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Abstract

We use power sums plethysm operators to introduce H functions which interpolate between the Weyl
characters and the Hall–Littlewood functions Q′ corresponding to classical Lie groups. The coefficients of
these functions on the basis of Weyl characters are parabolic Kazhdan–Lusztig polynomials and thus, by
works of Kashiwara and Tanisaki, are nonnegative. We prove that they can be regarded as quantizations of
branching coefficients obtained by restriction to certain subgroups of Levi type. The H functions associated
to linear groups coincide with the polynomials introduced by Lascoux, Leclerc and Thibon in [A. Lascoux,
B. Leclerc, J.Y. Thibon, Ribbon tableaux, Hall Littelwood functions, quantum affine algebras, J. Math.
Phys. 38 (1996) 1041–1068].
c© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Given µ a partition with at most n parts, the Hall Littlewood function Q′µ can be defined by

Q′µ =
∑
λ

Kλ,µ(q)sλ

where the sum runs over the partitions of length at most n, Kλ,µ(q) is the Lusztig q-analogue
of weight multiplicity associated with (λ, µ) and sλ the Schur function indexed by λ, that is
the Weyl character of the irreducible finite dimensional GLn-module V (λ). Since Kλ,µ(1) is
equal to the dimension of the weight space µ in V (λ), Q′µ can be regarded as a quantization
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of the homogeneous function hµ. In [8], Lascoux, Leclerc and Thibon have introduced a new
family of symmetric functions H `

µ depending on a fixed nonnegative integer ` which interpolate
between the Schur functions sµ and the Hall–Littlewood functions Q′µ. The polynomials H `

µ can
be combinatorially described in terms of the spin statistic on certain generalized Young tableaux
called `-ribbon tableaux. These ribbon tableaux naturally appear in the description of the action
of the power sum plethysm ψ` on symmetric functions. Recall that for any symmetric function
f , ψ`, ( f ) is obtained by replacing in f each variable xi by x`i . In particular, ψ` multiplies
the degrees by `. The space of symmetric functions is endowed with an inner product 〈·, ·〉
which makes the basis of the Schur functions orthonormal. Then ϕ`, the adjoint operator of ψ`,
divides the degrees by `. It is well known that ϕ`(sµ) can be computed from the Jacobi–Trudi
determinantal identity. Specifically, we have

ϕ`(sµ) = 0 or ϕ`(sµ) = ε(σ0)sµ(0) · · · sµ(`−1) (1)

where ε(σ0) = ±1 is the signature of a permutation σ0 ∈ Sn and (µ(0), . . . , µ(`−1)) a `-tuple of
partitions defined by ` and µ. By expanding ϕ`(sµ) on the basis of Schur functions, we obtain

ϕ`(sµ) = ε(σ0)
∑
λ

cλ
µ(0),...,µ(`−1)sλ (2)

where cλ
µ(0),...,µ(`−1) is the Littlewood–Richardson coefficient giving the multiplicity of V (λ) in

the tensor product V (µ(0)) ⊗ · · · ⊗ V (µ(`−1)). When ` = 1, one has ϕ`(s`µ) = sµ and when
` > n, one can prove that ϕ`(s`µ) = hµ. Thus the functions h(`)µ = ε(σ0)ϕ`(s`µ) interpolate
between the functions sµ and hµ and have nonnegative coefficients on the basis of the Schur
functions.

In [8], the authors have interpreted the algebra of symmetric functions as the bosonic Fock
space representation of the quantum affine Lie algebra Uq(ŝln). This permits us to introduce a
natural quantization ψq,` of the power sum plethysm ψ`. Let ϕq,` be the adjoint operator of ψq,`
with respect to 〈·, ·〉. The function H `

µ is then defined as a simple renormalization of ϕq,`(s`µ).
This gives an identity of the form

H `
µ =

∑
λ

cλ
µ(0),...,µ(`−1)(q)sλ

where the polynomial cλ
µ(0),...,µ(`−1)(q) is a q-analogue of cλ

µ(0),...,µ(`−1) .
Lusztig’s q-analogues Kλ,µ(q) are particular affine Kazhdan–Lusztig polynomials. These

polynomials arise in affine Hecke algebra theory as the entries of the transition matrix between
the natural basis and a special basis defined by Lusztig. By replacing the affine Hecke algebra
Ĥ by one of its parabolic modules Ĥν (ν being a weight of the affine root system under
consideration), Deodhar has introduced analogues of the Kazhdan–Lusztig polynomials. In [9],
it is shown that the family constituted by these parabolic Kazhdan–Lusztig polynomials contains
in particular the q-analogues cλ

µ(0),...,µ(`−1)(q). By a result of Kashiwara and Tanisaki [7], this

implies notably that the coefficients of the polynomial cλ
µ(0),...,µ(`−1)(q) are nonnegative integers.

