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Abstract

We use power sums plethysm operators to introduce H functions which interpolate between the Weyl
characters and the Hall-Littlewood functions Q' corresponding to classical Lie groups. The coefficients of
these functions on the basis of Weyl characters are parabolic Kazhdan—Lusztig polynomials and thus, by
works of Kashiwara and Tanisaki, are nonnegative. We prove that they can be regarded as quantizations of
branching coefficients obtained by restriction to certain subgroups of Levi type. The H functions associated
to linear groups coincide with the polynomials introduced by Lascoux, Leclerc and Thibon in [A. Lascoux,
B. Leclerc, J.Y. Thibon, Ribbon tableaux, Hall Littelwood functions, quantum affine algebras, J. Math.
Phys. 38 (1996) 1041-1068].
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction
Given p a partition with at most n parts, the Hall Littlewood function Q;L can be defined by

0, =Y Kiuq)s:
A

where the sum runs over the partitions of length at most n, K3 ,(q) is the Lusztig g-analogue
of weight multiplicity associated with (A, ) and s, the Schur function indexed by A, that is
the Weyl character of the irreducible finite dimensional GL,-module V (1). Since K , (1) is
equal to the dimension of the weight space u in V (1), Q;L can be regarded as a quantization
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of the homogeneous function £,. In [8], Lascoux, Leclerc and Thibon have introduced a new
family of symmetric functions H ﬁ depending on a fixed nonnegative integer £ which interpolate
between the Schur functions s, and the Hall-Littlewood functions Q;L. The polynomials H ﬁ can
be combinatorially described in terms of the spin statistic on certain generalized Young tableaux
called £-ribbon tableaux. These ribbon tableaux naturally appear in the description of the action
of the power sum plethysm 1, on symmetric functions. Recall that for any symmetric function
f, ¥, (f) is obtained by replacing in f each variable x; by xf. In particular, ¥, multiplies
the degrees by £. The space of symmetric functions is endowed with an inner product (-, -)
which makes the basis of the Schur functions orthonormal. Then ¢, the adjoint operator of v,
divides the degrees by £. It is well known that ¢ (s, ) can be computed from the Jacobi-Trudi
determinantal identity. Specifically, we have

@e(s) =0 or @e(su) = €(00)s,0 - S e-n (H

where (09) = %1 is the signature of a permutation og € S, and @, ..., uDya £-tuple of
partitions defined by £ and u. By expanding ¢¢(s;,) on the basis of Schur functions, we obtain

,,,,,

(24 (SM) = ¢(00) Z CI);(O) M(Z—l)s)u )
A

where C/)L O, is the Littlewood—Richardson coefficient giving the multiplicity of V (A) in
the tensor product V(,u(o)) ® - ® V(M(e’l)). When ¢ = 1, one has ¢ (s¢,) = s, and when
£ > n, one can prove that ¢¢(s¢,) = hy. Thus the functions h,(f) = £(00)@e(s¢y,) interpolate
between the functions s, and &, and have nonnegative coefficients on the basis of the Schur
functions.

In [8], the authors have interpreted the algebra of symmetric functions as the bosonic Fock
space representation of the quantum affine Lie algebra U, (sl,). This permits us to introduce a
natural quantization v, ¢ of the power sum plethysm v,. Let ¢, ¢ be the adjoint operator of v/, ¢
with respect to (-, -). The function H ﬁ is then defined as a simple renormalization of ¢g ¢ (s¢).
This gives an identity of the form

,,,,,

where the polynomial Cﬁw) """" =) (g) is a g-analogue of C/AL("),.‘.,M“‘”'

Lusztig’s g-analogues K ,(gq) are particular affine Kazhdan—Lusztig polynomials. These
polynomials arise in affine Hecke algebra theory as the entries of the transition matrix between
the natural basis and a special basis defined by Lusztig. By replacing the affine Hecke algebra
H by one of its parabolic modules Hv (v being a weight of the affine root system under
consideration), Deodhar has introduced analogues of the Kazhdan—Lusztig polynomials. In [9],
it is shown that the family constituted by these parabolic Kazhdan—Lusztig polynomials contains
in particular the g-analogues cz O, (g). By a result of Kashiwara and Tanisaki [7], this

implies notably that the coefficients of the polynomial C/kt O, -1 (g) are nonnegative integers.

The aim of the paper is to introduce analogues of the polynomials Hﬁ for the classical
Lie groups G = SO7,+1, Span and SO;, which interpolate between the Weyl characters and
the Hall-Littlewood functions associated with G. Write also s for the Weyl character of the
irreducible G-module V (1) of highest weight A. We define the plethysm operator ¢, and its dual
Y on the Z-algebra generated by these Weyl characters. By a subgroup L C G of Levi type, we
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mean a subgroup of G isomorphic to the Levi subgroup of one of its parabolic subgroups. Given
y a highest weight of L, we denote by [V(A) : Vr(y)] the multiplicity of the irreducible
L-module Vi (y) of highest weight y in the restriction of V(1) to L. Then, provided that ¢
is odd when G = Spy, or §0O»,, we establish for any Weyl character s,, such that ¢, (s, ) # 0, a
formula of the type

oty = swo) Y [VOo v ()]s 3)
A

where ¢(wo) is the signature of an element wyg € W the Weyl group of G, L a subgroup of Levi
type of G and (‘lf ) a dominant weight associated with L. The procedure which yields wg, L and
( ’g) from £ and p can be regarded as an analogue of the algorithm computing the £-quotient of a
partition which implicitly appears in (1). The identity (2) can also be rewritten as in (3). Indeed,
take L = GL;, x --- x GL,,_, where forany k =1, ..., £ — 1, ry is the length of /L(k). Then
(‘g ) = O, ..., u D) can be interpreted as a dominant weight for the subgroup of Levi type

,,,,,

The surprising constraint £ odd when G = Sp», or SO, appearing in (3) follows from the
fact that the procedure giving wy, L and ( ’Z) mentioned above depends not only on the Lie group
under consideration, but also on the parity of the integer £. For G = SO», 4 the coefficients of
&(wo)@¢(s,,) on the basis of Weyl characters are always branching coefficients corresponding to
restriction to L. For G = Sp»,, or SOy, this is only true when £ is odd. Note that this difficulty
disappears for large ranks, that is for n > £ || (but see Section 6.4).

To define the functions H ﬁ in type B, C or D, we prove the equalities

[(We(sn)s )| = [{sns @e ()| = Py ng (D)

which show that the coefficients of the expansion of (s, ) on the basis of Weyl characters are,
up to a sign, parabolic Kazhdan—Lusztig polynomials specialized at ¢ = 1. By using (3) this
gives, providing £ is odd for G = Sp>, or SO2,

7009 ()] =

We then introduce the functions

Gﬁ::E:[V(AJ:VL(Z)LsA

A

where [V(X) : VL (‘;)]q = Pl;ijp(q). This yields nonnegative g-analogues of the branching
coefficients [V(A) : Vi (’Z)] The functions Hﬁ are then defined by setting Hl’i = Gf u We

obtain the identities H;i =5, and Hﬁ = Q), when ¢ is sufficiently large. Thus the functions Hﬁ
interpolate between the Weyl characters and the Hall-Littlewood functions associated with G.

The paper is organized as follows. In Section 2 we recall the necessary background
on classical root systems, Weyl characters, subgroups of Levi type and their corresponding
branching coefficients. In Section 3, we define the plethysm operators v, and their dual operators
@¢. By abuse of notation, we also denote by ¢, the linear operator on the group algebra Z[Z"]
with basis the formal exponentials (e) such that

e/t if B e (0z)"

By — n
pe(e”) = { 0 otherwise for any g € Z".
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We then show how the determination of ¢¢(s,) can be reduced to the computation of the
polynomial

@1 <e" []a- e"))

aER

where R is the set of positive roots corresponding to the Lie group G. This permits us to
establish formulas (3) providing £ is odd when G = Spy, or SOy,. For completeness, we have
also included the case G = G L, and shown why (3) cannot hold when ¢ is even and G = Sp»,, or
SO, . To make the paper self-contained, we have summarized in Section 4 some necessary results
on affine Hecke algebras and parabolic Kazhdan—Lusztig polynomials. Section 5 is devoted to
the definition of the polynomials Gf; and Hﬁ and to their links with the Weyl characters and
the Hall-Littlewood functions. Finally, we briefly discuss in Section 6 the problem of defining
nonnegative g-analogues of tensor product multiplicities when G # GL,. We add also a few
remarks concerning the exceptional root systems.

2. Background
2.1. Classical root systems

In the sequel, G is one of the complex Lie groups GL,,, Spa,, SO2,+1 or SO2, and g its Lie
algebra. We follow the convention of [7] to realize G as a subgroup of G Ly and g as a subalgebra
of gly, where

n whenG =GL,
N = {2n when G = Spy, or SOy,
2n+1 when G = S02,41.

With this convention, the maximal torus 7" of G and the Cartan subalgebra fh of g coincide
respectively with the subgroup and the subalgebra of diagonal matrices of G and g. Similarly, the
Borel subgroup B of G and the Borel subalgebra b of g coincide respectively with the subgroup
and subalgebra of upper triangular matrices of G and g.

Let dy be the linear subspace of gl consisting of the diagonal matrices. For any i € [, =
{1, ..., n}, write &; for the linear map ¢; : dy — C such that &; (D) = §,—;4+ for any diagonal
matrix D whose (i, i )-coefficient is §;. Then (g1, . . ., &,) is an orthonormal basis of the Euclidean
space by, (the real part of h*). Let (-, -) be the corresponding nondegenerate symmetric bilinear
form defined on . Write R for the root system associated with G. For any o« € R, we set
a = 2. The Lie algebra g admits the diagonal decomposition g = h & [ [, go. We take

RGN .
for the set of positive roots:

RT = {ej —eiwithl <i < j <n} forthe root system A,

Rt ={ej —ei,ej+& withl <i <j<n}Ulg withl <i <n}
for the root system B,

RT ={ej—¢e,ej+e& with 1 <i <j<njU{2¢ withl <i <n}
for the root system C,,

RT = {ej —ei,ej+e withl <i < j<n} fortherootsystem D,.

Let p be the half sum of positive roots. Set J, = {n < --- < 1 < 1 < --- < n} where, for
each integer i = 1, ..., n, we have written i for the negative integer —i. For any x € J, we



C. Lecouvey / European Journal of Combinatorics 30 (2009) 157-191 161

have X = x and we set |x| = x if x > 0, |x| = X otherwise. Given a subset U C J,, we define
[U|={|x| | x e U}and U = {x | x € U}.

