cauchy problem in the small in a weak sense by the term [θk,uh(x, tn)]tn

. This corresponds 
to the choice of a numerical flux in time direction, which is nothing else than upwinding in time, according to the causality 
principle. Note that due to the DG approximation in space-time, we may have qh(x, tn) 	= uh(x, tn) in general, hence the 
choice of a numerical flux in time direction is necessary. Note further that in (9) we have not used integration by parts 
in space, nor any other coupling to spatial neighbor elements. The integrals appearing in the weak form (9), as well as 
the space-time test and basis functions involved are conveniently written by making use of a space-time reference element 
Te × [0; 1].

The solution of (9) yields the unknown space-time degrees of freedom q̂n
l,i for each space-time element Ti ×[tn; tn+1] and 

is easily achieved with a fast converging iterative scheme, see [47,75,60] for more details. The above space-time Galerkin 
predictor has replaced the cumbersome Cauchy–Kovalewski procedure that has been initially employed in the original ver-
sion of ADER finite volume and ADER discontinuous Galerkin schemes [123,130,134,131,56,129,55].

2.3. Fully discrete one-step ADER-DG scheme

At the aid of the local space-time predictor qh , a fully discrete one-step ADER-DG scheme can now be simply obtained 
by multiplication of the governing PDE system (1) by test functions �k ∈ Uh , which are identical with the spatial basis func-
tions, and subsequent integration over the space-time control volume Ti ×[tn; tn+1]. Due to the presence of non-conservative 
products, the jumps of qh across element boundaries are taken into account in the framework of path-conservative schemes 
put forward by Castro and Parés in the finite volume context [25,109] and subsequently extended to DG schemes in [119]
and [50,52], where also a generalization to the unified P N P M framework has been provided. All these approaches are 
based on the theory of Dal Maso, Le Floch and Murat [102], which gives a definition of weak solutions in the context of 
non-conservative hyperbolic PDE. For open problems concerning path-conservative schemes, the reader is referred to [26]
and [1].

If n is the outward pointing unit normal vector on the surface ∂Ti of element Ti and the path-conservative jump term 
in normal direction is denoted by D− (

q−
h ,q+

h

) · n, which is a function of the left and right boundary-extrapolated data, 
q−

h and q+
h , respectively, then we obtain the following path-conservative one-step ADER Discontinuous Galerkin (ADER-DG) 

scheme, see [50]:⎛
⎜⎝∫

Ti

�k�ldx

⎞
⎟⎠(

ûn+1
l − ûn

l

)
+

tn+1∫
tn

∫
∂Ti

�k D− (
q−

h ,q+
h

) · n dSdt +
tn+1∫
tn

∫
Ti\∂Ti

�k (∇ · F (qh) + B(qh) · ∇qh)dxdt = 0.

(10)

The element mass matrix appears in the first integral of (10), the second term accounts for the jump in the discrete solution 
at element boundaries and the third term takes into account the smooth part of the non-conservative product. In general we 



168 M. Dumbser, R. Loubère / Journal of Computational Physics 319 (2016) 163–199
use the simple Rusanov (local Lax Friedrichs) method [120], or the more sophisticated Osher-type scheme recently proposed 
in [58,59,24] as approximate Riemann solver at the element boundaries, although any other kind of Riemann solver could 
be also considered, see [133] for an overview of state-of-the-art Riemann solvers. At that point we would also like to 
point out the new general reformulation of the HLLEM Riemann solver of Einfeldt and Munz [63,64], within the setting of 
path-conservative schemes recently forwarded in [48].

The Rusanov jump term reads

D− (
q−

h ,q+
h

) · n = 1

2

(
F(q+

h ) − F(q−
h )

) · n + 1

2

(
B̃ · n − smaxI

)(
q+

h − q−
h

)
, (11)

with the maximum signal speed at the element interface smax = max
(∣∣�(q+

h )
∣∣ , ∣∣�(q−

h )
∣∣) and the matrix B̃ · n given by the 

following path-integral along a straight line segment path ψ :

B̃ · n =
1∫

0

B
(
ψ(q−

h ,q+
h , s

) · n ds, ψ
(
q−

h ,q+
h , s

) = q−
h + s

(
q+

h − q−
h

)
. (12)

The path-conservative Osher-type Riemann solver based on the same straight line segment path ψ reads

D− (
q−

h ,q+
h

) · n = 1

2

(
F(q+

h ) − F(q−
h )

) · n + 1

2

⎛
⎝ 1∫

0

(
B

(
ψ(q−

h ,q+
h , s

) · n − ∣∣A (
ψ(q−

h ,q+
h , s

) · n
∣∣) ds

⎞
⎠(

q+
h − q−

h

)
,

(13)

with the usual definition |A| = R|�|R−1. According to the suggestions made in [50,52,58,24,59], the path-integrals can be 
conveniently evaluated numerically by the use of a classical Gauss–Legendre quadrature formula on the unit interval [0; 1]. 
For an alternative choice of the path, see [104,105].

This completes the brief description of the unlimited ADER-DG scheme used for the discretization of the governing PDE 
system (1).

3. The a posteriori sub-cell finite volume limiter on unstructured simplex meshes

The discrete representation of the solution within a general simplex element Ti is denoted by uh(x, tn) at the beginning 
of a time step. At the next time level tn+1 we first calculate a so-called candidate solution, denoted as u∗

h(x, tn+1), which 
results from the unlimited ADER-DG scheme (10) described in the previous section. From these data the a posteriori sub-cell 
limiter acts in two stages [62]:

• Detect troubled cells in the candidate solution, that is at tn+1, which are not acceptable according to some user-defined 
or developer-given physical and numerical detection criteria. This step is similar to existing troubled zones indicators 
used in classical state-of-the-art DG limiters [29,34,84].

• Discard the candidate DG solution in these troubled cells and recompute the discrete solution locally, starting again from 
the previous time level tn , but this time using a more robust Finite Volume (FV) scheme operating on a sufficiently 
large number of sub-cells, as to conserve the intrinsic subcell resolution capability of a high order DG scheme. The 
feature that the solution is locally recomputed by starting again from a valid discrete solution at the previous time level 
is radically different from existing classical DG limiters.

This stabilization technology is based on two salient remarks:

• The subscale resolution capability of the DG method that is intrinsically embedded in its piecewise high order poly-
nomial data representation should not be destroyed by a limiter. In other words: a limiter should not act on the 
characteristic length scale h of the main grid, but on a length scale that is less than h/(N + 1).
As an illustration, in 1D, a PN polynomial has N + 1 degrees of freedom. These degrees of freedom can be either 
the N + 1 coefficients needed to develop uh in a polynomial basis up to degree N , or, equivalently, the projection of 
uh onto a set of Ns finite volume sub-cells. If the number of sub-cells is large enough (Ns ≥ N + 1) we can retrieve 
the DG polynomial back from these finite volume data via a standard reconstruction operator. Consequently, the data 
contained inside a polynomial of degree N can be also alternatively represented by a set of sub-cell averages on a 
sub-grid. Concerning the information content, it is therefore equivalent to substitute DG polynomials on elements of 
the main grid by FV cell averages on the sub-cells. The gain is that finite volume schemes are notoriously much simpler 
to stabilize at strong shocks than DG schemes, by means of a vast number of well established techniques: slope and 
flux limiters, ENO/WENO reconstruction, the MOOD approach [28,40,41] or, more drastically, by simply employing a first 
order Godunov-type finite volume scheme with its large numerical viscosity.
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Fig. 1. Sub-grid used for the a posteriori sub-cell finite volume limiter of DG schemes on triangles in 2D from P1 to P6.

• The observation of a problematic numerical solution in a cell is much easier than the prediction of its occurrence. In 
other words, given a computed candidate solution at tn+1 it is relatively easy to determine if the numerical solution 
fits our expectations, or, where it fails to. Contrarily, it seems more difficult to ensure that, given a solution at tn , the 
numerical method will produce a valid solution after its evolution during one time step. This illustrates the difference 
between a posteriori checking the validity of a numerical solution versus building a numerical method which, a priori, 
ensures the validity of a solution, that is without the knowledge of any data at the future time tn+1 .2

Our DG sub-cell limiter is therefore constructed taking into account these two remarks. First, any DG polynomial on a 
given cell can be equivalently represented by a collection of piecewise constant finite volume data on a sub-grid of the cell 
and vice-versa. Second, at the end of the timestep the numerical solution of the DG scheme has to pass a set of detection 
tests to be considered as a valid solution. If it does not, this candidate DG solution in these so-called troubled/problematic 
cells is simply discarded and recomputed with a finite volume scheme acting on a sub-cell mesh of the troubled cell.

3.1. Sub-cell finite volume recomputation

3.1.1. From cell to sub-cells
Assume that cell Ti onto which a DG polynomial uh is defined has been detected as problematic. Then we first pave it 

with a sub-grid made of (Ns)
d sub-cells Si, j , with j = 1, · · · , (Ns)

d , where Ns = 2N + 1, see Fig. 1 for the two dimensional 
case and Fig. 2 for the three dimensional case, respectively. The number Ns defines into how many sub-edges an edge 
of the simplex element Ti is divided. This means that the characteristic length scale of the sub-grid is h/Ns , if h is the 
characteristic size of an element on the main grid.

The motivation for our particular choice of Ns is given in detail in [62]. The two main reasons for using Ns = 2N + 1
are first the quality of the resolution of discontinuities on the sub-grid and second the fact that in this way the time step 
condition of the finite volume scheme on the sub-grid (CFLFV ≤ 1) matches the one of an explicit RK-DG scheme on the 
main grid (CFLDG ≤ 1/(2N +1)). The fact that the finite volume scheme on the subgrid is run with the maximum admissible 
CFL number means that the phase and amplitude errors are minimized, see [57] for a detailed analysis in the case of the 
1D linear scalar advection equation.