The aim of the paper is to introduce analogues of the polynomials H `
µ for the classical

Lie groups G = SO2n+1, Sp2n and SO2n which interpolate between the Weyl characters and
the Hall–Littlewood functions associated with G. Write also sλ for the Weyl character of the
irreducible G-module V (λ) of highest weight λ. We define the plethysm operator ϕ` and its dual
ψ` on the Z-algebra generated by these Weyl characters. By a subgroup L ⊂ G of Levi type, we
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mean a subgroup of G isomorphic to the Levi subgroup of one of its parabolic subgroups. Given
γ a highest weight of L , we denote by [V (λ) : VL(γ )] the multiplicity of the irreducible
L-module VL(γ ) of highest weight γ in the restriction of V (λ) to L . Then, provided that `
is odd when G = Sp2n or SO2n , we establish for any Weyl character sµ such that ϕ`(sµ) 6= 0, a
formula of the type

ϕ`(sµ) = ε(w0)
∑
λ

[
V (λ) : VL

(µ
`

)]
sλ (3)

where ε(w0) is the signature of an element w0 ∈ W the Weyl group of G, L a subgroup of Levi
type of G and

(
µ
`

)
a dominant weight associated with L . The procedure which yields w0, L and(

µ
`

)
from ` and µ can be regarded as an analogue of the algorithm computing the `-quotient of a

partition which implicitly appears in (1). The identity (2) can also be rewritten as in (3). Indeed,
take L = GLr0 × · · · × GLr`−1 where for any k = 1, . . . , ` − 1, rk is the length of µ(k). Then(
µ
`

)
= (µ(0), . . . , µ(`−1)) can be interpreted as a dominant weight for the subgroup of Levi type

L of GLn , and we have the duality cλ
µ(0),...,µ(`−1) = [V (λ) : VL

(
µ
`

)
].

The surprising constraint ` odd when G = Sp2n or SO2n appearing in (3) follows from the
fact that the procedure givingw0, L and

(
µ
`

)
mentioned above depends not only on the Lie group

under consideration, but also on the parity of the integer `. For G = SO2n+1 the coefficients of
ε(w0)ϕ`(sµ) on the basis of Weyl characters are always branching coefficients corresponding to
restriction to L . For G = Sp2n or SO2n this is only true when ` is odd. Note that this difficulty
disappears for large ranks, that is for n ≥ ` |µ| (but see Section 6.4).

To define the functions H `
µ in type B,C or D, we prove the equalities∣∣〈ψ`(sλ), sµ〉

∣∣ = ∣∣〈sλ, ϕ`(sµ)〉∣∣ = P−µ+ρ,`λ+ρ(1)

which show that the coefficients of the expansion of ψ`(sλ) on the basis of Weyl characters are,
up to a sign, parabolic Kazhdan–Lusztig polynomials specialized at q = 1. By using (3) this
gives, providing ` is odd for G = Sp2n or SO2n[

V (λ) : VL

(µ
`

)]
= P−µ+ρ,`λ+ρ(1).

We then introduce the functions

G`
µ =

∑
λ

[
V (λ) : VL

(µ
`

)]
q

sλ

where [V (λ) : VL
(
µ
`

)
]q = P−µ+ρ,`λ+ρ(q). This yields nonnegative q-analogues of the branching

coefficients [V (λ) : VL
(
µ
`

)
]. The functions H `

µ are then defined by setting H `
µ = G`

`µ. We

obtain the identities H1
µ = sµ and H `

µ = Q′µ when ` is sufficiently large. Thus the functions H `
µ

interpolate between the Weyl characters and the Hall–Littlewood functions associated with G.
The paper is organized as follows. In Section 2 we recall the necessary background

on classical root systems, Weyl characters, subgroups of Levi type and their corresponding
branching coefficients. In Section 3, we define the plethysm operatorsψ` and their dual operators
ϕ`. By abuse of notation, we also denote by ϕ` the linear operator on the group algebra Z[Zn

]

with basis the formal exponentials (eβ) such that

ϕ`(eβ) =
{

eβ/` if β ∈ (`Z)n
0 otherwise

for any β ∈ Zn .
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We then show how the determination of ϕ`(sµ) can be reduced to the computation of the
polynomial

ϕ`

(
eµ

∏
α∈R+

(1− eα)

)
where R+ is the set of positive roots corresponding to the Lie group G. This permits us to
establish formulas (3) providing ` is odd when G = Sp2n or SO2n . For completeness, we have
also included the case G = GLn and shown why (3) cannot hold when ` is even and G = Sp2n or
SO2n . To make the paper self-contained, we have summarized in Section 4 some necessary results
on affine Hecke algebras and parabolic Kazhdan–Lusztig polynomials. Section 5 is devoted to
the definition of the polynomials G`

µ and H `
µ and to their links with the Weyl characters and

the Hall–Littlewood functions. Finally, we briefly discuss in Section 6 the problem of defining
nonnegative q-analogues of tensor product multiplicities when G 6= GLn . We add also a few
remarks concerning the exceptional root systems.

2. Background

2.1. Classical root systems

In the sequel, G is one of the complex Lie groups GLn, Sp2n, SO2n+1 or SO2n and g its Lie
algebra. We follow the convention of [7] to realize G as a subgroup of GL N and g as a subalgebra
of glN , where

N =

n when G = GLn
2n when G = Sp2n or SO2n
2n + 1 when G = SO2n+1.

With this convention, the maximal torus T of G and the Cartan subalgebra h of g coincide
respectively with the subgroup and the subalgebra of diagonal matrices of G and g. Similarly, the
Borel subgroup B of G and the Borel subalgebra b of g coincide respectively with the subgroup
and subalgebra of upper triangular matrices of G and g.