The Weyl group of GL, is the symmetric group S, and for G = SO2,,+1, Sp2, or SOy, the
Weyl group W of the Lie group G is the subgroup of the permutation group of J,, generated by
the permutations

si=G,i+DG, i+, i=1,....n—1 and s, = (n,7)
for the root systems B, and C,

si=@,i+DG,i+1), i=1,...,n—1 and s, =@mn—1)n-1n)
for the root system D,,

where for a # b (a, b) is the simple transposition which switches a and b. For types B, and
C,, W is the group of signed permutations. It is the subgroup of the permutation group of J,
consisting of the permutations w such that w(i) = w(i). For type D,,, the elements of W verify
the additional constraint card{i € I,, | w(i) < 0} € 2N. We identify the subgroup of W generated
bys; = (@, + 1)(1_', i—|—_1),i = 1,...,n — 1 with the symmetric group S,. The signature ¢ of
w € W is defined by e(w) = (—1)/®™), where [ is the length function corresponding to the above
sets of generators. Consider the increasing sequence K = (lTp, U TN TP ip) C Jy. For
X =B, D set

Wx k = {w e Woftype X, | w(x) = x forany x & K}.

Then, Wx g is isomorphic to the Weyl group of type X,. Let ex ¢ be the corresponding
signature.

Lemma 2.1.1. Consider X = B, D and w € Wx k. Then we have ex_x (w) = e(w).

Proof. Suppose X = B. The generators of the Weyl group Wx g are the & = (ik, ix+1)
(k,ix+1),k=1,...,p—1lands, = (ip, ip). One verifies easily that, considered as elements
of W, they are of odd length. We proceed similarly when X = D. N

The action of w € Won B = (B, ..., Bn) € b is defined by

1

—1 —
w(1319’ﬂn):(/3}1) a”"ﬂ;:) ) (4)
where B = By if w(@) € I, and B = —ﬂw(;) otherwise. The dot action of W on
B =(B1,...,Bu) € by is defined by
wopB=w-(B+p)—p. (5)
n . .

The fundamental weights of g belong to (%) . More precisely, we have w; = (0%, 1) € N"
fori < nm—1landalsoi = n —1for g # soy, a),f” = (1”),a)f” = w,?” = (%") and
— n

wnDj | = (—%, %n 1). The weight lattice P of g can be considered as the Z-sublattice of (%)

generated by the w;,i € I.Forany 8 = (B1,...,8,) € P, weset |8] = B1 + -+ B,. Write
P for the cone of dominant weights of G. With our convention, a partition of length m is a
weakly increasing sequence of m nonnegative integers. Denote by P, the set of partitions with
at most n parts. Each partition A = (A1,..., A;;) € P, will be identified with the dominant
weight Y 7", A;&;. Then the irreducible finite dimensional polynomial representations of G are
parametrized by the partitions of P,. For any A € P,, denote by V(i) the irreducible finite
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dimensional representation of G of highest weight A. We will also need the irreducible rational
representations of GL,. They are indexed by the n-tuples

Gy =y YD) (6)

where y = (y;", 5, ... vy)andy~ = (y;,...,¥, ) are partitions of length p and ¢ such
that p + g = n. Write 73,, for the set of such n-tuples, and denote also by V(y) the irreducible
rational representation of GL,, of highest weight y = (y—, y™) € P,.

In the sequel, our computations will also make appear root subsystems of the root systems
R described above. Suppose that G is of type X, with X, = A,_1,B,,C, or D,. Let
I = (iy,...,iy) be an increasing sequence of integers belonging to I,, that is iy € I, for any
k=1,...,randi; <--- <i,. Then

R; ={a € RNDjcs Zs;}

is a root subsystem of R of type X,. Write R;r for the set of positive roots in R;. Then we have
R;“ = R; N R*. The dominant weights associated with R; have the form A = (A1, ..., A,)
where A; # Oonly ifi € 7 and A = (A;,, ..., %;,) € Pr. We slightly abuse the notation by
identifying A with A(D).

Consider an increasing sequence X = (xg,...,x,) of integers belonging to J, such that
|xk| = |xp| if and only if k = k. For any integer i =1, ..., n, set & = —¢;. Then

Rpyx ={%(ex; —ex) |1 =i <j=r}

is a root subsystem of R of type A,_i. To see this, consider the linear map 6y : Z" — Z"
such that Ox (e;) = &x,. The map 0 is injective and preserves the scalar product in Z" and Z".
Moreover the root system {+(¢; —¢&;) | 1 <i < j <r} C Z" of type A, is sent on R4 x by Ox.
The set of positive roots in R4 x is equal to RXX =RaxN R™.Denote by s € {1,...,r} the
maximal integer such that x; < 0. We associate to X, the increasing sequence of indices I C I,
defined by

I = (Xgy ooy X1y Xgfls oo vy Xp)e @)
It will be useful to consider the weights corresponding to R4 x as the r-tuples 8 = (By,, ..., Bx,)
with coordinates indexed by X. The coordinates (ﬂi, ..., B of B on the initial basis (e, . . . , &)

are such that B/ = B, ifi = x, € X, B/ = — Py, ifi =x, € X and B; = 0 otherwise. With this
convention the dominant weights for R4, x have the form

A = (O, hy) € P 8)

This simply means that we have chosen to expand the weights of R4 x on the basis {¢, | x € X}
rather than on the basis {¢; | i € I} to preserve the identification of the dominant weights with
the nondecreasing r-tuples of integers.

Example 2.1.2. Take G = Spqo.
e For I = (2,4,5) we have
R} = {es L ea, 65 L &2, e4 £ &2, 269, 264, 265)

which is the set of positive roots of a root system of type C3. The weight A = (1,2,2) is
dominant for G;. Considered as a weight of Sp19, we have A = (0, 1,0, 2, 2).
e For X = (5,2, 1,4) we have
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Ry x ={ea —e1.65 — &2, 81 + &2, 81 + &5, 64 + £2, £4 + &5}

which is the set of positive roots of a root system of type A3. The weight y = (=3, —1,4,5)
is dominant for G x. Considered as a weight of Spjp, we have y = (4, 1, 0, 5, 3).

2.2. Subgroups of Levi type

Suppose G is a classical Lie group and consider R the corresponding root system. We
shall need Lie subgroups of G associated with particular sub-root systems of R. Each of these
subgroups will be of Levy type, that is, will be isomorphic to the Levi subgroup of one of the
parabolic subgroups of G.

Consider p > 1 an integer. Let © — (il(o), ;O

ey 1,0)) be an increasing sequence of integers

in I,,. For k = 1, ..., p, consider increasing sequences xX® — (x{k), e, xr(kk)) C J, such that
card(X®) = r¢. Let s be maximal in {1, ..., r¢} such that xs(,]:) < 0. Set
— —(k k
1O =0, w7l xB) c )

We suppose that the sets /®), k = 0, ..., p are pairwise disjoint and verify UY_, I®) = I,,. Set
=19, xD xP}and

P
Rz =R;0 U U RA,X(k>'
k=1

Then g7 = h D[ [,cr . o 1s a Lie subalgebra of g. Its corresponding Lie group G is a subgroup
of G of Levi type, and we have

GLyy xGLy X ---xGL;, forG=GLy
802y X GLy X -+ % GLrp for G = SO2,41
Spary X GLy X -+- x GL;, for G = Spa,
8021y X GLyy X --- X GL;, for G = 802,.

Gt~

The root system associated with G7 is Rz. Denote by PI+ its cone of dominant weights. The
weight lattice of Gz coincides with that of G, since the Lie algebras g7 and g have the same
Cartan subalgebra. The elements of Pl"’-' are the (p + 1)-tuples A = QO AD APy where

20 = A ]i € 1(0)) is a dominant weight of Rg 1o and forany k = 1,..., p, A0 — (A |
i € X®) is a dominant weight of Rg xw . Forany A € P, we denote by V7 () the irreducible
finite dimensional Gz-module of highest weight A. Each weight 8 = (8@, g0 ... gy e P
can be considered as a weight 8 = (8], ..., ;) of P. With the convention (8), we have then

Bl = B.o ifi = i(go) eI®andforanyk =1,..., p, B = B.w ifi = i(gk) e x®, B = —B,w
ifi = iék) € X® In the sequel we identify the two expressions

=B gV .. 7)) and p=(B.....5) (10)
of the weights of P7.

2.3. Weyl characters and dual bases

We refer the reader to [13,15] for a detailed exposition of the results used in this paragraph.
We use as a basis of the group algebra Z[Z"], the formal exponentials (e?) pezn satisfying the
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relations ef1ef2 = ef1+82 We furthermore introduce n independent indeterminates xi, ..., X,
in order to identify Z[Z"] with the ring of polynomials Z[x1, ..., x,, xfl, A xn’l] by writing
ef = xfl x ~x,f" = xP forany B = (B1, ..., B,) € Z". Define the action of the Weyl group W
on Z[Z"] by w - x# = x*#) The Weyl character sp is defined by

a
sg = il where ag = Z e(o)(w ox’g).
dp weW

For any 8 € Z", we have

s {s(w)s,\ if there existsw € Wand A € P, suchthat . = w o 8 an
,B =

0 otherwise.