The nodes that define the sub-grid are simply given by the standard nodes of classical high order conforming finite 
elements on simplex meshes. On the reference element, the sub-node coordinates ξ are

ξk,l =
(

k

Ns
,

l

Ns

)
, and ξ j,k,l =

(
j

Ns
,

k

Ns
,

l

Ns

)
, (14)

2 In the Online Encyclopedia of Philosophy (http :/ /www.iep .utm .edu /apriori [85]) an article written by J.S. Baehr states that “A priori” and “a posteriori” 
refer primarily to how, or on what basis, a proposition might be known. In general terms, a proposition is knowable a priori if it is knowable independently of experience, 
while a proposition knowable a posteriori is knowable on the basis of experience. The distinction between a priori and a posteriori knowledge thus broadly corresponds 
to the distinction between empirical and nonempirical knowledge.

http://www.iep.utm.edu/apriori
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Fig. 2. Sub-grid used for the a posteriori sub-cell finite volume limiter of DG schemes on tetrahedra in 3D from P1 to P5.

for the two- and the three-dimensional case, respectively, with 0 ≤ l ≤ Ns , 0 ≤ k ≤ Ns − l and 0 ≤ j ≤ Ns − l −k. We therefore 
have Ms = (Ns + 1)(Ns + 2)/2 subnodes in 2D and Ms = (Ns + 1)(Ns + 2)(Ns + 3)/6 subnodes in 3D.

The connectivity for the sub-grid on the triangle is trivial. There are only two types of sub-triangles, the upward pointing 
sub-triangles Su

k,l and the downward pointing sub-triangles Sd
k,l , whose connectivity is given by the formulae

Su
k,l = (ξk,l, ξk+1,l, ξk,l+1), Sd

k,l = (ξk+1,l+1, ξk,l+1, ξk+1,l). (15)

In 3D, the connectivity is slightly more complex. There are again upward-pointing sub-tetrahedra Su
j,k,l and downward-

pointing sub-tetrahedra Sd
j,k,l . However, in the 3D case there arises a set of intermediate octahedron holes, each of which 

needs to be closed by four additional types of sub-tetrahedra, namely S I
j,k,l , S I I

j,k,l , S I I I
j,k,l and S I V

j,k,l , respectively. The detailed 
3D sub-grid connectivity is given by

Su
j,k,l = (ξ j,k,l, ξ j+1,k,l, ξ j,k+1,l, ξ j,k,l+1), Sd

j,k,l = (ξ j+1,k,l+1, ξ j+1,k+1,l+1, ξ j+1,k+1,l, ξ j,k+1,l+1),

S I
j,k,l = (ξ j+1,k,l, ξ j+1,k+1,l, ξ j,k+1,l, ξ j,k+1,l+1), S I I

j,k,l = (ξ j+1,k,l, ξ j+1,k,l+1, ξ j,k+1,l+1, ξ j,k,l+1),

S I I I
j,k,l = (ξ j,k+1,l, ξ j,k+1,l+1, ξ j,k,l+1, ξ j+1,k,l), S I V

j,k,l = (ξ j+1,k,l, ξ j+1,k+1,l, ξ j,k+1,l+1, ξ j+1,k,l+1). (16)

In the following, we will replace the multi-index (k, l) and ( j, k, l) again by one mono-index j, hence writing Si, j , where i
refers again to the element Ti on the main grid and j to the corresponding element number on the sub-grid. Note that the 
sub-grid connectivity is the same for each element Ti , since all sub-elements are defined on the reference element Te and 
are then simply mapped to physical coordinates via the linear mapping (5).

For alternative sub-cell divisions on simplex meshes, see [80,103] and the work by Wang et al. on spectral finite volume 
schemes [138,139,96]. However, the divisions proposed in [80,103,139,96] are rather complex and difficult to code in an 
automatic way for very high orders of accuracy, compared to the very simple set of formulae (14), (15) and (16) used here.

An alternative data representation vh(x, tn) on the sub-cells is now expressed by a set of piecewise constant sub-cell 
averages vn

i, j . Those are computed as the L2 projection of uh onto the space of piecewise constant functions on Si, j , i.e. 
they are the simple cell average of uh on Si, j given by:

vn
i, j = 1

|Si, j|
∫

Si, j

uh(x, tn)dx = 1

|Si, j|
∫

Si, j

φl(x)dx ûn
l , ∀Si, j ∈ Si , (17)

where we denote by Si = ⋃
j Si, j the set of all sub-cells inside Ti . The projection operator (17) above is in the following 

also abbreviated by vn
h =P

(
un

h

)
.

3.1.2. Sub-cell finite volume update
Using the new data representation vh(x, tn) (i.e. piecewise constant data vn

i, j on sub-cells) as initial conditions, the 
discrete solution at time tn+1, vh(x, tn+1), is re-computed by means of a robust one-step finite volume scheme on the 
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sub-grid. Any scheme from the finite volume family can be considered as long as it is sufficiently robust for the PDE system 
under consideration; 1st order FV, 2nd order TVD, 3rd/5th order WENO, etc. In this paper we adopt a second order ADER 
finite volume scheme [55], based on a second order TVD reconstruction that uses the standard Barth & Jespersen [19] slope 
limiter on unstructured meshes. For the second order scheme, the necessary time evolution based on the Cauchy–Kovalewski 
procedure is trivial. As a particular feature of our sub-grid finite volume scheme, we apply the Barth & Jespersen limiter 
also to the slope in time direction, i.e. to the time derivative that results from the Cauchy–Kovalewski procedure. However, it 
is also possible to use a very simple first order Godunov-type scheme. This is the crudest choice, but it is a very cheap and 
still viable option, as long as the number of sub-cells is sufficiently large. Some numerical results will assess this statement. 
In the following, we will denote the update of vh via the second order ADER TVD finite volume scheme on the subgrid 
simply by

vn+1
h = A

(
vn

h

)
. (18)

The initial condition and the boundary conditions needed by the operator A 
(
vn

h

)
on the boundaries ∂Ti of element Ti are 

provided similar to [62] in the following way:

vn
h(x, tn) =

{ P
(
uh(x, tn)

)
if βn

k = 0,

A
(
vh(x, tn−1)

)
if βn

k = 1,
x ∈ Tk, ∀Tk ∈ Ni, (19)

where Ni denotes only the direct Neumann neighborhood of element Ti , i.e. all elements which share a common edge (2D) 
or face (3D) with element Ti . The troubled zones indicator βn

k indicates an unlimited cell for βn
k = 0 and a troubled cell 

for βn
k = 1. More details on the computation of βn

k are given below in Section 3.2. Relation (19) states that if a cell Tk was 
unlimited at time tn , the sub-grid data are computed by the projection operator P applied to the DG polynomial uh , whereas 
for a troubled cell the sub-cell finite volume averages that have been computed inside Ti by the operator A 

(
vh(x, tn−1)

)
and which have been subsequently stored there, are directly taken as initial and boundary conditions for the operator 
A 

(
vh(x, tn)

)
. We emphasize that the alternative solution representation vn

h needs to be stored only in troubled cells, i.e. 
in cells Ti with βn

i = 1. For unlimited cells, vn
h can be computed at any time on demand by the projection operator P . 

Note that in the Cartesian case [62], a third order ADER-WENO finite volume scheme was used on the subgrid and hence 
required the entire Voronoi neighborhood Vi of element Ti , i.e. it involved all neighboring elements that have a common 
vertex with Ti . In contrast, the second order ADER TVD finite volume scheme used at the subcell level only requires the 
direct edge/face neighbors of Ti . This makes our limiter compact on the main grid and thus fits very well into the philosophy 
of DG schemes that work on the minimal stencil Ni . This is particularly true thanks to the use of fully-discrete one-step 
ADER-DG schemes on the main grid and ADER finite volume schemes on the subgrid, since they carry out one entire high 
order time step on the minimal stencil Ni , while Runge–Kutta time discretizations have a larger effective stencil per time 
step due to the necessary intermediate Runge–Kutta stages. We stress that in the ADER framework, also the limiter itself is 
only applied once per time step, and not in each Runge–Kutta stage again. Similar observations have been already made by 
Qiu et al. in [112].

To obtain a conservative scheme, we emphasize that also the neighbors of troubled cells need to be updated, taking into 
account the new fluxes that arise across element interfaces due to the finite volume scheme used in the troubled cells.

3.1.3. From sub-cells to cells
Once a robust sub-cell solution vh(x, tn+1) has been recomputed for a troubled cell Ti , the piecewise polynomial solution 

of the DG scheme on the main grid must be recovered. This is achieved by requiring that the sub-cell solution vn+1
i, j in Si, j

be equal to the L2 projection of the unknown DG polynomial uh(x, tn+1) onto Si, j∫
Si, j

uh(x, tn+1) dx =
∫

Si, j

vh(x, tn+1) dx, ∀Si, j ∈ Si . (20)

The previous equation is equivalent to solving

1

|Si, j|
∫

Si, j

φl(x)dx ûn+1
l = vn+1

i, j , ∀Si, j ∈ Si , (21)

which is a standard reconstruction problem arising in the finite volume context. Since we use Ns = 2N + 1 the resulting 
system (21) is overdetermined, and is solved via a constrained least-squares reconstruction operator [54], with the linear 
constraint∫

Ti

uh(x, tn)dx =
∫
Ti

vh(x, tn)dx (22)

that requires the reconstruction to be conservative on cell Ti . The reconstruction operator (20) and (22) is in the following 
abbreviated by un+1 = R(vn+1). It can be seen easily that by construction the reconstruction operator and the projection 
h h
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operator fulfill the condition R ◦P = I , where I is the identity operator. With these operators, the DG limiter for un+1
h in 

troubled cells formally reads

un+1
h = R

(
A(vn

h)
)
, (23)

with vn
h given by (19).

This section has described in detail the projection P and the reconstruction R operator, as well as the sub-cell based 
finite volume update A of troubled DG cells. It remains to detect those troubles cells, i.e. we need to define the troubled 
zones indicator βn

i .