Let dN be the linear subspace of glN consisting of the diagonal matrices. For any i ∈ In =

{1, . . . , n}, write εi for the linear map εi : dN → C such that εi (D) = δn−i+1 for any diagonal
matrix D whose (i, i)-coefficient is δi . Then (ε1, . . . , εn) is an orthonormal basis of the Euclidean
space h∗R (the real part of h∗). Let (·, ·) be the corresponding nondegenerate symmetric bilinear
form defined on h∗R. Write R for the root system associated with G. For any α ∈ R, we set
α∨ = α

(α,α)
. The Lie algebra g admits the diagonal decomposition g = h ⊕

∐
α∈R gα . We take

for the set of positive roots:

R+ = {ε j − εi with 1 ≤ i < j ≤ n} for the root system An−1
R+ = {ε j − εi , ε j + εi with 1 ≤ i < j ≤ n} ∪ {εi with 1 ≤ i ≤ n}

for the root system Bn

R+ = {ε j − εi , ε j + εi with 1 ≤ i < j ≤ n} ∪ {2εi with 1 ≤ i ≤ n}
for the root system Cn

R+ = {ε j − εi , ε j + εi with 1 ≤ i < j ≤ n} for the root system Dn .

Let ρ be the half sum of positive roots. Set Jn = {n < · · · < 1 < 1 < · · · < n} where, for
each integer i = 1, . . . , n, we have written i for the negative integer −i . For any x ∈ Jn we
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have x = x and we set |x | = x if x > 0, |x | = x otherwise. Given a subset U ⊂ Jn , we define
|U | = {|x | | x ∈ U } and U = {x | x ∈ U }.

The Weyl group of GLn is the symmetric group Sn and for G = SO2n+1, Sp2n or SO2n , the
Weyl group W of the Lie group G is the subgroup of the permutation group of Jn generated by
the permutations

si = (i, i + 1)(i, i + 1), i = 1, . . . , n − 1 and sn = (n, n)
for the root systems Bn and Cn

si = (i, i + 1)(i, i + 1), i = 1, . . . , n − 1 and s′n = (n, n − 1)(n − 1, n)
for the root system Dn

where for a 6= b (a, b) is the simple transposition which switches a and b. For types Bn and
Cn , W is the group of signed permutations. It is the subgroup of the permutation group of Jn
consisting of the permutations w such that w(i) = w(i). For type Dn , the elements of W verify
the additional constraint card{i ∈ In | w(i) < 0} ∈ 2N. We identify the subgroup of W generated
by si = (i, i + 1)(i, i + 1), i = 1, . . . , n − 1 with the symmetric group Sn . The signature ε of
w ∈ W is defined by ε(w) = (−1)l(w), where l is the length function corresponding to the above
sets of generators. Consider the increasing sequence K = (i p, . . . , i1, i1, . . . , i p) ⊂ Jn . For
X = B, D set

WX,K = {w ∈ W of type Xn | w(x) = x for any x 6∈ K }.

Then, WX,K is isomorphic to the Weyl group of type X p. Let εX,K be the corresponding
signature.

Lemma 2.1.1. Consider X = B, D and w ∈ WX,K . Then we have εX,K (w) = ε(w).

Proof. Suppose X = B. The generators of the Weyl group WX,K are the tk = (ik, ik+1)

(ik, ik+1), k = 1, . . . , p − 1 and sn = (i p, i p). One verifies easily that, considered as elements
of W , they are of odd length. We proceed similarly when X = D. �

The action of w ∈ W on β = (β1, . . . , βn) ∈ h∗R is defined by

w · (β1, . . . , βn) = (β
w−1

1 , . . . , βw
−1

n ) (4)

where βwi = βw(i) if w(i) ∈ In and βwi = −βw(i) otherwise. The dot action of W on
β = (β1, . . . , βn) ∈ h∗R is defined by

w ◦ β = w · (β + ρ)− ρ. (5)

The fundamental weights of g belong to
(
Z
2

)n
. More precisely, we have ωi = (0i , 1i ) ∈ Nn

for i < n − 1 and also i = n − 1 for g 6= so2n , ωCn
n = (1n), ω

Bn
n = ω

Dn
n = ( 1

2
n
) and

ω
Dn
n−1 = (− 1

2 ,
1
2

n−1
). The weight lattice P of g can be considered as the Z-sublattice of

(
Z
2

)n

generated by the ωi , i ∈ I . For any β = (β1, . . . , βn) ∈ P , we set |β| = β1 + · · · + βn . Write
P+ for the cone of dominant weights of G. With our convention, a partition of length m is a
weakly increasing sequence of m nonnegative integers. Denote by Pn the set of partitions with
at most n parts. Each partition λ = (λ1, . . . , λm) ∈ Pn will be identified with the dominant
weight

∑m
i=1 λiεi . Then the irreducible finite dimensional polynomial representations of G are

parametrized by the partitions of Pn . For any λ ∈ Pn , denote by V (λ) the irreducible finite
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dimensional representation of G of highest weight λ. We will also need the irreducible rational
representations of GLn . They are indexed by the n-tuples

(γ−, γ+) = (−γ−q , . . . ,−γ
−

1 , γ
+

1 , γ
+

2 , . . . , γ
+
p ) (6)

where γ+ = (γ+1 , γ
+

2 , . . . , γ
+
p ) and γ− = (γ−1 , . . . , γ

−
q ) are partitions of length p and q such

that p + q = n. Write P̃n for the set of such n-tuples, and denote also by V (γ ) the irreducible
rational representation of GLn of highest weight γ = (γ−, γ+) ∈ P̃n .

In the sequel, our computations will also make appear root subsystems of the root systems
R described above. Suppose that G is of type Xn with Xn = An−1, Bn,Cn or Dn . Let
I = (i1, . . . , ir ) be an increasing sequence of integers belonging to In , that is ik ∈ In for any
k = 1, . . . , r and i1 < · · · < ir . Then

RI = {α ∈ R ∩ ⊕i∈I Zεi }

is a root subsystem of R of type Xr . Write R+I for the set of positive roots in RI . Then we have
R+I = RI ∩ R+. The dominant weights associated with RI have the form λ = (λ1, . . . , λn)

where λi 6= 0 only if i ∈ I and λ(I ) = (λi1 , . . . , λir ) ∈ Pr . We slightly abuse the notation by
identifying λ with λ(I ).