Let A be the Z-algebra generated by the characters s, A € P,. For any g € Z", denote by Wg
the stabilizer of B under the action of the Weyl group W and by W# a set of representatives in
W/ Wpg with minimal length. Then the functions

mg = Z w-xP

weWh

belong to A. Moreover {m, | A € P,} is a basis of A. We have the decomposition

si=Y_ Kiumpu (12)
nePy

where K , is equal to the dimension of the weight space w in the irreducible representation
V ()). There exists an inner product (-, -) on A which makes the characters s, orthonormal. We
denote by {£, | u € Py} the dual basis of {m, | A € P,} withrespect to (-, -). The homogeneous
functions A, are given in terms of the Weyl characters by the decomposition

hy= Y Kppus. (13)
rEP,
This decomposition is infinite in general when G # GL,. Nevertheless, by embedding A in
the ring A of universal characters defined by Koike and Terada [7], it makes sense to consider
formal series in the characters s;, A € P,. Note that the function %, is not the character of the
representation V(ujwy) ® -+ ® V(u,w1) when G # GL,,. For any 8 € Z", we define the
function hg by

hg = hy, (14)

where u is the unique dominant weight contained in the orbit W - 8.
2.4. Jacobi-Trudi identities

Denote by £, = K[[x#]] the vector space of formal series in the monomials xP with
B € Z. We identify the ring of polynomials F,, = K[x#] with the subspace of £, containing the
finite formal series. The vector space £, is not a ring since 8 € Z. More precisely, the product
Fy -+ F, of the formal series F; = } 5. p. xBYi = 1,...,ris defined if and only if, for any
y € Z", the number N, of decompositions y = BWD 4+ ... 4+ B such that 8O e E; is finite,
and in this case we have
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Fi--Fp= Y NyxV.
}/EZ”

In particular, the product P - F with P € P, and F € L,, is well defined.
Set

1 o
V:Hm and A= H(l—x)
aER aeR
Then A € F, and V € L,. We define two linear maps

S- Ln—>;\\
BEAERT,

L',,,—>X

and H: {xﬁ > hg.

From Theorem 2.14 of [15], we obtain

Proposition 2.4.1. Forany € 2", 5 = Y, cw €W hg1p—w.p.

By using the identity
A=xP Y e(w)x™"P (15)
weW

the previous proposition is equivalent to the following identity:

S(x#) = H(A x x#). (16)

Proposition 2.4.2. For any $ € 7" we have H(x?) = S(V x xP).

Proof. Denote by x4 and yv the linear maps defined on £, by setting x A @xP) = A x xP
and xv(x#) = V x xP respectively. By (16) we have S = H o xA. Moreover for any
B € 7" xa o xv(x?) = xP. This gives S(V x x#) = So xv(x#) = Ho ya o xv(xf) =
Hx?). m

2.5. Branching coefficients for the restriction to subgroups of Levi type

Consider 7 = {lp, X1, ..., Xp} asin Section 2.2. The set Z characterizes a subgroup Gz C G
of Levi type. Set

1
A_’[ = 1_[+(1 —x“) and V_’[ = 1_[ N m.
aeRT a€RT—RT

Then A7 € F, and V7 € L,,. Note that V7 = V x A7.
As a formal series, V7 can be expanded in the form

Vi= )Y Pry)x’. (17)
yeZl
Consider A € P, and u = (u©, ..., u?)) a dominant weight associated with G7. We denote

by [V(}) : Vz(u)] the multiplicity of the irreducible representation Vz(u) in the restriction of
V(A) from G to G7. The proposition below follows from Theorem 8.2.1 in [1]:
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Proposition 2.5.1. Consider » € P, and u = (u?, ..., u'P) a dominant weight of Pl"-'. Then

(V) : V()] = Z e(w)Pr(woi —p).
weW

Define the linear map

St: L, — A
x? > HA7 x xP).

For any dominant weight 1 € P, set

S, 7 =H(Az x x") = Sz(x"). (18)

Proposition 2.5.2. With the above notations, we have

SuT = Z [V : Vz(w)ls. (19)
reP,

Proof. For any 8 € 7", we have obtained in the proof of Proposition 2.4.2, the identity H(x#) =
Soxv (x?). Denote by x4,z the linear map defined on £, by setting XA,I(xﬁ) = A7 x xP. We
obtain S7(x#) = H(Az x x) =S o xv 0 xa.7(x#) = S(Vz x xP)since V7 = V x Az. Thus
by (17) this yields S7(xP) = Z}/GZ” Pz(y)sg+y - For any y, we know by (11) that sg1, = 0 or
there exists A € P, w € W such that A = w o (B + y) and sg1, = &(w)s;,. This permits us to
write

Sz:Py =Y > e)Pr(w ok — Bisi.

reP, weW

When 8 = pu is a dominant weight of Pj, we obtain the desired identity by using
Proposition 2.5.1. W

Remarks. (i) When G = Gz thatis, whenrg = nandr;y = --- = r, = 0, we have
n=pn® Az = Aand Hr = H. Thus S, 7 = s,0. This can be recovered by using
(19) since in this case [V (A) : V7(u)] = 0, except when A = M(O).

(ii)) When G7 = H the maximal torus of G, that is when n = p + 1 and r, = 1 for any
k=0,...,p,wehave u; = u~Vforanyi = 1,...,n, Az = 1 and Hz(x#) = hy for
any B € Z". Hence S, 7 = hy,. In this case [V(X) : Vz(u)] = K, , for any A € P,,. Thus
(19) reduces to (13).

(iii) By (i) and (ii), the functions S, 7 interpolate between the Weyl characters s, and the
homogeneous functions £,.

(iv) When G = GL,, we have the duality

.....

where cﬁ o ) is the Littlewood—Richardson coefficient associated with the multiplicity

e

of V(X) in the tensor product V, = V(,u(o)) ® - & V(,u(/’)). Thus we can write

,,,,,

does not exist for G = Spoy,, SO2,41 or SOy, (but see Section 6).
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3. Plethysm on Weyl characters
3.1. The operators Wy and @y

Consider ¢ a positive integer. The power sum plethysm operator ¥, is defined on A by
setting We(mg) = myg forany B = (B1,...,By) € Z", where £ = ({Bi, ..., LBy). Since
{my | » € P,}and {h, | A € P,} are dual bases for the inner product (-, -), the adjoint operator
@ of U, verifies

if B € (LZ)"

otherwise (20)

_ Jhpye
pe(hg) = {0

where /€ = (B1/4, ..., Bn/f) when B € ((Z)".
By abuse of notation, we also denote by ¥, and ¢, the linear operators respectively defined
on L, by setting

BE it B e (ez)”

U (xPy =x*® and W(Xﬂ) = {0 otherwise

for any 8 € Z". (21

Remark. Since ¥y (x? xxﬂ/) = U, (xPyx ¥, (xﬂ/) for any 8, B’ € Z" the map ¥y is a morphism
of algebra. This is not true for ;. Nevertheless, if {i1, ..., i} and {1, . .., j} are disjoint subsets
of Ij,t=(1,....,4,) €Z and y = (yy, ..., ys) € Z*, we have

W(xlfll .. xlt; % x}’ll .. .x}’rf) = (pe(xlfll .. .xl%:) X W(x}/ll .. .x;_r)_ (22)

For any A € P,, ¥(sy) belongs to A, and thus decomposes on the basis {s,, | n € P,}. Let
us write

W((SA) = Z S
HEPy

Since ¥, and ¢, are dual operators with respect to the scalar product (-, -), we can write
Mo = (We(sa)s su) = (s, @e(su)). So we have

(PZ(SM) = Z Ny, uSx-

AP,

By (16) and Proposition 2.4.1, we obtain the identity

su= Y ehyuipwp=H(Axx").
weW

Thus from (20) and (21), we derive ¢¢(s,) = H(pe(A x x*)). Set P, = A x x*. From the
previous arguments, the coefficients n,_ , are determined by the computation of ¢¢(Py,).

3.2. Computation of ¢¢(P,,)

Foranyi € {m,... ,T}, we set x; = x% This permits us to consider also variables indexed
by negative integers. Given X = (i1, ..., i), an increasing sequence contained in J, and
B = Bi1,...,B) € Z", we set xg = xff‘ o--xf:’. We also denote by Sx the group of
permutations of the set X. Each 0 € Sy determines a unique permutation o * of the set {1, ..., r}
defined by
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o(ip) =igxpy Toranyp=1,...r. (23)
In the sequel, we identify for short o and o*. Similarly, given Z = (u,,...,uy, uy, ..., u)
an increasing sequence such that {uy, ..., u,} C I,, each signed permutation w defined on Z

will be identified with the signed permutation w* defined on J, by w(up) = uy*(p) for any
p=1,...,r

Set p, = (1,2, ...,n). Forany w € W we have w - p, = (w(1), ..., w(n)). This permits us
to write

D e =Y ey Y x (24)

weW weW

3.2.1. ForG=GL,
Set k, = (1,...,1) € Z". Since o(k,) = k, for any o € §,, one can replace p by
pn = (1,2,...,n)in (15). By using (24) we can write

P, = X{MIJFI) . _x’(llanrn) Z E(G)XI_U(I) coxom

n

oeSs,
where u = (i1, ..., 1y). Forany k € {0, ..., £ — 1} consider the ordering sequences
IO =Gel, | pi+i=kmode) and J® =( el,|i=kmod?). (25)

Setry = card(l(k)) and write /® = (ifk), e, ir(,]:)). Then

M(k): (Mi-l—i-l—@—k

i€ I(k)) e Z'*.

£
We derive
—1 rg
_ @ en® ep(t=D —o (1) —o(n) —(t—k)
Pu=X0 X0y X Z e(o)x, S X, X 1_[ Hx,-(“ .
gEeS, k=0a=1 "
This gives
-1 rg
o L0 (e—1) —o (i PY_o—
M Iz o (iag )—(L—k)
we(Py) = Xro X X ey e(0)pe (1_[ 1_[ xl.(k) ¢ . (26)
g€ES, k=0a=1 “

The contribution of a fixed permutation o € S, in the above sum is nonzero if and only if for any
k=0,...,¢—1
iel® = o(i)=kmod L.