3.2. Detection criteria

The appearance of possible spurious oscillations due to the effect of Gibbs phenomenon renders the candidate DG so-
lution not acceptable everywhere in the computational domain. Some cells may demand more numerical dissipation. Our 
sub-cell limiting strategy, like any limiting strategy, must design a mechanism to detect troubled/problematic/bad cells. In 
this work we construct a number of detection criteria which are devoted to promote the candidate DG solution in good 
cells to ’acceptable’, and, more important, to list the troubled cells. As already mentioned in the Multi-dimensional Optimal 
Order Detection (MOOD) paradigm [28,40,41,100], the detection of troubled cells is based on physical considerations and it 
mostly consists of checking if u∗

h(x, tn+1) verifies some physical admissibility constraints for the cell Ti . Those are dictated 
by the system of PDEs resolved and are denoted as the Physical Admissibility Detection criteria (PAD). For the hydrodynamics 
equations these constraints are mainly related to the positivity of density and pressure, whereas, for instance, in a rel-
ativistic magneto-hydrodynamics context the boundedness of the velocity by the speed of light is also mandatory [100]. 
Furthermore, the candidate solution u∗

h(x, tn+1) is explicitly checked for the occurrence of floating point errors, i.e. not-a-
number (NaN) values that may have been produced by unphysical divisions by zero or by taking roots of negative numbers. 
In FORTRAN, this is conveniently done with the ISNAN command. As a result, floating point errors are not only immediately 
found by the present a posteriori detection procedure, but thanks to the a posteriori limiting framework, they can even be 
subsequently cured in the more robust sub-cell finite volume scheme. Its ability to cure floating point errors a posteriori
is a unique feature of our DG limiter that distinguishes it from all other existing DG limiters. It is made possible because 
the sub-cell finite volume scheme will start again from physically admissible data that were saved at the previous time 
level tn . This very particular feature can also be seen as an element-by-element checkpointing and restarting of the solver. It 
is obvious that this significantly enhances the robustness and fault tolerance of the high order DG scheme proposed in this 
paper.

The second set of detection criteria deals with numerical issues, such as spurious oscillations, and is referred to as Numer-
ical Admissibility Detection criteria (NAD). NAD rely on relaxed discrete maximum principle (DMP) in the sense of polynomials 
uh(x, tn) as

min
y∈Vi

(
uh(y, tn)

)
− δ ≤ u∗

h(x, tn+1) ≤ max
y∈Vi

(
uh(y, tn)

)
+ δ ∀x ∈ Ti , (24)

where the set Vi contains the current cell Ti and its Voronoi neighborhood Vi , i.e. the cells that share at least a common 
node with Ti . The use of a DMP in the sense of polynomials has been inspired by the work on positivity preserving schemes 
of Zhang and Shu, see [144,145,79]. Eqn. (24) expresses the fact that the polynomial representing the candidate solution 
u∗

h(., tn+1) in cell Ti must remain between the minimum and the maximum values of the polynomials representing the 
solution at the previous time step uh(., tn) in the set Vi . The small number δ in (24) is a parameter used to relax the 
discrete maximum principle thus allowing for very small undershoots and overshoots, which permits to maintain a good 
accuracy when dealing with smooth extrema. The value used in [62] and adopted in this work is

δ = max

(
ε0, ε

(
max
y∈Vi

(
uh(y, tn)

)
− min

y∈Vi

(
uh(y, tn)

)))
, (25)

where we usually set ε = 10−3 and ε0 = 10−4. In other words, parameter δ defined by (25) allows the occurrence of new 
extrema the values of which do not exceed one thousandth of the local jump present at tn in the neighborhood of the 
current cell. The value ε0 is needed in the case where the jump is zero.

From a practical point of view dealing with (24), that is, inequalities defined on possibly high order polynomials, is 
complex. Instead we use the alternative data representations (17) vh(x, tn) and v∗

h(x, tn+1) on the sub-cells respectively 
corresponding to initial data un

h and candidate solution u∗
h . Consequently (24) becomes for a given cell index i

min
k∈Vi , l∈Sk

vn
k,l − δ ≤ v∗,n+1

i, j ≤ max
k∈Vi , l∈Sk

vn
k,l + δ , ∀ j ∈ Si . (26)

Analogous to (26), also the point values of the discrete solution on the sub grid are tested against the DMP. In practice, if a 
cell does not fulfill the PAD criteria, then it is flagged as problematic and must be recomputed. Next the NAD criteria are 
tested for the remaining cells which may or may not be flagged as problematic. The result of this step is a list of problematic 
cells along with a patch of surrounding neighbor cells; these form the so-called troubled cells which are re-computed with 
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the sub-cell FV scheme described previously. In our approach each conserved variable is tested for the DMP, but also other 
variables like the primitive variables or the entropy could be tested for the satisfaction of the DMP.

In this approach, physical and the numerical criteria are totally independent. Consequently the relaxation of the maxi-
mum principle never affects the positivity of the solution. More important, the detection is performed at time level tn+1, 
but using the extrema at the old time level tn , whereas classical indicators typically use information from only one time 
level, generally either tn or tn+1. This subtle but crucial difference allows for a ‘simple’ observation of problems which have 
occurred during the timestep, contrarily to classical finite volume limiting strategies that use data at time tn , and which 
must solve the more difficult problem of predicting their occurrence.

4. Numerical results

For most test cases presented in this section we have employed the ADER Discontinuous Galerkin method (10) with 
piecewise approximation polynomials of degree N = 4 or N = 5, referred to as ADER-DG-PN in the following. This unlimited 
DG scheme is then supplemented with the new a posteriori sub-cell limiter (SCL) on unstructured simplex meshes proposed 
in this paper. If not stated otherwise, the scheme acting at the sub-cell level is always a second order TVD finite volume 
scheme with Barth and Jespersen [19] slope limiter. In one case, we also use a simple first order Godunov-type scheme, in 
order to assess its performance against the more sophisticated second order TVD scheme on the sub-grid level. By default 
the numerical flux function and the path-conservative jump term used in most of the simulations is the simple Rusanov 
scheme (11).

Since each variable inside a computational cell is represented by a polynomial of degree N > 0, we plot the numerical 
solution uh(x, tn) as point values evaluated on a sub-grid made of Np = N + 1 sub-points per edge, if the cell is unlimited.3

The topology of the visualization subgrid is the same as the one used for the subcell limiter, depicted in Figs. 1 and 2, but 
with less sampling points. For troubled cells, we plot the alternative representation of the solution vh(x, tn) on the sub-grid 
used for the limiter with Ns = 2N + 1. For a more sophisticated alternative visualization technique of piecewise polynomial 
data see [21].

We systematically represent the cells detected as troubled in red, while valid cells are colored in blue when the limiter 
is shown.

For 1D cuts we usually take equidistant samples at sub-grid level of the solution representations uh(x, tn) and vh(x, tn), 
respectively. This is important to verify that the subscale structure of the DG polynomials really represents a physically valid 
state within one large cell. As such a limiter for the DG method should be able to maintain smooth solutions, and, more 
importantly, keep the ability of the DG scheme to reproduce discontinuous profiles at shock waves and steep fronts without 
spurious oscillations. This must hold for the entire discrete solution uh(x, tn), and not only for its mean values on the main 
grid.

4.1. Euler equations of compressible gas dynamics

In this section we solve the Euler equations of compressible gas dynamics

∂

∂t

⎛
⎝ ρ

ρv
ρE

⎞
⎠ + ∇ ·

⎛
⎝ ρv

ρv ⊗ v + p I
v(ρE + p)

⎞
⎠ = 0, (27)

with the ideal gas EOS

p = (γ − 1)

(
ρE − 1

2
ρv2

)
. (28)

Here, ρ denotes the fluid density, v = (u, v, w) is the velocity vector, p is the fluid pressure, I denotes the identity matrix 
and ρE is the total energy density. The PAD criteria, which depend on the underlying physics, that is the system of PDEs 
solved, are the positivity of density and pressure for the Euler equations.

4.1.1. Isentropic vortex in motion
The isentropic vortex problem was introduced in [7,78] to test the accuracy of numerical methods, since the exact 

solution is smooth and has an analytical expression. The computational domain is the square � = [0; L] × [0; L] of length 
L = 10. The ambient base flow far from the vortex is characterized by ρ∞ = 1.0, u∞ = 1.0, v∞ = 1.0, w∞ = 0.0, p∞ = 1.0, 
with a normalized ambient temperature T ∗∞ = 1.0. A ratio of specific heats of γ = 1.4 is considered. A vortex is centered 
at (xvortex, yvortex) = (5, 5) and is added as a perturbation to the ambient gas at the initial time t = 0 with u = u∞ + δu, 
v = v∞ + δv , w = w∞ , T ∗ = T ∗∞ + δT ∗ where

3 Note that for a DG-P5 scheme the number of degrees of freedom per cell is 56 in 3D, 21 in 2D, and 6 in 1D. The size of the sub-grid used for the 
visualization of uh(x, tn) in unlimited cells must therefore also adapt to these numbers.
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Table 1
L1, L2 and L∞ errors and convergence rates for the 2D isentropic vortex problem for the ADER-DG-PN scheme with sub-cell limiter 
for variable ρ at a final time of t = 10.

2D isentropic vortex problem – ADER-DG-PN + FV SCL

Nx L1 error L2 error L∞ error L1 order L2 order L∞ order Theor. d.o.f.

DG-P2 24 2.3877E–01 6.4365E–02 4.7932E–02 – – – 3 7788
32 1.2517E–02 2.8209E–02 2.6350E–02 2.24 2.87 2.08 13752
64 1.1262E–02 1.6989E–03 2.2497E–03 3.47 4.05 3.55 55152

128 3.6726E–04 8.1964E–05 2.2295E–04 4.94 4.37 3.33 221568

DG-P3 24 6.9065E–03 9.9366E–04 1.1301E–03 – – – 4 12980
32 2.1032E–03 3.0299E–04 3.0041E–04 4.13 4.13 4.61 22920
64 4.4259E–04 6.7345E–05 6.9601E–05 3.84 3.71 3.61 91920

128 1.5027E–04 2.5743E–05 2.9970E–05 3.81 3.56 3.33 369280

DG-P4 24 1.0320E–03 1.4885E–04 1.8733E–04 – – – 5 19470
32 2.7838E–04 3.9632E–05 3.8471E–05 4.55 4.60 5.50 34380
64 4.1103E–05 6.2085E–06 1.0498E–05 4.72 4.57 3.20 137880

128 1.0079E–05 1.5731E–06 2.2113E–06 4.79 4.65 4.12 553920

DG-P5 12 8.6717E–03 1.2917E–03 1.7776E–03 – – – 6 6720
16 1.4106E–03 2.0843E–04 2.3721E–04 6.31 6.34 7.00 12180
24 1.3297E–04 1.9177E–05 2.3855E–05 5.82 5.88 5.66 27258
32 2.2986E–05 3.1365E–06 3.7173E–06 6.10 6.29 6.46 48132

DG-P6 8 1.8686E–01 3.3608E–02 2.9686E–02 – – – 7 4200
12 7.2299E–03 1.0920E–03 1.1755E–03 8.02 8.45 7.96 8960
16 3.6699E–04 5.4813E–05 7.3540E–05 10.36 10.40 9.63 16240
24 2.0292E–05 2.9712E–06 4.4511E–06 7.14 7.19 6.92 36344

δu = −y′ β

2π
exp

(
1 − r2

2

)
, δv = x′ β

2π
exp

(
1 − r2

2

)
, δT ∗ = − (γ − 1)β

8γπ2
exp

(
1 − r2

)
,

with r =
√

x′2 + y′2 and x′ = x − xvortex, y′ = y − yvortex. The vortex strength is β = 5.0 and the initial density is defined by

ρ = ρ∞
(

T ∗

T ∗∞

) 1
γ −1 =

(
1 − (γ − 1)β

8γπ2
exp

(
1 − r2

)) 1
γ −1

. (29)

Periodic boundary conditions are prescribed everywhere, so that at the final time tfinal = 10 the vortex is back to its original 
position.