Consider an increasing sequence X = (x1, . . . , xr ) of integers belonging to Jn such that
|xk | = |xk′ | if and only if k = k′. For any integer i = 1, . . . , n, set εi = −εi . Then

RA,X = {±(εx j − εxi ) | 1 ≤ i < j ≤ r}

is a root subsystem of R of type Ar−1. To see this, consider the linear map θX : Zr
→ Zn

such that θX (εi ) = εxi . The map θ is injective and preserves the scalar product in Zr and Zn .
Moreover the root system {±(ε j − εi ) | 1 ≤ i < j ≤ r} ⊂ Zr of type Ar is sent on RA,X by θX .
The set of positive roots in RA,X is equal to R+A,X = RA,X ∩ R+. Denote by s ∈ {1, . . . , r} the
maximal integer such that xs < 0. We associate to X , the increasing sequence of indices I ⊂ In
defined by

I = (x s, . . . , x1, xs+1, . . . , xr ). (7)

It will be useful to consider the weights corresponding to RA,X as the r -tuples β = (βx1 , . . . , βxr )

with coordinates indexed by X . The coordinates (β ′1, . . . , β
′
n) of β on the initial basis (ε1, . . . , εn)

are such that β ′i = βxa if i = xa ∈ X, β ′i = −βxa if i = xa ∈ X and β ′i = 0 otherwise. With this
convention the dominant weights for RA,X have the form

λ(X) = (λx1 , . . . , λxr ) ∈ P̃r . (8)

This simply means that we have chosen to expand the weights of RA,X on the basis {εx | x ∈ X}
rather than on the basis {εi | i ∈ I } to preserve the identification of the dominant weights with
the nondecreasing r -tuples of integers.

Example 2.1.2. Take G = Sp10.

• For I = (2, 4, 5) we have

R+I = {ε5 ± ε4, ε5 ± ε2, ε4 ± ε2, 2ε2, 2ε4, 2ε5}

which is the set of positive roots of a root system of type C3. The weight λ = (1, 2, 2) is
dominant for G I . Considered as a weight of Sp10, we have λ = (0, 1, 0, 2, 2).
• For X = (5, 2, 1, 4) we have
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R+A,X = {ε4 − ε1, ε5 − ε2, ε1 + ε2, ε1 + ε5, ε4 + ε2, ε4 + ε5}

which is the set of positive roots of a root system of type A3. The weight γ = (−3,−1, 4, 5)
is dominant for G X . Considered as a weight of Sp10, we have γ = (4, 1, 0, 5, 3).

2.2. Subgroups of Levi type

Suppose G is a classical Lie group and consider R the corresponding root system. We
shall need Lie subgroups of G associated with particular sub-root systems of R. Each of these
subgroups will be of Levy type, that is, will be isomorphic to the Levi subgroup of one of the
parabolic subgroups of G.

Consider p ≥ 1 an integer. Let I (0) = (i (0)1 , . . . , i (0)r0 ) be an increasing sequence of integers

in In . For k = 1, . . . , p, consider increasing sequences X (k) = (x (k)1 , . . . , x (k)rk ) ⊂ Jn such that

card(X (k)) = rk . Let sk be maximal in {1, . . . , rk} such that x (k)sk < 0. Set

I (k) = (x (k)sk
, . . . , x (k)1 , x (k)sk+1, . . . , x (k)rk

) ⊂ In . (9)

We suppose that the sets I (k), k = 0, . . . , p are pairwise disjoint and verify ∪p
k=0 I (k) = In . Set

I = {I (0), X (1), . . . , X (p)} and

RI = RI (0) ∪

p⋃
k=1

RA,X (k) .

Then gI = h⊕
∐
α∈RI gα is a Lie subalgebra of g. Its corresponding Lie group GI is a subgroup

of G of Levi type, and we have

GI '


GLr0 × GLr1 × · · · × GLrp for G = GLn

SO2r0+1 × GLr1 × · · · × GLrp for G = SO2n+1
Sp2r0 × GLr1 × · · · × GLrp for G = Sp2n

SO2r0 × GLr1 × · · · × GLrp for G = SO2n .

The root system associated with GI is RI . Denote by P+I its cone of dominant weights. The
weight lattice of GI coincides with that of G, since the Lie algebras gI and g have the same
Cartan subalgebra. The elements of P+I are the (p + 1)-tuples λ = (λ(0), λ(1), . . . , λ(p)) where
λ(0) = (λi | i ∈ I (0)) is a dominant weight of RG,I (0) and for any k = 1, . . . , p, λ(k) = (λi |

i ∈ X (k)) is a dominant weight of RG,X (k) . For any λ ∈ P+I , we denote by VI(λ) the irreducible
finite dimensional GI -module of highest weight λ. Each weight β = (β(0), β(1), . . . , β(p)) ∈ PI
can be considered as a weight β = (β ′1, . . . , β

′
n) of P . With the convention (8), we have then

β ′i = βi (0)a
if i = i (0)a ∈ I (0) and for any k = 1, . . . , p, β ′i = βi (k)a

if i = i (k)a ∈ X (k), β ′i = −βi (k)a

if i = i (k)a ∈ X (k). In the sequel we identify the two expressions

β = (β(0), β(1), . . . , β(p)) and β = (β ′1, . . . , β
′
n) (10)

of the weights of PI .