Thus we must have O(I(k)) c J® for any k = 0,...,£ — 1. Since o is a bijection,
10N 1E = go 0 gE& = gif k # k' and Up<g<¢—1 10 = Uo<k<e—1 JR = I, the
restriction of o on [y is a bijection from [ ®) to J® In particular, card(J ®y = card(1®) = ry.
This means that we have the equivalences

—1 Tk (k)
o1 (H [ H‘Z"‘)) £0e=o(®)=J® foranyk=0,...,6—1. (27)
la
k=0a=1
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Write J® = (k,k + ¢, ...,k + (r — 1)£). Denote by g € S, the permutation verifying

o0(iP) =k + (a — 1)t (28)

forany k = 0,...,£ —land any a = 1,...,rc. Let S;» be the permutation group of the
set /(®_ The permutations o which verify the right-hand side of (27) can be written o = oo,
where T = (r(o), R t(e’l)) belongs to the direct product S;0) X -+ X S;e-1). We have then

£(0) = e(00) (= DT x .. x (=)@,
Forany k € {0, ..., ¢ — 1}, set

Tk
—opt® Y _(e—k
Pk — E (_1)1(1’)('0[ (l | xi(ko)()r (ig ) —( )) .

t®es, ¢ a=1

From (22) and (26), we derive
=1 u®
or(Py) = e(o0) [ [ x¥ Pi-
k=0

Since 00(i?) = k + (a — 1)¢, we can write by (23) oot ® (i) = k + (t® (a) — 1)¢. Thus we
obtain

_ (). —t® D) Oy _ Py
P = E (=1 X0 X =X0 A1®
1 Tk
,(k)egl(k) k

where p, = (1,2, ..., 1) and Ay = ]_[l-<j i,jel(k)(l — xj/x;). Finally, this gives

-1 L0, =y

N .

or(Py) =e(00) [ [0 " A = e(00) [ [ ¥ Arw
k=0 k=0

where forany k =0,..., 0 — 1,

M(k): (l/vi-l-i-i-@—k

. ‘iel(k)>—(l,2,...,rk)le". (29)

Theorem 3.2.1. Consider a partition i of length n and £ a positive integer. For any k =
0,...,¢ — 1, define the sets I® and J® as in (25).

o If there exists k € {0, ..., £ — 1} such that card(I1®) # card(J®) then ¢, (sp) =0.
e Otherwise, forany k = 0,..., — 1, set ry = card(/®) = card(J®) and define o as in
(28). Then each ri-tuple defined by (29) is a Partition, and we have

pe(sp) = e(00)S(ny 7 = e(op)char(Vy,)

where T = {10, .. 1D}, (IZ) =w9,. .., u D) and char(V,,) is the character of the
GLy-module V, = V(u ) @ --- @ V(utD).

Proof. One verifies easily from (29) that each u® is a partition. By the previous computation,
we obtain

0e(A x x*) = e(o) Az x x(1)
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(with the notation of Section 2.5). By definition of ¢;, we have also
Ge(su) = e()H 0 gr (A x x") = e(o)H(Az x x(1)) = e(00)S(1) 7
where the last equality follows from (18). W
Remark. The subgroup G7 appearing in Theorem 3.2.1 is characterized by Z =

(1O .., 1%D} This means that for type A, we have X® = I® for any k > 0 with the
notation of Section 2.2; that is the sets X ¥) contain only positive indices.

Example 3.2.2. Consider u = (1,2, 3,4,4,4,6,6) and take £ = 3. We have u + pg = (2, 4,
6,8,9,10, 13, 14). Thus /© = (3,5}, 1D = {2,6,7}, 1% = {1,4,8} and J© = (3,6},
JO =11,4,7}, 7@ = {2,5,8}. Then u©@ = (1, 1), ¥ = (1,2,2) and u® = (0, 1, 2). We
have G >~ GLy x GL3 x GL3.

3.2.2. For G = Spa,
We have p = p, = (1,2, ...,n). By using (24) we deduce the identity:

P, = xl(lt1+1) . ~x,(l“”+n) Z 8(w)x1_w(1) . .x;w(n) (30)
weW
where W is the group of signed permutations defined on J, = {u,...,1,1,...,n}, that is
the subgroup of permutations w € §;, verifying w(x) = w(x) for any x € J,. Given
k € {0, ..., £ — 1}, consider the ordering sequences
I®=(Gel, | pi+i=kmode) and J® =(xeJ,|x=kmod?). (31)

Set p = % if £isevenand p = % otherwise.

3.2.2.1. The odd case £ = 2p — 1. Set ro = cardI®) and for any k = 1,...,p — 1,
s = card(Iy), rx = card(ly) + card(Zy_g). Write X® k = 1,..., p for the increasing
reordering of Tp Uly_g. Set 1O = (ifo), ol ir((()))) and fork > 0

x® = a0, 0, (32)

. ~(k ~(k . . . .
This means that I® = (lf,k),...,l§ )) and 140 = (zﬁfi,,...,l,(,lf)). To simplify the
computation, we are going to use the indices and the variables x;,i € X® rather than the
variables x;,i € I® U T*0 whenk € {1,..., p—1}.

Consider
0) — i +1i
n = (e

i€ 1(°>> €7’ andfor k > 0,

u® = (sign(i)um + 1 +Sign(i)k‘i c X(")) e 7

14

where for any i € J,, sign(/)) = 1if i > 0 and —1 otherwise. For any i € I, we have
X0 = xl:w(i). Thus

1
I Pom e I X o I1 " and

iex® iel® ielt=h
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p—1
(u1+1) (n+n) _ - n© o _k
Xq Xy T =X Xy l—[ ;
k=1 l’eX(k)

by definition of the M(k)’s. Then (30) can be rewritten

_p—l _
Pu=xily Hxx‘éff) < 3 etw) [T T 57 x H I

weW iel© k=1 jex® X&)
This gives
u© —w(i) —w(i)—k
we(Pu) =¥ H x D e(wge ( [~ H [T«
weW icl© =1lijex®

The contribution of a fixed w € W in the above sum is nonzero if and only if

: ) ) =
{z eIY —= w@)=0mod ¢ (33)

ieX(k)=>w(i)E—kmod€ foranyk=1,...,p— 1.

Thus we must have w(f © UI(O)) c JO and for anyk=1,...,p—1, w(X(k)) c JEh Recall
that 79 = 7O and 7™ = J® for k = 1,..., p— 1. Moreover
p—1 —1
10T Jx®ux® =y, ad JOU U J® Y g = g
k=1 k=1
Since the sets appearing on the left hand sides of these two equalities are pairwise disjoint, we

must have w(T(O) UIO)y = JO andfork = 1,..., p — 1, w(X®) = JE0 1In particular
card(J @) = 2 card(/ @) = 2rg and card(J ¥Ry = card(X®) = r; for anyk=1,...,p— 1.
We have the equivalences

# 0= 1 (iHw(x®) = JEH (34)

) OHwd @ uT?) = O
foranyk=1,...,p—1.

(1_[ x—W(l) 1_[ 1_[ —w(i)+k

ie1© k=1 jex®
Note that condition (ii) can be rewritten: w(Y<k)) = J® for anyk=1,...,p—1.
We can set J© = (—rol,...,ropf) andfork =1,...,p — 1,
JER = (—k —agl, ..., —k + Brl), JO = (k — B, ... k+apl)

withay + B + 1 = rg.
Consider wo € W defined by
wo(iéo)):aé fora € {1,...,ro} (35)
woiP) = —k —aql + (@a— 1€ foranyk=1,...,p—1.
Denote by W the set of signed permutations w which verify (i) and (ii) in (34). We have

wo € W. Bach w € W can be written w = wgv where v = @,z . =D
belongs to the direct product W;o x Sym X --- X Syp-n. Here Wy is the group of

signed permutations defined on 7(0) UIO and fork = 1,...,p—1,8 @ 1s the group of
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signed permutations 7 defined on Y(k) U X® and verifying 1®(X®) = X® Indeed if
7® x) € Y(k) and x € X%, we would have wkx) € J ® and x € X%® which contradicts
(ii). This means that Sy 1is, in fact, isomorphic to the symmetric group S,,. Since the sets

IO and X® k =1,..., p — 1 are increasing subsequences of J,, we have by Lemma 2.1.1
e(w) = £(wo) (=)' (= DI x (=),
Set
w0 (i
Py = Z (=)D, ( 1_[ x; 0 (z)) and
U(O)EWI(O) ie[(o)
—war® ()
Po= > (=), (]‘[ x om0 "), ke{l,....p—1).
t®eS, k) iex®
‘We obtain

we(Py) = E(WO)XI((» Py 1_[ xx(k)
k=1

From (23) and (35), we have wov©@ (i) = v@(a)¢ foranya = 1, ..., ro and

wot®(i®) = —k —ayl + (t®(a) — )¢ foranya =1,...,n.

This yields

)
1 0) —U(O)(a) —Pr,
Py = § (=Dl )| |1xl_(§0) =x,0 40 and
a=

U(O)EWI(O)
I(z® —r(k)<a>+<ak+1>
P = Z (=D )l—[ x(k>Ax<">
T(k)esx(k) a=1

where foranyk =1,....,p— 1,0, = —p, +(x +1,..., 00 + 1) € Z'*,

AI(O) = 1_[ ( - ﬁ) H (I — xrx5)

X
i<ji,jel® Yor<s rsel©
xj
and Ayw = || 1—-— foranyk=1,...,p—1.
X
i<ji,jex® !

Finally, this gives

uO_ © — ®
Try © "
we(Py) = 8(11)0))61(0) AI(O) | | xX(") Ayw = 8(w0)x1(0) Ao | | xX(k)AXU‘)
k=1

where

1(0>> —(,...,r9) €70 (36)

0) _ Wi+
u = (B
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and foranyk=1,...,p—1

k
u® = (sign( )le + li] z— sign(i) X(k)) (A, .. 1)

+(ap+1,....,0p+1) e Z*, (37)

Recall that the weights corresponding to the subgroup of Levi type G7 are written following the
convention (8).

Theorem 3.2.3. Consider a partition u of length n and € = 2p — 1 a positive integer. Let 1©
and J© be as in 31). Foranyk =1, ..., p — 1, define the sets X® and J® by (31) and (32).

o If card(/?) # Jcard(J ) or if there exists k € {1,..., p — 1} such that card(X®©) #
card(J®)) then ¢, (s,) = 0.

e Otherwise, set ro = card(I) and foranyk =1, ..., p — 1, ry = card(X®). Let wog € W
be as in (35). Consider ( ) (O, @ pL(p 1)) where the u®’s are defined by (36)
and (37). Then (’Z) is a dominant weight of Pg with T = {I(O), x® X(p’l)}, and we
have

Pe(sp) = e(wo)Scny 1.
Proof. The proof is essentially the same as in Theorem 3.2.1. We obtain
00 (A x x") = e(wo) Az x x(¥)

where on the right-hand side of the preceding equality (’Z) is expressed on the basis {¢; | i € I,}
(see (10)). This permits us to write, as in the case G = G L,

pe(su) = e(wo)H 0 p(A x x*) = e(wo)H(Az x x(D)) = e(wo)S(1) 7. M

Example 3.2.4. Consider © = (1,2,3,4,4,4,6,6) and take_@_ = 3. We have u +
ps = (2,4,6,8,9,10,13,14). Thus I¥ = 3,5}, XD = (7,6,2,1,4,8} and J© =
6,3,3,6},JV = (8,5,2,1,4,7},J% = {7,4,1,2,5,8). In particular «; = 2. Then
n©@ = (1,1)and uV =
13—1 10— 1 4—1 241
<— 43— ~243,- - -3+ 3%—4 3,

8+1 14+1
2 si3 643
3 3

= (_2’ _27 _17 O’ 11 2)
with the convention (8). We have G7 =~ Sp4 X G Lg.
3.2.2.2. The even case £ = 2p. With the same notation as in the odd case, (30) can be rewritten

P/L . fg)(mx%,(f) Hx l&(f) « Z e(w) 1—[ xfw(z) H 7w(z) p H H —w(i)—k

weW iel© ielP) 1iex®

where

WP = (Mz+l+p‘ 1<p>>
¢
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This gives

p—1
(U] ()
_ w9 o "
we(Py) = X100 X1 | | Xyw X E e(w)eye
= weW

(l_[ x—w(l) l_[ —w(l) pl—[ 1—[ —w(i)— k)
iel©® iel® k=1 jex )

The contribution of a fixed w € W in the above sum is nonzero if conditions (34) are verified
and

ielP = wi)eJP.