This problem has a smooth solution and thus must be solved with effective high-order of accuracy by any high order 
scheme. Consequently, we compute the discrete L1, L2 and L∞ error norms between the exact solution and the numerical 
solution uh for the density variable on a sequence of successively refined triangular grids. This allows us to compute the 
effective numerical order of accuracy of the schemes which are tested. The unstructured meshes are constructed so that the 
edge length of the triangles on the boundary of � is h = L/Nx , starting from Nx = 8 (coarse grid) up to Nx = 128 (fine grid). 
In Table 1 we report the obtained error norms and the corresponding rates of convergence for ADER-DG-PN schemes with 
N varying from 2 to 6. We would like to emphasize that the a posteriori sub-cell limiter is active for all schemes, but, as 
expected, the PAD and NAD criteria are either not detecting any troubled cells, or only extremely few, as the underlying fluid 
flow is smooth and if the mesh is fine enough. Consequently the DG schemes are essentially run in their unlimited form 
and the presence of the a posteriori sub-cell limiter does not destroy the formal order of convergence of the underlying DG 
scheme if the order is high enough and if the mesh is sufficiently refined. To quantify this statement, we run the sixth order 
ADER-DG-P5 scheme three times: once with the limiter completely switched off, once with the limiter active according 
to the PAD and NAD criteria specified above, and once with the limiter switched on artificially for all cells. The resulting 
convergence rates are shown in Table 2. One can observe that the error norms with active limiter and without limiter are 
exactly the same, while the convergence rate clearly reduces to between first and second order of accuracy in the case if 
the limiter is activated for all cells, as expected.

4.1.2. Steady 2D flow around a circular cylinder
In this section, we simulate the steady flow over a circular cylinder. This test case has been used, for example, by Bassi 

& Rebay [20] and by Krivodonova & Berger [93] in order to assess the performance of high order discontinuous Galerkin 
finite element schemes in the presence of curved solid wall boundaries. The computational domain of our setup is the 
square � = [−5, 5]2, in the center of which there is a circular cylinder of radius R = 1. The exact solution for the radial and 
tangential velocity components vr and vφ as well as the pressure field p of the underlying potential flow problem (which 
is valid only in the limit M∞ → 0), is given in polar coordinates (r, φ) by:



M. Dumbser, R. Loubère / Journal of Computational Physics 319 (2016) 163–199 175
Table 2
L1, L2 and L∞ errors and convergence rates for the 2D isentropic vortex problem for the ADER-DG-P5

scheme with sub-cell limiter switched off, with a posteriori subcell limiter as described in this paper, 
and with limiter artificially activated for all cells. Error norms are shown for variable ρ at final time 10.

2D isentropic vortex problem – ADER-DG-P5

Nx L1 error L2 error L∞ error L1 order L2 order L∞ order

ADER-DG-P5 (unlimited)
12 8.6717E–03 1.2917E–03 1.7776E–03 – – –
16 1.4106E–03 2.0843E–04 2.3721E–04 6.31 6.34 7.00
24 1.3297E–04 1.9177E–05 2.3855E–05 5.82 5.88 5.66
32 2.2986E–05 3.1365E–06 3.7173E–06 6.10 6.29 6.46

ADER-DG-P5 (a posteriori subcell limiter)
12 8.6717E–03 1.2917E–03 1.7776E–03 – – –
16 1.4106E–03 2.0843E–04 2.3721E–04 6.31 6.34 7.00
24 1.3297E–04 1.9177E–05 2.3855E–05 5.82 5.88 5.66
32 2.2986E–05 3.1365E–06 3.7173E–06 6.10 6.29 6.46

ADER-DG-P5 (all cells limited)
12 3.7013E–02 8.3822E–03 6.6955E–03
16 2.3559E–02 5.5033E–03 4.6471E–03 1.57 1.46 1.27
24 1.4280E–02 3.3287E–03 2.7832E–03 1.23 1.24 1.26
32 1.0185E–02 2.3863E–03 1.7884E–03 1.17 1.16 1.54

Table 3
L2 norms of the relative entropy errors and associated convergence rates with respect to the 
coarsest grid for the 2D flow over a circular cylinder at time t = 100 for ADER-DG-P2 and 
ADER-DG-P4 schemes.

ADER-DG-P2 h = 1 h = 1/2 h = 1/4 h = 1/10

L2 norm 1.4807E–01 2.4506E–03 4.9689E–04 3.7077E–05
L2 order 5.92 4.11 3.60

ADER-DG-P4 h = 3/4 h = 1/2 h = 1/3 h = 1/4

L2 norm 6.9919E–02 2.5057E–04 8.5796E–05 4.4128E–05
L2 order 13.89 8.27 6.71

vr(r, φ) = M∞
√

γ p∞
ρ∞

(
1 − R2

r2

)
cosφ, vφ(r, φ) = −M∞

√
γ p∞
ρ∞

(
1 + R2

r2

)
sinφ, (30)

p (r, θ) = p∞
(

1 + 1

2
γ M2∞

)
− 1

2
ρ∞

(
v2

r + v2
θ

)
. (31)

For our test case, we use a free stream Mach number of M∞ = 0.38, as suggested in [20,93], a free stream density and 
pressure of ρ∞ = γ and p∞ = 1, respectively, and the ratio of specific heats is chosen as γ = 1.4. The incoming flow is 
parallel to the x-axis. In this subsonic flow regime the potential flow is still a reasonable approximation of the flow field 
and for isentropic compressible flows, the density can be computed as

ρ = ρ∞
(

p

p∞

)1/γ

. (32)

In our simulations, we use the exact solution above as initial and boundary conditions and use an ADER-DG-P2 scheme 
on a sequence of successively refined meshes of characteristic size h = 1, h = 1/2, h = 1/4 and h = 1/10, respectively. 
Furthermore, the same test is run with an ADER-DG-P4 method on a sequence of meshes with size h = 3/4, h = 1/2, 
h = 1/3 and h = 1/4, respectively. For this test we set ε = ε0 = 10−2. In order to discretize the curved boundaries, we 
use high order isoparametric elements, where the geometry is represented by the same polynomial degree as the discrete 
solution for the PDE, as suggested in [20]. The resulting relative entropy errors

εS = p

p∞

(
ρ∞
ρ

)γ

− 1 (33)

and the associated convergence rates are reported in Table 3. In Fig. 3 the Mach isocontour lines are shown, together with 
the streamlines and a sketch of the unstructured mesh around the cylinder. During the entire simulation, no element has 
been flagged as troubled.

4.1.3. Sod and Lax shock tube
Here, we run the planar Sod and the classical Lax shock tube problems on a 2D and 3D unstructured mesh. These 

problems are used to assess the ability of the numerical method to capture one-dimensional simple waves on coarse un-



176 M. Dumbser, R. Loubère / Journal of Computational Physics 319 (2016) 163–199
Fig. 3. Steady 2D flow around a circular cylinder with free stream Mach number M∞ = 0.38 at a final time of t = 100. Mach isocontours and streamlines 
(left). A zoom into the unstructured triangular mesh is shown on the right. Unlimited cells are highlighted in blue, while limited cells are completely absent 
(right). Isoparametric ADER-DG-P2 scheme on a mesh of characteristic size h = 1/4 (top) and isoparametric ADER-DG-P4 scheme on a mesh of characteristic 
size h = 1/2 (bottom). Only elements adjacent to the cylinder wall are curved. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

Table 4
Initial left and right states for the density ρ , velocity u and the pressure p for the Sod and Lax shock 
tube problems. Final simulation times tfinal are also provided.

Problem Left state Right state Final time

ρL uL pL ρR uR pR tfinal

Sod 1.0 0.0 1.0 0.125 0.0 0.1 0.2
Lax 0.445 0.698 3.528 0.5 0.0 0.571 0.14

structured meshes. Indeed, the size of the main grid cells is not the characteristic length scale on which one wishes to 
capture the shock wave, but one rather desires to capture the shock on a scale of the order h/(N + 1), which corresponds to 
the effective resolution of a high order DG scheme. The proposed a posteriori sub-cell FV limiter spreads such simple waves 
only over one or two sub-cells, thanks to the use of a high resolution shock capturing TVD scheme at the sub-grid level.

The initial conditions are listed in Table 4. The other velocity components are initialized with 0. The ratio of specific 
heats is γ = 1.4 and for both problems the initial discontinuity is located in x = 0. The exact solution for these one-
dimensional Riemann problems can be found in [133]. For the two-dimensional setup, the computational domain is given 
by � = [−0.5; 0.5] × [−0.05; 0.05] and is paved with an unstructured mesh with characteristic mesh size of h = 1/100 and 
composed of 2226 triangles, see Fig. 5. For the three-dimensional setup, the domain is � = [−0.5; 0.5] × [−0.05; 0.05]2, 
while the corresponding tetrahedral mesh with characteristic grid size h = 1/100 consists of 67711 elements. In the 2D 
case, an ADER-DG-P5 scheme has been used, while we use an ADER-DG-P4 scheme for the 3D case. In all cases, the second 
order a posteriori sub-cell finite volume limiter is employed. Dirichlet boundary conditions are imposed in x-direction, while 
periodic boundaries are applied in y and z direction, respectively.