2.3. Weyl characters and dual bases

We refer the reader to [13,15] for a detailed exposition of the results used in this paragraph.
We use as a basis of the group algebra Z[Zn

], the formal exponentials (eβ)β∈Zn satisfying the
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relations eβ1eβ2 = eβ1+β2 . We furthermore introduce n independent indeterminates x1, . . . , xn
in order to identify Z[Zn

] with the ring of polynomials Z[x1, . . . , xn, x−1
1 , . . . , x−1

n ] by writing

eβ = xβ1
1 · · · x

βn
n = xβ for any β = (β1, . . . , βn) ∈ Zn . Define the action of the Weyl group W

on Z[Zn
] by w · xβ = xw(β). The Weyl character sβ is defined by

sβ =
aβ+ρ

aρ
where aβ =

∑
w∈W

ε(σ )(w · xβ).

For any β ∈ Zn , we have

sβ =

{
ε(w)sλ if there exists w ∈ W and λ ∈ Pn such that λ = w ◦ β
0 otherwise.

(11)

Let A be the Z-algebra generated by the characters sλ, λ ∈ Pn . For any β ∈ Zn , denote by Wβ

the stabilizer of β under the action of the Weyl group W and by Wβ a set of representatives in
W/Wβ with minimal length. Then the functions

mβ =

∑
w∈Wβ

w · xβ

belong to A. Moreover {mλ | λ ∈ Pn} is a basis of A. We have the decomposition

sλ =
∑
µ∈Pn

Kλ,µmµ (12)

where Kλ,µ is equal to the dimension of the weight space µ in the irreducible representation
V (λ). There exists an inner product 〈·, ·〉 on A which makes the characters sλ orthonormal. We
denote by {hµ | µ ∈ Pn} the dual basis of {mλ | λ ∈ Pn} with respect to 〈·, ·〉. The homogeneous
functions hµ are given in terms of the Weyl characters by the decomposition

hµ =
∑
λ∈Pn

Kλ,µsλ. (13)

This decomposition is infinite in general when G 6= GLn . Nevertheless, by embedding A in
the ring Â of universal characters defined by Koike and Terada [7], it makes sense to consider
formal series in the characters sλ, λ ∈ Pn . Note that the function hµ is not the character of the
representation V (µ1ω1) ⊗ · · · ⊗ V (µnω1) when G 6= GLn ,. For any β ∈ Zn , we define the
function hβ by

hβ = hµ (14)

where µ is the unique dominant weight contained in the orbit W · β.

2.4. Jacobi–Trudi identities

Denote by Ln = K[[xβ ]] the vector space of formal series in the monomials xβ with
β ∈ Z. We identify the ring of polynomials Fn = K[xβ ] with the subspace of Ln containing the
finite formal series. The vector space Ln is not a ring since β ∈ Z. More precisely, the product
F1 · · · Fr of the formal series Fi =

∑
β∈Ei

xβ
(i)

i = 1, . . . , r is defined if and only if, for any

γ ∈ Zn, the number Nγ of decompositions γ = β(1) + · · · + β(r) such that β(i) ∈ Ei is finite,
and in this case we have
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F1 · · · Fr =
∑
γ∈Zn

Nγ xγ .

In particular, the product P · F with P ∈ Pn and F ∈ Ln is well defined.
Set

∇ =

∏
α∈R+

1
(1− xα)

and ∆ =
∏
α∈R+

(1− xα).

Then ∆ ∈ Fn and ∇ ∈ Ln . We define two linear maps

S :
{
Ln → Â
xβ 7→ sβ

and H :
{
Ln → Â
xβ 7→ hβ .

From Theorem 2.14 of [15], we obtain

Proposition 2.4.1. For any β ∈ Zn, sβ =
∑
w∈W ε(w)hβ+ρ−w·ρ .

By using the identity

∆ = xρ
∑
w∈W

ε(w)x−w·ρ (15)

the previous proposition is equivalent to the following identity:

S(xβ) = H(∆× xβ). (16)

Proposition 2.4.2. For any β ∈ Zn we have H(xβ) = S(∇ × xβ).

Proof. Denote by χ∆ and χ∇ the linear maps defined on Ln by setting χ∆(xβ) = ∆ × xβ

and χ∇(xβ) = ∇ × xβ respectively. By (16) we have S = H ◦ χ∆. Moreover for any
β ∈ Zn , χ∆ ◦ χ∇(xβ) = xβ . This gives S(∇ × xβ) = S ◦ χ∇(xβ) = H ◦ χ∆ ◦ χ∇(xβ) =
H(xβ). �

2.5. Branching coefficients for the restriction to subgroups of Levi type

Consider I = {I0, X1, . . . , X p} as in Section 2.2. The set I characterizes a subgroup GI ⊂ G
of Levi type. Set

∆I =
∏
α∈R+I

(1− xα) and ∇I =
∏

α∈R+−R+I

1
(1− xα)

.

Then ∆I ∈ Fn and ∇I ∈ Ln . Note that ∇I = ∇ ×∆I .
As a formal series, ∇I can be expanded in the form

∇I =
∑
γ∈Zn

PI(γ )xγ . (17)

Consider λ ∈ Pn and µ = (µ(0), . . . , µ(p)) a dominant weight associated with GI . We denote
by [V (λ) : VI(µ)] the multiplicity of the irreducible representation VI(µ) in the restriction of
V (λ) from G to GI . The proposition below follows from Theorem 8.2.1 in [1]:
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Proposition 2.5.1. Consider λ ∈ Pn and µ = (µ(0), . . . , µ(p)) a dominant weight of P+I . Then

[V (λ) : VI(µ)] =
∑
w∈W

ε(w)PI(w ◦ λ− µ).