Since p = —p mod £ we have J () = 7(p) ={-p—apl,...,—p,p,...,p +apt} This
implies that w(/P) U I(p)) = J and thus card(I?) = %card(J(p)). We then define wq by
requiring (35) and wo(zap)) =p+(a—1Lfora € {1,...,rp}. By using similar arguments as in
the odd case, we obtain that w can be written w = wov where v = (@, D .. P=D @)

belongs to the direct product W;0 x Sxya X -+ x Sye-1y x Wy with W, the group of
signed permutations defined on I(») U 1), Note that W, is a Weyl group of type By,. By

Lemma 2.1.1, we have also &(w) = e(wo)(—1!@™) (=) L (= 1)IE) s (=1,
‘We obtain

©
"
@e(Py) = 8(U10)X,(0> Py x XN,) p 1_[ xx<’<) where

— P ()—
Pp= Y (1), (]‘[x,. wov @ P).

v(p)er(p) icl

The functions Py, k = 0, ..., p — 1 can be computed as in the odd case. For P, observe that

each v») ¢ W, can be written () = ¢o according to the decomposition of W, as the

semidirect product (Z/27Z)"» o S;». We have then for any a = 1,...,rp, wov P (i (p))

&(a)(p + (o (a) — 1)¢). This yields

p
(p) — —1)t)—
P, = Z (_1)1(1)" )fpe (1_[ X §(a)(p+(o(@)—11) P)

U(p)gwl(p) a=1

"p 1-£(a)
1P - —§0(a)
= E (— DI | |xi(p> 2 .
a:l a

U(p)EWI(P)
Thus
p. — -1/2 1(w®) » L —(fl—%) =Py
p= [ > (=1 RS B B = X0 A1 5,
iel® VP EW, () a=1
where

Al(p>,3rp = 1_[ ( - i_/) 1_[ (1 —)Crxs) l_[ (1 —x,~).

i<ji,jel® r<s r,sel® iel)
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Indeed the half sum of positive roots is equal to (%, cesTp — %) in type B,. This means that
when £ is even

p—1
(0) (k) (p)
_ w W W
Pe(Py) = e(wo)x; ) Aj0 H Xya Axw X Xy, A[(p),g,p
k=1

where 1P’ = uP) — (1, ..., rp). In particular the computation of ¢ (P,) makes positive roots
appear corresponding to a root system of type B,,. These roots do not belong to the root lattice
associated with Sp»,. Hence, there cannot exist an analogue of Theorem 3.2.3 when ¢ is even.
With the previous notation, we only obtain:

Proposition 3.2.5. Suppose G = SP,, and { = 2p.

o If card(1?) # Jcard(J ), card(IP) # Lcard(JP)) or there exists k € {1, ..., p—1} such
that card(X®) # card(J®) then g¢(s,) = 0.

o Otherwise, the coefficients appearing in the decomposition of @ (s,) on the basis of Weyl
characters cannot be interpreted as branching coefficients and have signs alternatively
positive and negative.

3.2.3. For G = SOy,

As for G = Sp»,, the coefficients appearing in the decomposition of ¢g(s,) with £ = 2p on
the basis of Weyl characters cannot be interpreted as branching coefficients. Note that there is an
additional difficulty in this case. Indeed, ¢, (P,,) cannot be factorized as a product of polynomials
(1 — xP) where B € Z". For example, we have for SO4

x2
©2(P0,0) = @2 ((1 - ;) (1 —X1X2)) =1+ x;.

This is due to the incompatibility between the signatures defined on the Weyl groups of types B
and D when they are realized as subgroups of the permutation group S, .
So we will suppose £ = 2p — 1 in this paragraph. Recall that the elements of W are the signed

permutations w defined on J, = {n,...,1,1,...,n} such that card({i € I, | w(i) < 0}) is
even.Set K, = {n —1,. L, 1,01, ...,n— 1}. Each w € W can be written w = {o according
to the decomposition of W as the semidirect product (Z/27Z)"~!  S,,. For any x € J,, we have
then £(x) = 1 if w(x) > 0 and £(x) = —1 otherwise. Given w € W, we define w : J, — K,

such that w(x) = w(x) — &(x) for any x € J,,. Then w(X) = w(x).
For type D,, we have p = p, = (0, 1,...,n — 1) = p, — (1, ..., 1). Hence

w-p,=w-pp— EWD), ..., )0 = @A),...,WHn) =W - p,.
Then we obtain

P, = xl(ltl+0) . .x’(l/l,,,Jrnfl) Z g(w)xl—@(l) » -x;@(").
weW

Foranyk =0,...,¢ — 1, set
I®=(Gel,|pi+i—1=kmodt) and J® =(xeK,|x=kmodt). (38)

We then proceed essentially as in Section 3.2.2 by using @ instead of w and p,, = (0,1, ...,
n — 1) instead of p, = (1, ..., n). We only sketch below the main steps of the computation.
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Set rg = card(1©) and for anyk=1,..., p—1, sy = card(ly), ry = card(ly) + card(I;—_x).
Fork=1,..., p— 1, X® is defined as the increasing reordering of 7% U 1¢-5_Consider

i
1@ = (%)l c ]<0)) e Z"™ andfork > 0,

u = (sign(l)“"' + il _Zl + Slgn(’)k‘ c X(k)) c 7

‘We obtain

(0) (p) —w(i)—k
oitpw =t TT 0 zawm(n ST T )

k=1 iel© k=1iex®

We also have the equivalences

00 < l_[ xi—w(i) ﬁ ls_k[ x—w(l)+k> ?é 0

iel© k=1 jex®)

{G)w@) U7 = O , (39)
HHX®)=JEP foranyk=1,...,p—1
We can write J© = (—=(ro — 1)¢,...,0,...,(ro — D& andfork = 1,..., p,
JER = (—k —ogl, ..., —k + Beb), JO = (k= Bet, ... k+ axl)
with o + Br + 1 = r. Consider wg € W defined by
Do) =@ -1t forae(l, ..., ro} (40)

Wo(iP) = —k — gl + (@ — 1€ foranyk=1,...,p—1.

Denote by W the set of signed permutations w € W which verify (i) and (ii) in (39). We have
wo € W. Each w € W can be written w = wov where v = (v©@, D . (P-D) belongs to
the direct product W;©) x Sy X - - - x Syp-1) with W the Weyl group of type D,, defined on

7(0) U I(O). We have by Lemma 2.1.1 8(11)) — S(wo)(_1)l(v(0))(_1)l(r(])) X oo X (_1)1(1'([7—1)).
Set
© —wov @ (i)
Po= Y (=1 (Hx,- ’ )
vOew, () iex©
s ) 5y
P = Z (—1)’(’(”)@3 ( 1_[ x; 00 @ k) forany k € {1,..., p —1}.
t®eS 1 iex®
‘We obtain

o 2= w
@e(Py) = ‘9(w0)x7(0) Py 1_[ X;(k) Py
k=1

Given v @ e W,q), we define 7@ = v — g, where &,(i;) = 1 if v(i;) > 0 and —1

(0)) —

otherwise. By (40), we have for any a = 1, ..., rg, wov @ (i 2O (a)e. Moreover, since
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™™ e Sy,

ﬁot(k)(iék)) =—k—ol+(TP@ -1t foranya=1,...,r.

This yields
10 ©) o 50 —p5,
Po= Y (-1 l_[xi(o) =x,0 4,0 and
VO eW, a=1 "¢
0y 1 ®
_ 1(z ")) =t (a)+(ax+1) __ g
P = Z (=D l_lel}(zk) —xX(k>Ax<k)
a=

T(k)ESX(;;)
where foranyk =1,..., p—1,n, = —,o;k—i—(ak, ce k) = —pp (o +1, o +1) € 27,

Ao =] (1—x—f> [T -xx) and

X
i<j,ijel® L <s,rsel©

Ayw = l—[ (1—%) forany k=1,...,p—1.

i<ji,jex® !

This gives

Pe(Py) = 8(w0)x7<:;)7p;0A1(0) ﬁx;ﬁ*m Axw = e(wo)xﬁg)A,(m ﬁx?ii;Axm

k=1 k=1

where

1@ = (%j_l'ieI(O)>—(0,...,ro—1)le0, (41)
and foranyk=1,...,p—1,

p® = |iex® (sign(i)'uli aald —£1 i@k X“”)

—O,...,rk =D+ (o, ....,ax) € Z'*. (42)

Note that these formulas are essentially the same as for G = Spy,, except that we use
,o,’z =(0,...,n—1)instead of p, = (1, ..., n) for the half sum of positive roots. This gives the

following theorem, whose proof is identical to that of Theorem 3.2.3:

Theorem 3.2.6. Consider a partition i of length n and € = 2p — 1 a positive integer. Let 1©

and J© be as in (38). Foranyk =0, ..., p — 1, define the sets X® and J® by (31) and (38).

o If card(I ) # %(card(J(O)) +1) orif there exists k € {1, ..., p— 1} such that card(X®)
card(J X)), then ¢, (s,) = 0.

e Otherwise, set ro = card(I©) and foranyk =0,....,p—1,r, = card(X®). Let wy € W
be as in (40). Consider (’g) = O, ..., u D) where the n®’s are defined by (41) and
(42). Then (’Z) is a dominant weight of P}' withZ = {19, XM .. xP=D} and we have

Pe(sp) = e(wo)Scny 1.
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Example 3.2.7. Consider = (1,2,3,4,4,4,6,6) and take £ = 3. We have u + pg =
(1,3,5,7,8,9,12,13). Thus /¥ = {2,6,7}, XV = {8,4,1,3,5} and J© = {6,
3,6}, JD =1{5,2,1,4,7)and J® = {7,4,1, 2, 5}. In particular, «; = 2. Then £ © = (1,
and

3,0
2,2

\/u

M _ _ﬁ_1+3 _2_24_3 _5_3_,_3
l”L - 3 ’ 3 ’ 3 )

5+1 8+1
—— =443, —— —5+43
X 3 + 3 +>

=(-2,-1,0,1,1).
We have G7 >~ SO¢ X GLs.