In Fig. 4 the density, the x component of the velocity and pressure are presented for the 2D case at the final time for 
both problems. The 3D results for the Sod shock tube problem are presented in Fig. 6. In all cases we can observe that the 
numerical results obtained for the shock waves and the contact discontinuities are extremely sharp. In the 3D simulations 
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Fig. 4. Sod shock tube problem (left panels) at tfinal = 0.2 and Lax problem (right panels) at tfinal = 0.14 solved on a 2D triangular mesh with characteristic 
mesh spacing h = 1/100. An ADER-DG-P5 scheme supplemented with second order a posteriori sub-cell finite volume limiter has been used – 1D cut on 
200 equidistant sample points through the numerical solution along the x-axis (symbols) vs exact solution for density (top), axial velocity u (middle) and 
pressure (bottom).

one can observe some spurious oscillations in the velocity, which is a derived quantity and not a conserved variable. In 
order to reduce these oscillations, one could consider to check the DMP also on the primitive variables.

Also from Figs. 5 and 6 we find that the a posteriori limiter is acting at the shock waves, where it is expected, whereas 
the great majority of the remaining part of the computational domain is essentially simulated with the unlimited high 
order ADER-DG scheme. Due to the high resolution shock capturing TVD scheme acting as sub-cell limiter, the shock wave 
is truly captured on a sub-grid scale, and is able to move across a coarse cell on the main grid without generating spurious 
numerical oscillations. Note that the limiter does not act on the contact wave any more for large times, since the contact 
discontinuity is a linearly degenerate field, which can be correctly propagated by an unlimited DG scheme once it has been 
sufficiently smeared by the subcell limiter in the initial phase of the Riemann problem. This is an important feature of our 
a posteriori detector and limiter and has already been observed in [62,143] in the Cartesian grid case.

In order to assess the influence of the choice of the finite volume scheme used on the sub-grid level, in Fig. 5 a direct 
comparison of the numerical results obtained for the 2D case with a first order and with a second order sub-grid finite 
volume scheme is shown. At least for these two test problems, the numerical results seem to indicate that the use of a very 
simple first order finite volume scheme on the sub-grid level is possible and leads only to a rather small increase of the 
numerical diffusion at shocks and contact discontinuities.
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Fig. 5. Sod problem (left column) at t = 0.2 and Lax problem (right column) at t = 0.14 solved on a triangular mesh with characteristic mesh size h = 1/100. 
An ADER-DG-P5 scheme with a posteriori sub-cell finite volume limiter has been used. Troubled cells are highlighted in red, while unlimited cells are shown 
in blue. The results in the top row have been obtained with a second order TVD scheme on the sub-grid level, while for the results depicted in the middle 
row, only a first order scheme has been employed at the sub-grid level. A direct comparison via a 1D cut along the x-axis is provided in the bottom row. 
The results indicate that the first order sub-grid FV scheme yields only slightly more diffusive results than those obtained with the second order sub-grid 
scheme. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.1.4. Double Mach reflection problem
Let us consider the 2D double Mach reflection problem of a strong shock, first proposed by Woodward and Colella in 

[140]. This test problem involves a Mach 10 shock in a perfect gas with γ = 1.4 which hits a ramp at 30◦ with the x-axis. 
Using Rankine–Hugoniot conditions we can deduce the pre- and post-shock initial conditions

(ρ, u, v, p)(x, t = 0) =
{

1
γ (8.0,8.25,0.0,116.5), if x < 0.0,

(1.0,0.0,0.0, 1
γ ), if x ≥ 0.0.

(34)

Reflecting wall boundary conditions are prescribed on the bottom and on the top of the domain, while the exact solution 
according to the Rankine–Hugoniot relations is imposed on the left and on the right boundary.

The computational domain is depicted in Fig. 7 and the unstructured mesh is built using a characteristic mesh size 
of h = 1/200, leading to a total of 359016 triangular elements. This problem is solved with an ADER-DG-P4 scheme, in 
combination with the a posteriori sub-cell finite volume limiter. The computational results are depicted at time t = 0.2 in 
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Fig. 6. Sod shock tube problem at tfinal = 0.2 computed on a 3D tetrahedral mesh with mesh spacing h = 1/100. The mesh and the troubled cells highlighted 
in red are depicted in the top left panel. An ADER-DG-P4 scheme supplemented with second order a posteriori TVD sub-cell finite volume limiter has been 
used – 1D cut on 200 equidistant sample points through the numerical solution along the x-axis (symbols) vs exact solution for density, axial velocity u
and pressure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7, where the density contour lines as well as the distribution of the troubled cells are plotted. We observe that the 
limiter is mostly acting at the shock waves, apart from some spurious activations in the post-shock regions of the incident 
and the reflected shock wave. To improve this situation, one could consider the recent boxplot outlier approach forwarded 
by Vuik and Ryan in [137], instead of the simple discrete maximum principle (DMP) used in this paper.

4.1.5. Forward facing step
Next we consider the so called forward facing step (FFS) problem, also proposed by Woodward and Colella in [140]. It is a 

Mach 3 wind tunnel with a step. The initial condition consists in a uniform gas with density ρ = γ , pressure p = 1, velocity 
components u = 3, v = 0 and γ = 1.4. The computational domain is given by � = [0; 3] ×[0; 1]\[0.6; 3] ×[0; 0.2]. Reflective 
boundary conditions are applied on the upper and lower boundary of the domain, whereas inflow and outflow boundary 
conditions are applied at the entrance and the exit. The solution of this problem involves shock waves interacting with the 
wall boundaries. The unstructured mesh consists of 56972 triangular elements of size h = 1/100 and the simulation is run 
up to a final time of t = 4. In Fig. 8 we present the results obtained with an ADER-DG-P4 scheme with a posteriori second 
order sub-cell finite volume limiter. For this test problem we can observe that the shock waves are clearly identified, while 
the shear layer in the upper part of the domain is essentially unlimited and starts to roll up already on this rather coarse 
mesh.

4.1.6. 2D and 3D explosion problems
Here, we consider a cylindrical as well as a spherical explosion problem in 2D and 3D, respectively. The computational 

domain is � = {x : ‖x‖ ≤ R}, i.e. the circle (sphere) of radius R = 1. In the 3D case, only the half-sphere with x ≥ 0 and 
symmetry boundary condition at x = 0 is considered, while the 2D simulation considers the entire circle. The computational 
setup represents a cylindrical/spherical extension of the classical Sod problem [127], with initial conditions given by

(
ρ, u, v, w, p

) =
{ (

1,0,0,0,1
)

for ‖x‖ ≤ Rd ,(
0.125,0,0,0,0.1

)
for ‖x‖ > Rd ,

(35)

where Rd = 0.5 denotes the radius of the initial discontinuity. An ideal-gas equation of state with adiabatic index γ = 1.4 is 
considered. The reference solution can be obtained solving an equivalent one dimensional PDE in the radial direction with 
geometric source terms by using a standard finite volume scheme on a very fine mesh, see [133] for details. An ADER-DG-P5
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Fig. 7. Double Mach reflection problem obtained with the ADER-DG P4 scheme and a posteriori sub-cell finite volume limiter at time t = 0.2 on a grid with 
mesh spacing h = 1/200. Top: equidistant density contour lines from 1.5 to 22.5 (contour spacing �ρ = 0.5). Bottom: troubled zones indicator. Left: total 
view of the numerical solution. Right: zoom around the incident and reflected shocks.

scheme combined with the second order a posteriori sub-cell finite volume limiter has been employed. In the 2D case the 
computational mesh is composed of 68324 triangles with characteristic mesh spacing h = 1/100, while the 3D mesh is very 
coarse and consists only of 877298 tetrahedra with characteristic mesh spacing h = 1/40. In the 3D case, this leads to a 
total number of 17,545,960 spatial degrees of freedom per variable of the PDE system.

Fig. 9 shows the profiles of the density, velocity, pressure and internal energy along the x- axis at time t = 0.2, for the 
two-dimensional case, together with the reference solution. In Fig. 9 we also show a plot of the troubled cells, which are 
essentially concentrated at the circular shock front, while the intermediate circular contact wave results are unlimited at 
time t = 0.2. Again, this is due to the fact that the contact wave has already undergone some limiting, and hence smearing, 
during the initial phase of the explosion problem, and can subsequently be transported as a smooth feature by the unlimited 
ADER-DG scheme, without the production of spurious oscillations. From the zoom depicted on the top right of Fig. 9 one can 
clearly observe that the shock wave is properly resolved within one single element on the main grid. The circular structure 
of the shock front is furthermore well preserved without noticeable mesh imprinting. The obtained results therefore show 
that our a posteriori sub-cell limiter is able to maintain the sub-cell resolution capabilities of the DG method, while providing 
robust and non-oscillatory results at shock waves. The numerical results for the three-dimensional case (obtained with an 
ADER-DG-P4 scheme) are depicted in Fig. 10, from which the same conclusions as in the 2D case can be drawn.

In order to assess the computational overhead of our new limiter, we run a mild version of the 2D explosion problem 
that can be successfully computed also with an unlimited version of the ADER-DG method. The inner state is given by 
ρ = p = 1, while the outer state is ρ = p = 0.5. The velocity is v = 0 everywhere. The problem is run on the same mesh as 
before, using an ADER-DG P3 scheme. The first simulation is performed with the unlimited version of the scheme and the 
second one with the a posteriori subcell limiter. Compared to the unlimited scheme, the total CPU time was increased by 
50% when the limiter was active.

4.1.7. Mach 3 flow over a sphere
As a last example for the compressible Euler equations, we solve the problem of a Mach 3 flow over a sphere. The 

computational domain consists of an inner sphere of radius R = 0.5, at which no-slip wall boundary conditions are applied, 
and an outer sphere or radius R = 1, at the left of which a uniform flow of density ρ = γ , v = (3, 0, 0) and p = 1 is 
imposed. The right outflow boundary is obtained by subtracting a sphere of radius R = 3, centered in x = (3, 0, 0) from the 
previous configuration. The computational grid is composed of 341583 tetrahedral elements of characteristic mesh spacing 
h = 0.033. A sketch of the 3D mesh, together with the troubled cells highlighted in red is plotted in the top left panel of 
Fig. 11. Furthermore, a cut through the numerical solution in the plane z = 0 is drawn, where the distribution of troubled 
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Fig. 8. Forward facing step problem obtained with the ADER-DG P4 scheme and a posteriori sub-cell finite volume limiter at time t = 4.0 on a grid with 
mesh spacing h = 1/100. Top: density contour lines. Bottom: troubled zones highlighted in red. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

cells, as well as the contour levels for density and pressure are drawn. We can observe a very sharp resolution of the shock 
wave.