Define the linear map{
SI : Ln → Â
xβ 7→ H(∆I × xβ).

For any dominant weight µ ∈ P+I , set

Sµ,I = H(∆I × xµ) = SI(x
µ). (18)

Proposition 2.5.2. With the above notations, we have

Sµ,I =
∑
λ∈Pn

[V (λ) : VI(µ)]sλ. (19)

Proof. For any β ∈ Zn , we have obtained in the proof of Proposition 2.4.2, the identity H(xβ) =
S ◦ χ∇(xβ). Denote by χ∆,I the linear map defined on Ln by setting χ∆,I(xβ) = ∆I × xβ . We
obtain SI(xβ) = H(∆I × xβ) = S ◦ χ∇ ◦ χ∆,I(xβ) = S(∇I × xβ)since ∇I = ∇ ×∆I . Thus
by (17) this yields SI(xβ) =

∑
γ∈Zn PI(γ )sβ+γ . For any γ , we know by (11) that sβ+γ = 0 or

there exists λ ∈ Pn, w ∈ W such that λ = w ◦ (β + γ ) and sβ+γ = ε(w)sλ. This permits us to
write

SI(x
β) =

∑
λ∈Pn

∑
w∈W

ε(w)PI(w ◦ λ− β)sλ.

When β = µ is a dominant weight of P+I , we obtain the desired identity by using
Proposition 2.5.1. �

Remarks. (i) When G = GI that is, when r0 = n and r1 = · · · = rp = 0, we have
µ = µ(0),∆I = ∆ and HI = H. Thus Sµ,I = sµ(0) . This can be recovered by using
(19) since in this case [V (λ) : VI(µ)] = 0, except when λ = µ(0).

(ii) When GI = H the maximal torus of G, that is when n = p + 1 and rk = 1 for any
k = 0, . . . , p, we have µi = µ

(i−1) for any i = 1, . . . , n, ∆I = 1 and HI(xβ) = hβ for
any β ∈ Zn . Hence Sµ,I = hµ. In this case [V (λ) : VI(µ)] = Kλ,µ for any λ ∈ Pn . Thus
(19) reduces to (13).

(iii) By (i) and (ii), the functions Sµ,I interpolate between the Weyl characters sµ and the
homogeneous functions hµ.

(iv) When G = GLn , we have the duality

[V (λ) : VI(µ)] = cλ
µ(0),...,µ(p)

where cλ
µ(0),...,µ(p)

is the Littlewood–Richardson coefficient associated with the multiplicity

of V (λ) in the tensor product Vµ = V (µ(0)) ⊗ · · · ⊗ V (µ(p)). Thus we can write
Sµ,I =

∑
λ∈Pn

cλ
µ(0),...,µ(p)

sλ. This means that Sµ,I is the character of Vµ. Such a duality
does not exist for G = Sp2n, SO2n+1 or SO2n , (but see Section 6).



C. Lecouvey / European Journal of Combinatorics 30 (2009) 157–191 167

3. Plethysm on Weyl characters

3.1. The operators Ψ` and ϕ`

Consider ` a positive integer. The power sum plethysm operator Ψ` is defined on A by
setting Ψ`(mβ) = m`β for any β = (β1, . . . , βn) ∈ Zn , where `β = (`β1, . . . , `βn). Since
{mλ | λ ∈ Pn} and {hλ | λ ∈ Pn} are dual bases for the inner product 〈·, ·〉, the adjoint operator
ϕ` of Ψ` verifies

ϕ`(hβ) =

{
hβ/` if β ∈ (`Z)n
0 otherwise

(20)

where β/` = (β1/`, . . . , βn/`) when β ∈ (`Z)n .
By abuse of notation, we also denote by Ψ` and ϕ` the linear operators respectively defined

on Ln by setting

Ψ`(x
β) = x`β and ϕ`(x

β) =

{
xβ/` if β ∈ (`Z)n
0 otherwise

for any β ∈ Zn . (21)

Remark. Since Ψ`(xβ×xβ
′

) = Ψ`(xβ)×Ψ`(xβ
′

) for any β, β ′ ∈ Zn the map Ψ` is a morphism
of algebra. This is not true for ϕ`. Nevertheless, if {i1, . . . , ir } and { j1, . . . , js} are disjoint subsets
of In, ι = (ι1, . . . , ιr ) ∈ Zr and γ = (γ1, . . . , γs) ∈ Zs , we have

ϕ`(x
ι1
i1
· · · x ιrir

× xγ1
j1
· · · xγr

jr
) = ϕ`(x

ι1
i1
· · · x ιrir

)× ϕ`(x
γ1
j1
· · · xγr

jr
). (22)

For any λ ∈ Pn , Ψ`(sλ) belongs to A, and thus decomposes on the basis {sµ | µ ∈ Pn}. Let
us write

Ψ`(sλ) =
∑
µ∈Pn

nλ,µsµ.

Since Ψ` and ϕ` are dual operators with respect to the scalar product 〈·, ·〉, we can write
nλ,µ = 〈Ψ`(sλ), sµ〉 = 〈sλ, ϕ`(sµ)〉. So we have

ϕ`(sµ) =
∑
λ∈Pn

nλ,µsλ.

By (16) and Proposition 2.4.1, we obtain the identity

sµ =
∑
w∈W

ε(w)hµ+ρ−w·ρ = H(∆× xµ).