3.24. For G = SO2,+1

Set L, = {m, ..., 1,0,1,..., n}. Each w € W can be written w = ¢o according to
the decomposition of W as the semidirect product (Z/27Z)" « S,. Given w € W we define
w : J, = L, such that w(x) = w(x) + %(1 — &(x)) forany x € J,. Forany y € L,, set
y* =3 + 1. We have then @(x) (wE)* = wkx) + 1.

Observe that p = p)/ = (2 % Lo, n— %) = On —(%,...,%).Thus

~ - 1
WP, =W Py — 5(5(1),---,5(71)) = (w(),...,wn) — 5(1,---, D).
This permits us to write
Py = xS gy DT, 43)
weW
Forany k =1, ..., £ (observe that k does not run over {0, ..., £ — 1} as for G = Spy, or SO7,),
set

I =(Gel, |pi+i=kmodt) and J® =(xeL,|x=kmod?). (44)

Note that (J®)* = J¢=k+D) We then proceed essentially as in Section 3.2.2 by using @ instead
of w. We are going to see that for G = S0y,41, there exists an analogue of Theorem 3.2.3
whatever the parity of £.

3.2.4.1. The even case £ = 2p. Forany k = 1,..., p, set sy = card(l(k)), e = card(l(k)) +
card(1“=**Dy and define X®© as the increasing reordering of 70U kD get

.(k
X® =0, i), (45)
Fork =1, ..., p consider the ry-tuple 1® such that
. . . 1+sign(i)
i+ i + sign(i)k — —5—=
u® = <sign(i)M|l| il gﬁ( ) 2 € X(k)) eZ'*.
Foranyi € I® withk =1, ..., p, we have xX; —wH-1 _ ;WD. Thus

I 0 T Pl I X0 T 5B T X0

iex® ieT® ie]E—k+l) iel® ieE—k+1)
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and by definition of the w s, (43) can be rewritten

P, = Hxxl&(: % Z (w) ﬁ 1—[ xi—ﬁ(i) % ﬁ x—k—s-l

weW k=1iex® k=1iex®
‘We obtain
p
—W(i)—k+1
o = [T X0 et (n I+ )
weWw k=1ijexk

We deduce the equivalences

P sk _
e (]_[ I xﬁ’“”’”) £0 e pXP)y = JE*D foranyk=1,...,p. (46)

k=0 ;e x k)
In particular, we must have card(J(e_k"’l)) = card(J(k)) = r¢. We can write

JERD — (k41 —oyl,...,—k+1+pBl) and
1<k):(k—/3k£,...,k+ak£)

with ax + Bx + 1 = rg. Consider wg € W defined by
Do) = —k+1 -l +(a—1e foranyk=1,...,p. (47)

Denote by W the set of signed permutations w € W which verify the right-hand side of (46).
We have wg € W. Each w € W can be written w = wov, where T = (t(V, ..., (")) belongs

to the direct product Sy X - - - X Sy(»). We have also by Lemma 2.1.1 e(w) = e (wo) (— ™) x
Cx (= DIE),
Foranyk=1,..., p, set

(k) —nt® (i —
Pk — Z ( 1)[(1’ ) ( l_[ xi wot™ (i) k-‘rl) )
t®eS iex®

‘We obtain
L uw
oo (Py) = e(wo) [ [ xleqo P
k=1

By (47), we have
wot(k)(iék)) =—k+1—al+ (r<k)(a) —1)¢ foranya=1,...,r.
This yields
P= 3 (- i) 1—[ —r<">(a)+<ak+1> *% Ay
t®eSyw
where forany k =1,...,p,ny = —pr + (x +1,..., 00 + 1) € Z'* and

X
Ay = 1_[ (1 - x—J> -
1

i<ji,jex®
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Note that the computation only makes root systems of type A appear in this case. This gives

p (k) P k
w =y, pn®
0e(Py) = ewo) [ [xyw “Axw =ewo) [ | xlew Axw
k=1 k=1
where forany k =1, ..., p,

M(k) = <sign(i) i€ X(k)>

— (Lo 1)+ Qs ey Otig1) € 2% (48)

i) + li] + sign(ik — 8@

L

Similarly to Theorem 3.2.3 we obtain:

Theorem 3.2.8. Consider a partition i of length n and £ = 2p a positive integer. For any

k=1,..., p define the sets x® g by (44) and (45).

e [fthere exists k € {1, ..., p} such that card(X®) #* Card(J(k)), then @¢(s,) = 0.

e Otherwise, foranyk = 1,..., p, set ry = card(X(k)). Let wg € W be as in (47). Consider
(‘g) =W, ..., u'P) where the u® s are defined by (48). Then (’Z) is a dominant weight
of P; withZ = {X(l), o X(p)} and we have

Pe(sp) = e(wo)S(ny 1.

Example 3.2.9. Consider © = (2,5,5,6,7,9) and £ = 2. Then K+ pe = 3,7,8, 10, 12,_15_).
Hence I = {1,2,6} and I, = {3,4,5}. Moreover, J» = {4,2,0 4 6} and J; = {5,3
1, 1,3, 5}. Then wy sends X| = {6,2, 1, 3,4, 5} on J,. This gives

w_6§4§§T123456
=@ 537201324635
by using (47). Hence
w_6§Z§§T123456
°=\56 4223113246 5)

We have ¢(u) = 1, @y = 2 and
u = (=7,-3,-1,4,5,6) — (1,2,3,4,5,6) + (3,3,3,3,3,3)
=(-5,-2,-1,3,3,3).
We have then G7 ~ G L.

3.2.4.2. The case £ = 2p + 1. In addition to the sets X®) k = 1, ..., p defined in (45), we

have also to consider I(P+1) = {; (pH), o ffjll)} This yields

LD (“l rivp ,(p+1)>
¢

We have

P
ey L e
@e(Py) = x[(p+l) | |xX(k) X E e(w)ey ( | | x; w(i)—p | | | l x;w(z)— - )

weW iel(r+D k=1ijex®)
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and the equivalence

(T 1) e
1 1

iel(p+D k=1ijex®)

{G(X(k)) =JEKD forany k=1,...,p 49)

FAPHO YTPHY) = g = jo+D),

Indeed, (JP+D)* = JP+D In particular, we must have card(JP*D) = 2card(/P+V) =

2rp4+1. Thus we can set JPt) — (—p — (rps1 — DL, ..., —p +1rpy1€). Consider wg € W
defined by (47) and
Ty =—p+at foranya=1,...,rp1. (50)

Denote by W the set of signed permutations w € W which verify the right-hand side of (49).
We have wg € W. Each w € W can be written w = wqv, where v = (z(I, ..., ¢, v(p“))

belongs to the direct product Sy ) X- - - X Sy ) X Wyp+1). We have also e(w) = s(wo)(—l)’(’(l)) X
- x (=DM (I This permits us to write

(P,) = e(wp) w p 1 p o where
@) = 0)X ;1) £p+1 Xy Tk
k=1

Ppi= Y (—U“”“’““w( [] X.W”*“U)P)
i .
U(”+')€W,(p+1) iel(p+D)

The functions P,k =1, ..., p can be computed as in the even case. For P, 1, observe that each
Pt ¢ W;+1 can be written pP+h = ¢o witho € S;+1. According to this decomposition,

we have foranya =1,...,rp41, ﬁov@“)(iépﬂ)) =£&(a)(—p +o(a)l).

Tp+1
(p+1) — —p+ 0)—
Pp1 = E (=D Vg, <| |xi(f+(‘f))( pro@b) p)

v(p+1)ewl(l)+l) a=1

_ Z ( l)l(v(p'H)) 1—[ (Lf)(tl) ga(ll)
P

U(P+1)er(p+1)
Thus
'p+1 1
—1/2 (p+D —(a—73)
Ppy1 = 1_[ xX; / Z (=D (v(p'H) . H )ci(erl)2 )
iel(P+D VD EW (o) a=1

—Pr
p+l1
xl(p+1) A[(P+l)
X
j
A =[] (1 - —) [T d-xx JT a-x.
i<jijelw+D M s rsel D iel(P+D
This means that when £ is odd

(p+1)

P
®)
w "
0o (Pu) = ewo) [ [ ¥l Axw x X0ty Ay
k=1
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where

M<p+1) _ <Ml +£ +p

i€ 1<P+1)> (1, ..., rpt1) € Z0H1, (51)
This gives the following theorem:

Theorem 3.2.10. Consider a partition i of length n and £ = 2p + 1 a positive integer. Define
X©O Ok =1,..., pand IPTD JP+D by (44) and (45).

o If card(IP*D) # Icard(JP+D) or if there exists k € {1,..., p} such that card(X®)) #
card(J X)), then ¢, (s,) = 0.

o Otherwise, setrpy1 = card(](P+1) andforanyk =1,...,p,ry = card(X®). Let wg € W
verifying (47) and (50). Consider (‘Lf) = Pt 1D Py where the n® s are defined
by (48) and (51). Then (’2) is a dominant weight of P; with T = {1(1’“), xO X(l’)},
and we have

Pe(sp) = e(wo)Scny 1.

Example 3.2.11. Consider_,u_: (1,5,5,6,7,9) and take ¢ =_3._We have u + pe = (2,
10, 12, 15). Thus XV = {4,2,5,6}, I® = {1,3}and JV = (5,2,1,4}, JP = {4,1,2,5
particular o = 1. Then

10-1 7-1 12 15
M<1>=<_—_1+1 241 ——3+1,——4+1>

7,8
)1

3 3 "3 3
= (=2,-2,3,3)
and u(z)=(23i1—1,%—2):(0,1).M0reover, one has by using (47)
w_6§Z§§T123456
°“\3 05427123561 4
Hence
w_6§Z§§T123456
"\ 16532235614

and e(u) = 1. We have, moreover, G >~ SOs5 X GLy4.
4. Parabolic Kazhdan-Lusztig polynomials

We recall briefly in this section some basics on Affine Hecke algebras and parabolic
Kazhdan-Lusztig polynomials associated with classical root systems. The reader is referred
to [14,16] for detailed expositions. Note that the definition of the Hecke algebra used in [14]
coincides with that used in [9,16] (with generators H,,) up to the change ¢ — ¢!