4.2. The ideal magneto-hydrodynamics equations (MHD)

In this section we present the results obtained for the classical ideal MHD system that reads

∂

∂t

⎛
⎜⎜⎜⎝

ρ
ρv
ρE
B
ψ

⎞
⎟⎟⎟⎠ + ∇ ·

⎛
⎜⎜⎜⎜⎜⎜⎝

ρv

ρv ⊗ v +
(

p + 1
8π B2

)
I − 1

4π B ⊗ B[(
ρE + p + 1

8π B2
)

I − 1
4π B ⊗ B

]
· v

B ⊗ v − v ⊗ B + ψI
c2

hB

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0, (36)

where again the ideal gas EOS is used:

p = (γ − 1)

(
ρE − 1

2
ρv2 − 1

8π
B2

)
. (37)

Like in the case of the compressible Euler equations, ρ denotes the fluid density, v is the velocity vector, p is the fluid 
pressure and ρE is the total energy density; the magnetic field is denoted by B. The PDE system (36) is the so-called 
augmented MHD system, which arises from the hyperbolic divergence-cleaning approach of Dedner et al. [38] and Kemm 
[91] that is needed to satisfy the constraint ∇ · B = 0 approximately at the discrete level. For a detailed explanation of the 
origin of such divergence errors in the context of resonant hyperbolic PDE systems, see the recent paper by Kemm [90]. 
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Fig. 9. Cylindrical explosion problem in 2D obtained with the ADER-DG P5 scheme and a posteriori sub-cell finite volume limiter at time t = 0.2 on a grid 
with mesh spacing h = 1/100. Top row left: 3D view of the density, computational grid and troubled cells in red. Top row right: zoom into the circular 
shock front. One can clearly see that the shock is well resolved within a single grid cell. Middle and bottom rows: 1D cut through the numerical solution 
for density, velocity, pressure and internal energy along the x-axis. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

The divergence cleaning is achieved by the scalar ψ , which transports divergence errors with the artificial speed ch , so that 
they cannot accumulate locally. For alternative exactly divergence-free schemes for the MHD equations see, for example, 
[8,5,67,68,9,16,13]. For this system of PDEs the PAD criteria are the positivity of density and pressure which is not always 
obvious to maintain due to the presence of magnetic pressure in (37).

4.2.1. Smooth MHD vortex in 3D
For the numerical convergence studies in 3D, we solve a 3D version of the vortex test problem proposed by Bal-

sara in [5]. The computational domain is given by the box � = [0;12]2 × [0; 5] and six periodic boundary conditions 
are imposed on the domain boundaries. The initial condition is given in terms of the vector of primitive variables V =
(ρ, u, v, w, p, Bx, B y, Bz, �)T as

V(x,0) = (1,1 + δu,1 + δv,0,1 + δp, δBx, δB y, δBz,0)T , (38)

with δv = (δu, δv, δw)T , δB = (δBx, δB y, δBz)
T and

δv = κ
eq(1−r2)ez × r δB = μ

eq(1−r2)ez × r, δp = 1
3

(
μ2(1 − 2qr2) − 4κ2π

)
e2q(1−r2). (39)
2π 2π 64qπ
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Fig. 10. Spherical explosion problem at time t = 0.2 obtained with an ADER-DG P3 scheme and second order sub-cell limiter on an unstructured tetrahedral 
mesh with characteristic grid spacing h = 1/40. Top left: visualization of the mesh and troubled cells in red. From top right to bottom right: 1D cuts along 
the x-axis for the density, radial velocity and pressure and comparison with the reference solution. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Table 5
L1, L2 and L∞ errors and convergence rates for the smooth MHD vortex problem in 3D for the ADER-DG-PN scheme with sub-cell 
limiter for variable Bx at time t = 1.

Smooth MHD vortex in 3D – ADER-DG-PN + FV SCL

Nx L1 error L2 error L∞ error L1 order L2 order L∞ order Theor. d.o.f.

DG-P2 20 1.0569E–01 1.2108E–02 1.3865E–02 – – – 3 196,750
30 2.6567E–02 3.1828E–03 5.5850E–03 3.41 3.30 2.24 815,500
40 1.2517E–02 1.4869E–03 1.7923E–03 2.62 2.65 3.95 1,788,400
50 5.7136E–03 6.8001E–04 8.1444E–04 3.51 3.51 3.53 4,016,140

DG-P3 20 9.6921E–03 1.2163E–03 3.0772E–03 – – – 4 393,500
30 1.4881E–03 1.6858E–04 3.4896E–04 4.62 4.87 5.37 1,631,000
40 6.3081E–04 6.2895E–05 1.5494E–04 2.98 3.43 2.82 3,576,800
50 3.1697E–04 2.5875E–05 7.8888E–05 3.08 3.98 3.03 8,032,280

DG-P4 12 8.2485E–03 1.0673E–03 2.7461E–03 – – – 5 166,320
20 1.0056E–03 1.1289E–04 3.5442E–04 4.12 4.40 4.01 688,625
30 2.3827E–04 1.8876E–05 7.9228E–05 3.55 4.41 3.69 2,854,250

We have ez = (0, 0, 1), r = (x − 5, y − 5, 0) and r = ‖r‖ = √
(x − 5)2 + (y − 5)2. The divergence cleaning speed is chosen 

as ch = 3. The other parameters are q = 1
2 , κ = 1 and μ = √

4π , according to [5]. Simulations are run until the final time 
t = 1, where the exact solution is given by the initial condition shifted by (1, 1) along the x and y axis, respectively. 
A representative tetrahedral mesh is depicted in Fig. 12, together with the pressure and B y contour surfaces. The obtained 
convergence rates are listed in Table 5, showing that the ADER-DG method with a posteriori subcell limiter achieves its 
designed order of accuracy well also on three-dimensional unstructured tetrahedral meshes.

4.2.2. 3D MHD field loop
This problem consists of a cylindrical loop of magnetic field with a very low magnetic pressure compared to the gas 

pressure. The magnetic pressure is constant inside the loop and falls abruptly to zero at the loop’s boundary which is 
initially set up at a radius of 0.3 units. The details of the set-up are described in Gardiner and Stone [67] and are not 
repeated here. The computational domain is given by the cube � = [−0.5; 0.5]3, where six periodic boundary conditions 
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Fig. 11. Mach 3 flow over a sphere at time t = 1.0 obtained with an ADER-DG P3 scheme and second order finite volume sub-cell limiter. Top left: 
visualization of the 3D mesh. From top right to bottom right: 2D cuts in the x–y plane showing the troubled cells, the density and the pressure distribution. 
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 12. Smooth MHD vortex problem at time t = 1.0 obtained with an ADER-DG P3 scheme and second order sub-cell finite volume limiter on an 
unstructured tetrahedral mesh with h = 12/30. Left: pressure contour surfaces. Right: contour surfaces of the magnetic field component B y .

have been imposed. The divergence cleaning speed is set to ch = 3, and the problem is run to a final time of t = 1.0 with 
a fourth order ADER-DG-P4 scheme and second order TVD sub-cell finite volume limiter. At the final time, the loop has 
been advected for one period, so that it must return to its initial location. The characteristic mesh size was h = 1/25, 
leading to a total number of 132745 tetrahedral elements, see also Fig. 13 for a view of the unstructured mesh and for a 
contour plot of the magnitude of the magnetic field. In the case of an unstructured tetrahedral mesh, the field loop is in 
general not aligned with the element faces, hence it is not necessary to tilt the 3D field loop as suggested in [68] for the 
case of a simple Cartesian grid. A two-dimensional cut through our computational results is presented in the right panel 
of Fig. 13. We find that the isotropic shape of the field loop is perfectly preserved after one periodic passage through the 
computational domain. Similar results have been obtained very recently with an exactly divergence-free ADER-WENO finite 
volume scheme in [13], but on a much finer mesh. We find that for this problem, the sub-cell limiter is activated only in 
the beginning of the simulation. Once the solution (which consists in the propagation of a linearly degenerate wave field) 
has been sufficiently smeared, it is propagated with the unlimited scheme for the rest of the simulation.
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Fig. 13. 3D MHD field loop problem after one advection period at time t = 1.0 obtained with an ADER-DG P4 scheme and second order sub-cell limiter 
on a coarse unstructured tetrahedral mesh with h = 1/25. Left: contour surfaces of the magnetic field strength. Right: contour lines of the magnetic field 
strength within the 2D cut plane z = 0.

4.2.3. Orszag–Tang vortex system
We now consider the well-known vortex system of Orszag and Tang [108], see also [111] and [37] for more details on 

the physics of the problem. Let us recall the setup of the problem: the computational domain is � = [0;2π ]2, the same 
parameters of the computation of Jiang and Wu [82] are used, however, scaling the magnetic field by 

√
4π due to the 

different normalization of the governing equations. The initial condition of the problem is given by(
ρ, u, v, p, Bx, B y

) =
(
γ 2,− sin(y), sin(x), γ ,−√

4π sin(y),
√

4π sin(2x)
)

, (40)

with w = Bz = 0 and γ = 5
3 . The final time is tfinal = 3.0 and the divergence cleaning speed is set to ch = 2.0, see [47]. We 

use an ADER-DG P4 scheme with second order a posteriori finite volume sub-cell limiter. The unstructured triangular mesh 
consists of 90126 elements with characteristic mesh spacing h = 2π

200 . In Fig. 14 the results are reported at different output 
times t = 0.5, 2.0 and 3.0. The pressure contour levels are plotted on the left, while the troubled zones are highlighted in 
red on the right. Unlimited cells are by convention shown in blue. On can observe that the limiter is mainly activated only 
when and where the shock waves start to form, while in the rest of the domain the unlimited DG scheme is used. The 
computational results agree qualitatively well with those presented elsewhere in the literature, see e.g. [82,47,61,100,143,
13].