Thus from (20) and (21), we derive ϕ`(sµ) = H(ϕ`(∆ × xµ)). Set Pµ = ∆ × xµ. From the
previous arguments, the coefficients nλ,µ are determined by the computation of ϕ`(Pµ).

3.2. Computation of ϕ`(Pµ)

For any i ∈ {n, . . . , 1}, we set xi =
1
xi

. This permits us to consider also variables indexed
by negative integers. Given X = (i1, . . . , ir ), an increasing sequence contained in Jn and
β = (β1, . . . , βr ) ∈ Zr , we set xβX = xβ1

i1
· · · xβr

ir
. We also denote by SX the group of

permutations of the set X . Each σ ∈ SX determines a unique permutation σ ∗ of the set {1, . . . , r}
defined by
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σ(i p) = iσ ∗(p) for any p = 1, . . . r. (23)

In the sequel, we identify for short σ and σ ∗. Similarly, given Z = (ur , . . . , u1, u1, . . . , ur )

an increasing sequence such that {u1, . . . , ur } ⊂ In , each signed permutation w defined on Z
will be identified with the signed permutation w∗ defined on Jr by w(u p) = uw∗(p) for any
p = 1, . . . , r.

Set ρn = (1, 2, . . . , n). For any w ∈ W we have w · ρn = (w(1), . . . , w(n)). This permits us
to write∑

w∈W

ε(w)x−w·ρn =

∑
w∈W

ε(w)x−w(1)1 · · · x−w(n)n . (24)

3.2.1. For G = GLn

Set κn = (1, . . . , 1) ∈ Zn . Since σ(κn) = κn for any σ ∈ Sn , one can replace ρ by
ρn = (1, 2, . . . , n) in (15). By using (24) we can write

Pµ = x (µ1+1)
1 · · · x (µn+n)

n

∑
σ∈Sn

ε(σ )x−σ(1)1 · · · x−σ(n)n

where µ = (µ1, . . . , µn). For any k ∈ {0, . . . , `− 1} consider the ordering sequences

I (k) = (i ∈ In | µi + i ≡ k mod `) and J (k) = (i ∈ In | i ≡ k mod `). (25)

Set rk = card(I (k)) and write I (k) = (i (k)1 , . . . , i (k)rk ). Then

µ(k) =

(
µi + i + `− k

`

∣∣∣∣ i ∈ I (k)
)
∈ Zrk .

We derive

Pµ = x`µ
(0)

I (0)
x`µ

(1)

I (1)
· · · x`µ

(`−1)

I (`−1)

∑
σ∈Sn

ε(σ )x−σ(1)1 · · · x−σ(n)n ×

`−1∏
k=0

rk∏
a=1

x−(`−k)

i (k)a
.

This gives

ϕ`(Pµ) = xµ
(0)

I (0)
xµ

(1)

I (1)
· · · xµ

(`−1)

I (`−1)

∑
σ∈Sn

ε(σ )ϕ`

(
`−1∏
k=0

rk∏
a=1

x−σ(i
(k)
a )−(`−k)

i (k)a

)
. (26)

The contribution of a fixed permutation σ ∈ Sn in the above sum is nonzero if and only if for any
k = 0, . . . , `− 1

i ∈ I (k) H⇒ σ(i) ≡ k mod `.

Thus we must have σ(I (k)) ⊂ J (k) for any k = 0, . . . , ` − 1. Since σ is a bijection,
I (k) ∩ I (k

′)
= J (k) ∩ J (k

′)
= ∅ if k 6= k′ and ∪0≤k≤`−1 I (k) = ∪0≤k≤`−1 J (k) = In , the

restriction of σ on Ik is a bijection from I (k) to J (k). In particular, card(J (k)) = card(I (k)) = rk .

This means that we have the equivalences

ϕ`

(
`−1∏
k=0

rk∏
a=1

x−σ(i
(k)
a )−(`−k)

i (k)a

)
6= 0⇐⇒ σ(I (k)) = J (k) for any k = 0, . . . , `− 1. (27)
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Write J (k) = (k, k + `, . . . , k + (rk − 1)`). Denote by σ0 ∈ Sn the permutation verifying

σ0(i
(k)
a ) = k + (a − 1)` (28)

for any k = 0, . . . , ` − 1 and any a = 1, . . . , rk . Let SI (k) be the permutation group of the
set I (k). The permutations σ which verify the right-hand side of (27) can be written σ = σ0τ ,
where τ = (τ (0), . . . , τ (`−1)) belongs to the direct product SI (0) × · · · × SI (`−1) . We have then
ε(σ ) = ε(σ0)(−1)l(τ

(0))
× · · · × (−1)l(τ

(p)).
For any k ∈ {0, . . . , `− 1}, set

Pk =
∑

τ (k)∈SI (k)

(−1)l(τ )ϕ`

(
rk∏

a=1

x−σ0τ
(k)(i (k)a )−(`−k)

i (k)a

)
.

From (22) and (26), we derive

ϕ`(Pµ) = ε(σ0)

`−1∏
k=0

xµ
(k)

I (k)
Pk .