4.1. Extended affine Weyl group

Consider a root system of type A,—i, By, C, or Dy. For any B € P, we denote by 7g the
translation defined in h by ¥ — y + B. The extended affine Weyl group W is the group

={wig |weW,B e P}
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with multiplication determined by the relations 71, = tg4, and wig = t,.pw. The group W is
not a Coxeter group but contains the affine Weyl group W generated by reflections through the
affine hyperplanes Hy x = {f € by | (B, a") = k}. It makes sense to define a length function on
W verifying

Iwtg) = Y [(B.a") + 1 (w- o) (52)
a€ER
where foranyw € W, 1g_(w-a) =0ifw-a € Ryandlp_(w-a)=1ifw-o € —Ry = R_.
Write ng for the element of maximal length in Wtg W. It follows from (52) that for any A € P,
we have [(wt,) = [(w) + [(#,). This gives

n) = wolty, (53)

where wy denotes the longest element of W. There exists a unique element € R, such that the
fundamental alcove

A={Bebi | (B a’)=0VaeRyand(B,n") <1}

is a fundamental region for the action of W on E)R This means that, for any 8 € b, the orbit
W- B intersects A in a unique point. Each w € W can be written in the form w = w qwafr, where
wagr € W and w A belongs to the stabilizer of A under the action of W. This implies that A is
also a fundamental domain for the action of W on b- The Bruhat ordering on W is defined by
taking the transitive closure of the relations

w < sw whenever [(w) < I(sw)

for all w € W and all (affine) reflections s € w.

In fact, the natural action of W on the weight lattice P obtained by considering P as a
sublattice of by, is not one which is relevant for our purpose. For any integer m € Z*, we obtain
a faithful representation 7, of Won P by setting forany B8,y € P,w ¢ W

Tp(w) -y =w-y and 7y(tg) -y =y +mp.

Warning: In the sequel, the extended affine Weyl group W acts on the weight lattice P via m_y
where £ is a fixed nonnegative integer.

We write for simplicity wig - y rather than 7_¢(wtg) - y. Hence for any w € W and any
B € P, wehave wtg - y = w -y — £w - B. The fundamental region for this new action of W on
P is the alcove A obtained by expanding A with the factor —¢. This gives

A, = bv=01,...,v)|0=>vy>--->v, > £} fortypes A, B,C
T lv=0n ) 0= = = > - > v, > £} for type D.

Consider a weight B € P. Then its orbit intersects .A; in a unique weight v. Then there is a
unique w(B) € W of minimal length such that w(B) - v = B. We denote by W, the stabilizer of
v e Ay in W. Since v € Ay, W, is in fact a subgroup of W.

Lemma 4.1.1. Consider .. € P and suppose £ > n. Then

1. wr + p) = et " with A* = —wo(A) and T = s152 - - - Sp—11g, for type A.
2. wlA + p) = ny, for types B, C and D.

Proof. 1. See Lemma 2.3 in [9].
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2. Observe first that wg - p = —p belongs to A, for types B, C, D since £ > n. We have

Lh+p=ty-p=tw-(wo-p)=twp-(—p).

Moreover W_, = {1}. Since —p € A, this means that w({X + p) = t_, W0 = Wolwy.(-1) =
wot;, = n,, where the last equality follows from (53). W

4.2. Affine Hecke algebra and K-L polynomials

The Hecke algebra associated with the root system R of type An, By, Cp or Dy is the
Zlq, q~'1-algebra defined by the generators T, w € W and relations

Twl Twz = TwlTwz lfl(wlw2) = l('LUl) + l(U)2),
TyTw=(q " —q)Ty + Tyw if [(s;w) <I(w)and i € I,.

-1

In particular, we have Ti2 = (g —q)T; + 1 for any i € I,. The bar involution on H is the

Z-linear automorphism defined by
q = q_l and T, = Tw__ll forany w € w.
Kazhdan and Lusztig have proved that there exists a unique basis {C;, | w € W} of H such that
C,=C, and C, = Z PywTy
y=w

where py w = 1 and py ., € gZl[q] for any y < w. We will refer to the polynomials py ., (q)
as Kazhdan—Lusztig polynomials. They are renormalizations of the polynomials Py ,, originally
introduced by Kazhdan and Lusztig in [6]. Specifically, we have p, , = q' W=t Py w

Let us define the g-partition function P, by

=Y Py’

aERL BeZr

Given X and p in P, the Lusztig g-analogue K, ,(g) is defined by
Kiu(@) =) ew)Py(wor— p).
weW

Then one has the following theorem due to Lusztig:

Theorem 4.2.1. Suppose A, u are dominant weights. Then K, ,,(q) = pn LT (q)-

One defines the action of the bar involution on the parabolic module P, = = Hv,ve Ay, by
setting g = ¢ “landh - v="h-v forany h € H. Deodhar has proved that there exist two bases
{C+ | A e W . viand {C, | A € W v} of P, belonging respectively to

[ zigin and Ly = [] Zlg~' 1
reW-v reWo
characterized by

_+ —_— _
C, =c; amd 16 =G
Cf =amodgL C; =imodg 'L
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We will only need the basis {C, | A € W v} in the sequel. The parabolic Kazhdan-Lusztig
polynomials P, are then defined by the expansion

C, = Z (_l)l(w(x))ﬂ(w(ﬂ))P;A(q_l)u
/L6W~k

(see [16] Theorem 3.5). In particular, they belong to Z[g]. Their expansion in terms of the
ordinary Kazhdan—Lusztig polynomials is given by the following theorem due to Deodhar:

Theorem 4.2.2. Consider v € Ay and ) € W - v. Then forany u € W - A, we have

P @)=Y =" puinzwn @ (54)

zeW,

with the notation of Section 4.1.

Remark. When v is regular, that is W, = {1}, we have P[’M (@) = Pw),wn)(@)-

5. Generalized Hall-Littlewood functions

5.1. Plethysm and parabolic K-L polynomials

Consider ¢ a nonnegative integer and ¢ € C such that ¢2 is a primitive £-th root of 1. We
briefly recall in this paragraph the arguments of [9] which establish that the coefficients of the
plethysm v, (s;) on the basis of Weyl characters are, up to a sign, parabolic Kazhdan—Lusztig
polynomials specialized at g = 1.

For any A € P, denote by V,(A) the finite dimensional U, (g)-module of highest weight A.
Its character is also the Weyl character s;. Let Uq’Z(g) be the Z[q, q‘l]—subalgebra of Uy(g)
generated by the elements

E® = ﬁ FO = ﬁ and K*!'
[k]:! ! [k]:! '
where E;, F;, K l.il, i € I, are the generators of U, (g). The indeterminate g can be specialized at
¢ in Uy 7,(g). Thus it makes sense to define U, (g) = U, 7(g) ®7Z1g,4~11 C, where Z[g, g~ '] acts
on C by g — ¢. Fix a highest weight vector v;, in V, (1). We have V(1) = U, (g) - v;. Similarly,
Ve (&) = Ur(g) - v;, is a Uy (g) module called a Weyl module, and one has char(V, (1)) = s;,. The
module V (4) is not simple but admits a unique simple quotient denoted by L(}).

From results due to Kazhdan—Lusztig and KashiwaraTanisaki, one obtains the following

decomposition of char(L (1)) on the basis of Weyl characters:

Theorem 5.1.1. Consider A € Py.
1. The character of L()\) decomposes on the form
char(L(1)) = Y (=1)/@+on=lwltonpr o (1)s, (55)
m

where the sum runs over the dominant weights u € Py such that u + p € W . (A + p).

2. The parabolic Kazhdan—Lusztig polynomials Pu ot p(q) have nonnegative integer
coefficients.
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Remark. The decomposition (55) has been conjectured by Kazhdan—Lusztig and proved by
Kashiwara-Tanisaki. In [5], Kashiwara and Tanisaki have also obtained that the parabolic
Kazhdan-Lusztig polynomials have nonnegative integer coefficients as soon as the Coxeter
system under consideration corresponds to the Weyl group of a Kac—Moody Lie algebra, as
in the particular context of this paper.

Consider a nonnegative integer £. The Frobenius map Fr, is the algebra homomorphism
defined from U, (g) to U(g) by Fr¢(K;) = 1 and

9 if ¢ divides k
0 otherwise

(k/t) . ..
(k) e if ¢ divides k k)
relE) {0 otherwise an re(Fi™) {

where ¢;, fi,i € I, are the Chevalley generators of the enveloping algebra U (g). This permits
us to endow each U (g)-module M with the structure of a U, (g)-module M Fre Then we have

char(M'™) = y,(char(M))
in particular for any A € Py, char(V (0)Frt) = Ye(sy).
q
Each dominant weight A € Py, can be uniquely decomposed in the form A = )rL+E A where
q
)rL,A e Py and)rL = ()(1, .. .,)r\,,) verifies 0 < £i+1 — i,- < {foranyi € I,.

Theorem 5.1.2. (Lusztig) The simple U, (g)-module L(}) is isomorphic to the tensor product

L)~ LGy ® V.

q
By replacing A by £X in the previous theorem, we have )r\ = 0and A = A. Thus L({X) =~
V (A)F¢. Then one deduces from (55) the equality

Yels) = char(L(E) = Y (DO pE (s,
n+peW-(r+p)

which shows that the coefficients of the expansion of 1 (s)) on the basis of Weyl characters are,
up to a sign, parabolic Kazhdan-Lusztig polynomials specialized at ¢ = 1. This gives

[(We(s2)s 50| = [{s2, 0G| = Py g (D

By definition of the action of W on P, we have W - r+p) = W - p. This implies the

Corollary 5.1.3 (Of Theorems 4.2.2 and 5.1.2). For any nonnegative integer £

Ye(sy) = ZA (_])l(w()h+/)))*](w(ll«+p)) P;/,_+p,fk+p(1)sﬂ‘
utpeWwW-p
In particular ¢(s,) # O if and only if u+ p € W - p,thatisu+p=w-p—LBwithw e W
and B € P.