4.2.4. MHD rotor problem
This last MHD test case is the classical MHD rotor problem proposed by Balsara and Spicer in [8]. It consists of a 

rapidly rotating fluid of high density embedded in a fluid at rest with low density. Both fluids are subject to an initially 
constant magnetic field. The rotor produces torsional Alfvén waves that are launched into the outer fluid at rest, resulting 
in a decrease of angular momentum of the spinning rotor. The computational domain � is a circle with radius r = 1

2 , the 
density inside the rotor is ρ = 10 for 0 ≤ r ≤ 0.1 while the density of the ambient fluid at rest is set to ρ = 1. The rotor 
has an angular velocity of ω = 10. The pressure is p = 1 and the magnetic field vector is set to B = (2.5, 0, 0)T in the entire 
domain. As proposed by Balsara and Spicer we apply a linear taper to the velocity and to the density in the range from 
0.1 ≤ r ≤ 0.105 so that density and velocity match those of the ambient fluid at rest at a radius of r = 0.105. The speed for 
the hyperbolic divergence cleaning is set to ch = 2 and γ = 1.4 is used. Transmissive boundary conditions are applied at the 
outer boundaries of the disk. We use an unstructured triangular mesh composed of 71046 triangles of characteristic size 
h = 1/200. The computational results obtained with the ADER-DG-P4 scheme supplemented with second order a posteriori
sub-cell finite volume limiter are displayed in Fig. 15. The results for the logarithm of the density, the pressure, the flow 
Mach number and for the magnetic pressure (|B|2/(8π)) are presented. We also show the troubled cells in red, while 
unlimited cells are depicted in blue.

Overall, we find a good agreement of our computational results with those obtained by standard WENO finite volume 
schemes published previously in the literature, see e.g. [47,61,100,143,13]. Further research will concern the extension of the 
present DG scheme to exactly divergence-free MHD based on the genuinely multi-dimensional Riemann solvers forwarded 
in [11,10,15,12,14] and using the novel constrained L2 projection technique recently proposed in [13] for the finite volume 
context.

4.3. The seven equation Baer–Nunziato model

As last prototype PDE system of this paper we now consider the full seven-equation Baer–Nunziato model for com-
pressible two-phase flows. The original model has been described in [4] and has been successively modified in [121,122]. 
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Fig. 14. Orszag–Tang vortex system at times t = 0.5, t = 2.0 and t = 3.0 from top to bottom. ADER-DG P5 solution, supplemented with the second order 
TVD a posteriori sub-cell finite volume limiter (left) and detected troubled zones in red (right). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

It has also been subsequently reduced to a five equation model, see [88,106]. The original Baer–Nunziato model has been 
proposed for the description of the deflagration–detonation transition in high-energy reactive materials composed of solid 
powder and compressible gas. The homogeneous model without relaxation terms [3,124,39,106] is given by the following 
non-conservative hyperbolic PDE system:

∂

∂t
(φ1ρ1) + ∇ · (φ1ρ1u1) = 0,

∂

∂t
(φ1ρ1u1) + ∇ · (φ1 (ρ1u1 ⊗ u1 + p1I)) − pI∇φ1 = 0,

∂

∂t
(φ1ρ1 E1) + ∇ · [φ1 (ρ1 E1 + p1)u1] − pI uI · ∇φ1 = 0,

∂
(φ2ρ2) + ∇ · (φ2ρ2u2) = 0,
∂t
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Fig. 15. MHD rotor problem at time t = 0.25. ADER-DG P4 solution with the second order TVD a posteriori sub-cell finite volume limiter for the logarithm of 
the fluid density, the pressure, the Mach number and the magnetic pressure. In the last row, the troubled zones are highlighted in red. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

∂

∂t
(φ2ρ2u2) + ∇ · (φ2 (ρ2u2 ⊗ u2 + p2I)) − pI∇φ2 = 0,

∂

∂t
(φ2ρ2 E2) + ∇ · [φ2 (ρ2 E2 + p2)u2] − pI uI · ∇φ2 = 0,

∂

∂t
φ1 + uI · ∇φ1 = 0. (41)

In the above PDE system φ j denotes the volume fraction of phase number j, with j ∈ {1,2}, and the constraint φ1 + φ2 = 1. 
Furthermore, ρ j , u j , p j and ρ j E j represent the density, the velocity vector, the pressure and the total energy per unit mass 
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Table 6
L1, L2 and L∞ errors and convergence rates for the smooth Baer–Nunziato vortex problem [52] obtained with ADER-DG 
schemes with a posteriori sub-cell finite volume limiter at time t = 2. The errors refer to variable φ1.

Smooth 2D Baer–Nunziato vortex problem – ADER-DG-PN + FV SCL

Nx L1 error L2 error L∞ error L1 order L2 order L∞ order Theor.

DG-P3 24 2.9428E–02 1.1718E–02 1.0068E–02 – – – 4
32 2.6424E–04 8.1347E–05 1.2588E–04 16.38 17.28 15.23
48 4.6571E–05 1.5193E–05 2.2233E–05 4.28 4.14 4.28
64 1.6889E–05 5.9332E–06 9.2907E–06 3.97 3.78 3.76

DG-P4 24 1.5939E–04 5.4366E–05 6.7999E–05 – – – 5
32 3.6541E–05 1.2716E–05 2.0095E–05 5.12 5.05 4.24
48 4.3223E–06 1.6711E–06 3.3502E–06 5.26 5.01 4.42
64 1.4799E–06 5.8274E–07 9.6081E–07 4.63 4.45 4.39

DG-P5 16 2.7355E–04 9.0657E–05 1.0641E–04 – – – 6
24 2.3116E–05 8.3831E–06 1.7414E–05 6.09 5.87 4.46
32 3.9657E–06 1.4187E–06 2.1749E–06 6.13 6.18 7.23
48 3.3575E–07 1.2498E–07 2.6538E–07 6.09 5.99 5.19

DG-P6 12 3.1351E–02 1.0422E–02 1.0378E–02 – – – 7
16 5.8658E–05 2.1372E–05 2.7652E–05 21.83 21.52 20.61
24 4.8862E–06 1.7490E–06 2.1503E–06 6.13 6.17 6.30
32 8.1213E–07 1.7858E–07 2.5471E–07 6.24 7.93 7.42

for phase number j, respectively. Alternatively, the first phase is also called the solid phase (index s) and the second phase 
the gas phase (index g), respectively.

The model (41) is closed by the stiffened gas equation of state (EOS) for each phase

e j = p j + γ jπ j

ρ j(γ j − 1)
, (42)

and the definition of the total energy density

ρ j E j = ρ je j + 1

2
ρ ju

2
j , (43)

where γ j is the ratio of specific heats and π j is a material constant. In this paper, we choose uI = u1 for the interface 
velocity and the interface pressure is assumed to be pI = p2. This corresponds to the original choice proposed in [4] and 
which has also been adopted in [3,124,39,52,59,53]. However, alternative choices are also possible, see [121,122]. For this 
system of PDEs the PAD criteria used in the detection procedure of our subcell limiter consider the positivity of partial 
densities and pressures. Partial volume fraction φ1 is checked for boundedness so that 0 ≤ φ1 ≤ 1.

4.3.1. Smooth vortex problem
To study the convergence of our high order DG scheme supplemented with a posteriori sub-cell finite volume limiter 

also in the non-conservative case, we first run the smooth Baer–Nunziato vortex problem first proposed in [52]. It admits a 
non-trivial exact solution of the time-dependent Baer–Nunziato system (41) that is smooth. It is therefore well suited for the 
purpose of a numerical convergence test. The details of the computational setup are given in [52] and are not repeated here. 
The computational domain is the square � = [−10; 10]2 on which four periodic boundary conditions have been applied. The 
final simulation time is t = 2, for which the exact solution is given by the initial condition shifted by [2, 2] to the top and to 
the right. The numerical convergence results obtained for third to seventh order schemes are reported in Table 6. From the 
results one can conclude that the designed order of accuracy is also reached in the case of non-conservative PDE. Note that 
for this test problem the a posteriori limiter has detected a small number of troubled cells on some of the coarse meshes, 
while it does not detect any troubled cell on sufficiently fine meshes. That is the reason why for this test problem one can 
note a sudden decrease of the error between one grid resolution and the next one, leading to a spurious increase of the 
observed order of accuracy. Once the troubled zone detector starts to work properly, the method reaches its designed order 
as expected.

4.3.2. Riemann problems
In this section we run two Riemann problems for the Baer–Nunziato system, whose initial conditions are detailed in 

Table 7. The same problems have also been solved in [52,53,49,22] using high order WENO finite volume schemes on 
unstructured meshes, on space-time adaptive Cartesian grids (AMR) and on moving meshes, respectively.

For details on the exact Riemann solver of the homogeneous system (41) see the papers by Andrianov & Warnecke [3], 
Schwendeman et al. [124] and Deledicque & Papalexandris [39].

An unstructured mesh made of 2226 triangular elements with characteristic mesh spacing h = 1/100 has been used. 
In Figs. 16 and 17 the results of the ADER-DG-P5 scheme with second order a posteriori sub-cell finite volume limiter 
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Table 7
Initial condition for the two Riemann problems run for the Baer–Nunziato model. 
Left state (L) and the right state (R) are provided as well as model values for γk , πk

and the final time t f .

ρs us ps ρg ug pg φs t f

RP1 [39] γs = 1.4, πs = 0, γg = 1.4, πg = 0
L 1.0 0.0 1.0 0.5 0.0 1.0 0.4

0.10
R 2.0 0.0 2.0 1.5 0.0 2.0 0.8

RP2 [39] γs = 3.0, πs = 100, γg = 1.4, πg = 0
L 800.0 0.0 500.0 1.5 0.0 2.0 0.4

0.10
R 1000.0 0.0 600.0 1.0 0.0 1.0 0.3

are presented. In both figures the mesh is shown, together with the troubled cells in red and the unlimited cells in blue. 
Furthermore, the volume fraction for phase 1, the density, the x velocity component and the pressure are shown for each 
phase in a 1D cut through the discrete solution uh along the x axis. The exact 1D reference solution provided by [39] is 
also plotted for comparison. We observe that the troubled cells are properly detected in the vicinity of the shock waves in 
both phases. From the 1D plots one can note that the location of the waves, the flat plateaus and even the tiny waves are 
properly captured without spurious oscillations.

4.3.3. 2D cylindrical explosion problems
We use the same initial condition given for the Riemann problems in Table 7 to solve two cylindrical explosion problems 

with the compressible Baer–Nunziato model (41). The computational domain � is a circle of radius R = 1 that has been 
discretized with a characteristic mesh size of h = 1/100, leading to a total number of 68324 triangular elements. In all cases 
the initial state Q(x, 0) is assigned by taking

Q(x,0) =
{

Qi, if |x| < rc

Qo, else
, (44)

with rc = 0.5 representing the location of the initial discontinuity. The left state reported in Table 7 is assumed to be the 
inner state Qi , while the right state represents here the outer state Qo .

A radial reference solution can be obtained by solving an equivalent 1D balance law with geometric source terms, see 
[52] for all details. The computational results obtained with an ADER-DG-P5 scheme are reported together with the reference 
solution in Figs. 18 and 19. For problem EP1 we have employed the Osher-type method (13), while the second problem EP2 
has been run with the new path-conservative extension of the HLLEM method proposed in [48]. As usual, troubled cells 
are highlighted in red, while unlimited cells are plotted in blue. One finds that all discontinuities are resolved very sharply, 
without spurious oscillations. The limiter is only activated in a few cells, mostly close to the shock waves in each phase. 
Some false positive activations of the limiter in smooth regions can be noted for the second problem in Fig. 19.

4.4. Nonconvex scalar problem

In this section we solve the non-convex scalar model problem proposed by Kurganov et al. in [95]. The governing PDE is 
given by

∂u

∂t
+ ∂ sin(u)

∂x
+ ∂ cos(u)

∂ y
= 0, (45)

with initial data

u(x,0) =
{

3.5,π if |x| ≤ 1,

0.25,π if |x| > 1.
(46)

The computational domain is a circle of radius R = 2, centered in xc = (0, −0.5) and discretized with a rather coarse 
grid composed of 11056 triangles. Simulations are carried out with an ADER-DG P3 scheme up to a final time of t =
1.0. The simple Rusanov flux (11) has been used for this test problem. The computational results for u are depicted in 
Fig. 20, together with the limited cells in red and the unlimited cells in blue. One can observe that the numerical solution 
corresponds to the correct entropy solution identified in Kurganov et al. (see Fig. 5.9 left and Fig. 5.11 left in [95]), while 
second order TVD schemes with compressive limiters or higher order WENO schemes have been shown in [95] to converge 
to a wrong solution that does not satisfy the entropy principle. Our computational results confirm once more the accuracy 
and robustness of our simple high order ADER-DG scheme with a posteriori subcell TVD finite volume limiter also for this 
nontrivial test problem of a non-convex scalar conservation law. In particular, compared with Fig. 5.11 right in [95], our 
scheme needs less limiting.
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Fig. 16. Numerical results for Riemann problem RP1 of the seven-equation Baer–Nunziato model at time t = 0.1 and comparison with the exact solution – 
ADER-DG-P5 scheme with second order a posteriori sub-cell finite volume limiter. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)
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Fig. 17. Numerical results for Riemann problem RP2 of the seven-equation Baer–Nunziato model at time t = 0.1 and comparison with the exact solution – 
ADER-DG-P5 scheme with second order a posteriori sub-cell finite volume limiter. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)
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Fig. 18. Numerical results obtained with an ADER-DG-P5 scheme supplemented with second order a posteriori sub-cell finite volume limiter for the 2D 
explosion problem EP1 of the seven-equation Baer–Nunziato model at time t = 0.15 and comparison with the 1D reference solution. (For interpretation of 
the references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 19. Numerical results obtained with an ADER-DG-P5 scheme supplemented with second order a posteriori sub-cell finite volume limiter for the 2D 
explosion problem EP2 of the seven-equation Baer–Nunziato model at time t = 0.2 and comparison with the 1D reference solution. (For interpretation of 
the references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 20. Contour levels of u for the nonconvex scalar model problem of Kurganov et al. [95] (left) using an ADER-DG P3 scheme. Limited cells are highlighted 
in red and unlimited cells are highlighted in blue (right). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

5. Conclusion

In this paper we have presented a simple but very effective and accurate a posteriori sub-cell limiter of high order 
discontinuous Galerkin finite element methods for the solution of conservative and non-conservative hyperbolic systems of 
PDE on unstructured simplex meshes in two and three space dimensions. The new scheme directly derives from a previous 
method designed for fixed and adaptive Cartesian grids, see [62,143,142].

The main idea of our new limiter is to run first a classical unlimited DG scheme without any additional dissipative 
mechanism such as artificial viscosity, moment or (H)WENO-type limiters. This unlimited DG scheme will produce a so-
called candidate solution. After the computation of the candidate solution a detection phase separates the valid cells, whose 
DG solution is acceptable, from the invalid troubled cells. This part of the algorithm is similar to the existing troubled-cell 
indicators of typical DG limiters. For the method proposed in this paper, the detection is based on physical criteria, like 
positivity of density and pressure, and on a relaxed discrete maximum principle in the sense of polynomials.

Within our new approach the candidate solution at time tn+1 in the troubled cells is then discarded and is subsequently 
recomputed by using once more the governing PDE system and by starting again from a valid discrete solution at the 
previous time tn . This is different compared to classical (H)WENO- and moment-type limiters, where the limited solution 
in the troubled cells is obtained by a nonlinear post-processing of the given data at time tn+1. The fact that we go back
to a valid solution at the old time level and solve the PDE again with a more robust scheme on a sub-grid is the most 
important philosophical difference between our new a posteriori limiter and other existing limiters for the DG finite element 
method. In order to maintain the sub-grid resolution capability also in troubled cells, the DG polynomials at time tn are 
projected onto a fine sub-grid and then evolved in time on the sub-grid level with a more robust finite volume scheme. 
Finally, the evolved sub-cell averages at time tn+1 are gathered back into a high order piecewise polynomial via a standard 
(unlimited) finite volume reconstruction, which completes the limiting procedure. If the same cell is detected as troubled 
also in the next time step, the sub-grid finite volume scheme starts over directly from the sub-cell averages obtained via 
the finite volume scheme in the previous time step, without projecting the (invalid) DG polynomial onto the sub-grid. This 
somewhat crude idea of a posteriori detection, and recomputation of certain troubled cells on a sub-grid with a more robust 
finite volume scheme is very simple to implement and has shown to be extremely powerful. Indeed, the philosophy of 
an a posteriori stabilization of the DG method is independent of the nominal order of accuracy of the scheme, the type 
of the mesh, the PDE system, the number of space dimensions and the chosen sub-cell finite volume scheme. On a large 
set of 2D and 3D test cases, we have shown that the DG method supplemented with a posteriori sub-cell stabilization 
seems to be a valid numerical tool for the solution of different nonlinear hyperbolic PDE systems, which include the Euler 
equations of compressible gas dynamics, the ideal magneto-hydrodynamics equations (MHD) and the Baer–Nunziato model 
of compressible multi-phase flows. In the present approach, rather large values of the polynomial degree N can be used for 
the approximation space of the discrete solution. In this work, approximation degrees from N = 2 up to N = 6 have been 
tested. Since the stabilization technique generally detects only very few troubled cells per time step, the extra cost induced 
by the necessary finite volume update of the sub-cell averages is acceptable. Due to the use of a fine sub-grid in the limiter, 
discontinuities are very well resolved even on a very coarse main grid if high values of N are used. For that very reason, 
the new limiter approach does not destroy the sub-cell resolution capabilities of the DG method, even in the presence of 
shock waves.

Moreover, the present ADER-DG scheme supplemented with a posteriori sub-cell finite volume limiter has not only been 
implemented on general unstructured meshes, but due to its locality and one-step time discretization it is also well suited 
for running on massively parallel supercomputers via MPI parallelization. This opens the door for a future use of this new 
family of schemes in the context of more complex applications in science and engineering.
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Appendix A. Best practice guideline for the transformation of an unlimited DG code into an a posteriori sub-cell 
stabilized DG code

In this appendix we describe the main actions that must be taken to transform a given DG code into a DG code that is 
stabilized with an a posteriori finite volume sub-cell limiter:

1. Within the existing DG code, remove any limiter or stabilization technique previously employed. As such, the DG scheme 
is run in its pure, unlimited form and produces the so-called candidate solution u∗

h .
2. Implement a subroutine Detection which tests the cell centered DG solution u∗

h against appropriate detection crite-

ria (depending on the system of PDEs solved). This routine produces the troubled-zones indicator βn+1
i as a result, i.e. 

whether the DG polynomial in cell Ti is accepted, or not. If βn+1
i = 1 the cell index i is added to a list of Troubled-

Cells. The candidate solution in troubled cells is discarded whereas, for valid cells the solution is stored as final value 
un+1

h . This ends the DG part of the scheme.
3. After having run the unlimited DG scheme and the detector, pick one cell index from the TroubledCells list, say i.

• Implement a routine Submesh that creates a sub-mesh of cell Ti . The sub-mesh must be large enough (Ns ≥ N + 1), 
but preferably use Ns = 2N + 1 sub-cells per spatial direction where N is the polynomial degree of the DG scheme.

• Implement an L2 projection Scatter of polynomials un
h onto this sub-mesh to get piecewise constant data vn

i, j , 
hence implement the operator vn

h = P(un
h). In this manner, compute the initial and boundary data for the troubled 

cell i and its direct Neumann neighbors, according to (19).
• Implement the sub-cell finite volume limiter FVupdate, i.e. the operator vn+1

h = A 
(
vn

h

)
. Here, for instance, a very 

simple first order Godunov-type scheme with Rusanov flux can be used to start with. Note that the timestep of the 
DG scheme can be used here, as the time steps resulting from the CFL condition of the DG scheme on the main grid 
and of the finite volume scheme on the sub-grid are alike. This FV scheme updates the sub-cell centered data to get 
vn+1

i, j which are acceptable sub-cell solutions as provided by a stable and robust FV scheme.

• Implement a routine Gather which computes a polynomial un+1
h =R(vn+1

h ) that takes the sub-cell averages vn+1
i, j as 

input and produces as output the degrees of freedom ûn+1
l,i of the limited DG polynomial. The subroutine Gather is 

the inverse operator of the L2 projection operator Scatter, since R ◦P = I . This ends the timestep, since troubled 
cells have now been recomputed and stored into un+1

h with previously accepted cells from the DG scheme.
• To obtain a conservative scheme, all Neumann neighbors of troubled cells Ti need to be corrected and must take into 

account that the fluxes across the neighbor edges have changed.

Note that in the Detection routine, the use of Scatter routine is mandatory to get a sub-cell based discrete maximum 
principle for the DG polynomials, see (26). As already mentioned in the core of this paper a first order finite volume scheme
FVupdate is de facto equivalent to a DG scheme of first order of accuracy. As such there is no need to implement any new 
scheme if an unlimited DG scheme of arbitrary order of accuracy is already accessible.
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