Remark. The equivalence ¢(s,) # 0 <= pu +p € W - p can also be obtained as a more
elementary form from algorithms described in Section 3.2.
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5.2. Parabolic K-L polynomials and branching coefficients

Warning: In the sequel of the paper, we will suppose that £ is odd when the Lie groups under
consideration are of type C or D.
Under this hypothesis, we have for any u € P,¢¢(s;,) =0 or

Pe(sp) = e(wo)Scny 1 (56)
according to the results of Section 3.2.

Remark. According to the algorithms described in Section 3.2, when ¢;(s,) # O, the
cardinalities of the sets 1% or X% contained in Z are determined by those of the sets J®),
In particular they depend only on n and £ and not on the partition x considered. Thus in (56), the
underlying subgroup of Levi type G is, up to isomorphism, independent on 1.

By using Proposition 2.5.2 and Theorems 3.2.1, 3.2.3,3.2.6, 3.2.8 and 3.2.10, we deduce from
Corollary 5.1.3 the

Theorem 5.2.1. Forany A, u € Py, such that u + p € W - P

Pyt = [V : v (‘g)]

where (‘lf) and 7 are obtained from | and £ by applying the algorithms described in Section 3.2.
5.3. The functions Hﬁ

For any v € Py, we define the function Gf; by setting

¢ _ ) H
L= [V(,\) : VI(@)L“ (57)
reP,
where for any A € P, [V(X) : V7 (‘Lf)]q = Pﬂ;_py“ﬂ)(q). We also consider the function Hﬁ
such that
Hf =Gy,. (58)

Theorem 5.3.1. Consider a partition u € Py,.

1. The coefficients of Gf; and H;i on the basis of Weyl characters are polynomials in q with
nonnegative integer coefficients.
2. We have H& =5y

3. For ¢ sufficiently large, Hﬁ = ;L, that is Hﬁ coincide with the Hall-Littlewood function
associated with .

To prove our theorem, we need the following lemma:

Lemma 5.3.2. Consider § € 7.

e Intype A,—1, suppose £ > n. Then the weight {8 + p is regular.
e Intype B, C, or D,, suppose £ > 2n. Then the weight {8 + p is regular.
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Proof. Consider w € W and t,, such thatt,w - ({8 +p) = €8+ p. Thend =8 +p —w -
B + p) € (L7Z)%. Set B = (B1,...,Bn). Forany i = 1,...,n, the i-th coordinate of § is
8; = LBi + pi — LBw(i) — Pw(i)- Since §; € £Z, we must have ‘,oi — ,ow(,-)] € {Z. One verifies
easily that for type A,—1, [pi — pw(l-)’ < n — 1 and for types B,, C,, Dy, |,0i — pw()| < 2n.
Hence when the conditions of the lemma are Veriﬁed,| pi — pw(,-)| =O0foranyi =1,...,n. This
gives w = 1. The equality , w - ({8 + p) = £B + p implies then that y = 0. Thus the stabilizer
of £8 + p is reduced to {1}, thatis £8 + p isregular. W

Proof (Of Theorem 5.3.1).

1. Follows from Theorem 5.1.1 and (57).
2. When £ = 1, we have seen that G = G and (/) = p. Thus [V(2) : Vz (%)l # O only if
A= . Inthis case H} = s, for [V(A) : Vz (4)]lg =V : VW], = 1.

3. Suppose ¢ as in the previous lemma. We have [V (L) : V7 (eé‘)]q = PZ;JFP “er(q). Since

L) + p is regular for the action of W, we obtain by Theorem 4.2.2, Pritop “er(q) =
Pw(Cu+p),wer+p)(q). By using Lemma 4.1.1, we deduce P€71+p,0+p(Q) = Pn,.n;(q)- Now
by Theorem 4.2.1, this gives Ppiotrgp@ = Ko (@). Finally

0
Hﬁ = Z [V(k) : VI( 5):|qu = Z Ky 1 (q)sn = Q;L [} (59)

rePy, AEP,

Remarks. (i) By the previous theorem, the functions Hﬁ interpolate between the Weyl
characters and the Hall-Littlewood functions.

(i) When ¢ is even for types C and D, one can also define the functions Gft and H fi by setting
Gﬁ = erPn P;;+p,ﬂk+p(q)s)‘ and Hlf = Gfgu, respectively. When £ > 2n, we have yet
Hﬁ = Q). but the polynomials P ;. (g
branching coefficients.

(iii) The conditions £ > n for type A,,_ and £ > 2n for types B,, C,, D,, appear also naturally
in the algorithms of Section 3.2. When they are fulfilled, one has ¢;(s¢;,) = 0, or Ji = I for
anyk=1,...,nand Jy = I = @ fork & {1,...,n}. Then [({n)/¢] = pand G = H.
Hence [V(A) : V1 (’Z )] = K, for any A € P,. This yields equality (59) specialized at
q = 1.

) cannot be interpreted as quantizations of

6. Further remarks
6.1. Quantization of tensor product coefficients

Consider € P, and set u = (1@, ..., =) as in Theorem 3.2.1. For G = GL,, the

.....

.....

b @ =V ve () )L = Pl iy (@) (60)

By Theorem 5.1.1, C?M(O) = (g) have then nonnegative integer coefficients.
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In [10], we have shown that there also exists a duality between tensor product coefficients
for types B, C, D defined as the analogues of the Littlewood—Richardson coefficients by
counting the multiplicities of the isomorphic irreducible components in a tensor product of
irreducible representations and branching coefficients. These branching coefficients correspond
to the restriction of SO, to subgroups of the form SOy, x ---SOZ,p, where the r;’s are
positive integers summing n. These subgroups are not subgroups of Levi type; thus the
Littlewood—Richardson coefficients for types B, C, D cannot be quantified as in (60) by using
parabolic Kazhdan—Lusztig polynomials.

For G = §O2,,+1, Span or SOy, and A € P,, denote by U (A) the restriction of the irreducible
finite dimensional G L y-module of highest weight A to G. Consider a p-tuple (1, ..., u(P=D)
of partltlons such that u® € Py, forany k = 0,..., p — 1. One can define the coefficients
gu“’) (1) 8 the multiplicity of V(1) in QT(M(O)) ® - @ V(uP~D), that is such that

.....

A
D) @ @By = [ vy T,
rEP,

We have also obtained in [10] a duality result between the coefficients Qﬁ«» D and
branching coefficients corresponding to the restriction of G to the subgroup of Levi type
GLy, X -+ x GLy, ,. The coefficients KDZ(O),-»-,M“”” can be expressed by using a partition
function similarly to Proposition 2.5.1. By quantifying this partition function, one shows that
they admit nonnegative g-analogues. It is conjectured that stable one-dimensional sums defined
in [4] from affine crystals obtained by considering the affinizations of the classical root systems
are special cases of the g-analogues obtained in this way. Recall that the subgroups of Levi
type G obtained in the theorems of Section 3.2 are, up to isomorphism, determined only by G
and ¢. This implies that there exist subgroups of Levi type L in G which are not isomorphic to
a subgroup G7. This is, for instance, the case when G = Spy, for the subgroups of Levi type
Gz = GLyyx---x GL,IF1 such thatry > 1foranyk =0, ..., p—1.Indeed, by Theorem 3.2.3,

when ro = card(/©?) > 1, G7 is isomorphic to

Spary X GLy; x -+ x GL

Fp—1-

This implies that one cannot obtain in general a quantization of the tensor product coefficients

u0-D by using parabolic Kazhdan—Lusztig polynomials as in (60).

.....

6.2. Combinatorial description of the functions Gf;

When G = GL,, the functions Gﬁ defined in (57) admit the following combinatorial
description:

T €Taby (1)

where Tabg(u) is the set of f-ribbon tableaux of shape pu on I, and s the spin statistic
defined on ribbon tableaux (see [8] page 1057). Recently, Haglund, Haiman and Loehr have
obtained the expansion of the Macdonald polynomials in terms of simple renormalizations of
the LLT polynomials Gf;. This expansion yields a combinatorial formula for the Macdonald
polynomials [3].



190 C. Lecouvey / European Journal of Combinatorics 30 (2009) 157-191
This suggests investigating the following combinatorial problem:

Problem 6.2.1. Find a combinatorial description of the polynomials Gft and the g-analogues
[V : vz (‘;)]q related to the roots systems of type B, C or D.

6.3. Exceptional root systems

It is also possible to define the plethysm 1, and the dual plethysm ¢, for exceptional root
systems. Consider such an exceptional root system R and p a dominant weight for R. Denote
also by s, the Weyl character of the irreducible finite dimensional module of highest weight A.
When £ is sufficiently large (the bound depends on R), we have ¢¢(s,) = s,. For the other
values of €, one shows that the polynomials ¢, (e* [], R, (1 — %)) do not factorize in general

as a product of factors (1 — x#), where g is a positive root. This implies that one cannot define
generalized Hall-Littlewood functions for exceptional types by proceeding as in (58).

6.4. Stabilized plethysms

When G = Spy, or SO,, and £ is even, we have seen that the combinatorial methods of

Section 3 do not permit us to obtain the coefficients of the expansion of the plethysms ¢(s;)
on the basis of the Weyl characters. In [12], we show that this difficulty can be overcome
by considering stabilized power sum plethysms, i.e. by assuming n > £|A|. Under this
hypothesis, one can indeed prove that the coefficients in the expansion of ¢(s;) coincide for
G = SO2,+1, Spa, and SO»,. So it suffices to compute them in type B,, for which we have a
relevant combinatorial procedure in both cases £ even and £ odd.
Note: While revising a previous version of this work [11], I was informed that Grojnowski and
Haiman [2] also define, in a paper in preparation, generalized Hall-Littlewood polynomials for
reductive Lie groups. Their polynomials are introduced as formal q-characters depending on a
subgroup of Levi type. The coefficients of the corresponding expansion on the basis of the Weyl
characters are also affine parabolic Kazhdan—Lusztig polynomials. As far as the author can see,
the generalization of the Hall-Littlewood polynomials presented in the present paper satisfies
the general definition given in [2] (see Definition 5.12). Nevertheless, our combinatorial results
based on the study of the power sum plethysms on Weyl characters are completely independent
of the approach of Grojnowski and Haiman. It also naturally yields the family of polynomials
{Gf; | £ € N} in the spirit of the original work by Lascoux, Leclerc and Thibon [8].
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