Since σ0(i
(k)
a ) = k + (a − 1)`, we can write by (23) σ0τ

(k)(i (k)a ) = k + (τ (k)(a)− 1)`. Thus we
obtain

Pk =
∑

τ (k)∈SI (k)

(−1)l(τ )x−τ
(k)(1)

i (k)1

· · · x−τ
(k)(rk )

i (k)rk

= x
−ρrk
I (k)

∆I (k)

where ρrk = (1, 2, . . . , rk) and ∆I (k) =
∏

i< j i, j∈I (k)(1− x j/xi ). Finally, this gives

ϕ`(Pµ) = ε(σ0)

`−1∏
k=0

x
µ(k)−ρrk
I (k)

∆I (k) = ε(σ0)

`−1∏
k=0

xµ
(k)

I (k)
∆I (k)

where for any k = 0, . . . , `− 1,

µ(k) =

(
µi + i + `− k

`

∣∣∣∣ i ∈ I (k)
)
− (1, 2, . . . , rk) ∈ Zrk . (29)

Theorem 3.2.1. Consider a partition µ of length n and ` a positive integer. For any k =
0, . . . , `− 1, define the sets I (k) and J (k) as in (25).

• If there exists k ∈ {0, . . . , `− 1} such that card(I (k)) 6= card(J (k)) then ϕ`(sµ) = 0.
• Otherwise, for any k = 0, . . . , ` − 1, set rk = card(I (k)) = card(J (k)) and define σ0 as in

(28). Then each rk-tuple defined by (29) is a Partition, and we have

ϕ`(sµ) = ε(σ0)S(µ` ),I = ε(σ0)char(Vµ)

where I = {I (0), . . . , I (`−1)
},
(
µ
`

)
= (µ(0), . . . , µ(`−1)) and char(Vµ) is the character of the

GLn-module Vµ = V (µ(0))⊗ · · · ⊗ V (µ(`−1)).

Proof. One verifies easily from (29) that each µ(k) is a partition. By the previous computation,
we obtain

ϕ`(∆× xµ) = ε(σ0)∆I × x(
µ
` )
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(with the notation of Section 2.5). By definition of ϕ`, we have also

ϕ`(sµ) = ε(σ0)H ◦ ϕ`(∆× xµ) = ε(σ0)H(∆I × x(
µ
` )) = ε(σ0)S(µ` ),I

where the last equality follows from (18). �

Remark. The subgroup GI appearing in Theorem 3.2.1 is characterized by I =

{I (0), . . . , I (`−1)
}. This means that for type A, we have X (k) = I (k) for any k > 0 with the

notation of Section 2.2; that is the sets X (k) contain only positive indices.

Example 3.2.2. Consider µ = (1, 2, 3, 4, 4, 4, 6, 6) and take ` = 3. We have µ + ρ8 = (2, 4,
6, 8, 9, 10, 13, 14). Thus I (0) = {3, 5}, I (1) = {2, 6, 7}, I (2) = {1, 4, 8} and J (0) = {3, 6},
J (1) = {1, 4, 7}, J (2) = {2, 5, 8}. Then µ(0) = (1, 1), µ(1) = (1, 2, 2) and µ(2) = (0, 1, 2). We
have GI ' GL2 × GL3 × GL3.

3.2.2. For G = Sp2n

We have ρ = ρn = (1, 2, . . . , n). By using (24) we deduce the identity:

Pµ = x (µ1+1)
1 · · · x (µn+n)

n

∑
w∈W

ε(w)x−w(1)1 · · · x−w(n)n (30)

where W is the group of signed permutations defined on Jn = {n, . . . , 1, 1, . . . , n}, that is
the subgroup of permutations w ∈ SJn verifying w(x) = w(x) for any x ∈ Jn . Given
k ∈ {0, . . . , `− 1}, consider the ordering sequences

I (k) = (i ∈ In | µi + i ≡ k mod `) and J (k) = (x ∈ Jn | x ≡ k mod `). (31)

Set p = `
2 if ` is even and p = `−1

2 otherwise.

3.2.2.1. The odd case ` = 2p − 1. Set r0 = card(I (0)) and for any k = 1, . . . , p − 1,
sk = card(Ik), rk = card(Ik) + card(I`−k). Write X (k), k = 1, . . . , p for the increasing
reordering of I k ∪ I`−k . Set I (0) = (i (0)1 , . . . , i (0)r0 ) and for k > 0

X (k) = (i (k)1 , . . . , i (k)rk
). (32)

This means that I (k) = (i
(k)
sk
, . . . , i

(k)
1 ) and I (`−k)

= (i (k)sk+1 , . . . , i (k)rk ). To simplify the
computation, we are going to use the indices and the variables xi , i ∈ X (k) rather than the
variables xi , i ∈ I (k) ∪ I (`−k) when k ∈ {1, . . . , p − 1}.

Consider

µ(0) =

(
µi + i

`

∣∣∣∣ i ∈ I (0)
)
∈ Zr0 and for k > 0,

µ(k) =

(
sign(i)

µ|i | + |i | + sign(i)k
`

∣∣∣∣ i ∈ X (k)
)
∈ Zrk

where for any i ∈ Jn , sign(i) = 1 if i > 0 and −1 otherwise. For any i ∈ I , we have

x−w(i)i = x−w(i)
i

. Thus∏
i∈X (k)

x−w(i)i =

∏
i∈I (k)

x−w(i)i

∏
i∈I (`−k)

x−w(i)i and
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x (µ1+1)
1 · · · x (µn+n)

n = x`µ
(0)

I (0)

p−1∏
k=1

x`µ
(k)

X (k)

∏
i∈X (k)

x−k
i

by definition of the µ(k)’s. Then (30) can be rewritten

Pµ = x`µ
(0)

I (0)

p−1∏
k=1

x`µ
(k)

X (k)
×

∑
w∈W

ε(w)
∏

i∈I (0)
x−w(i)i

p−1∏
k=1

∏
i∈X (k)

x−w(i)i ×

p−1∏
k=1

∏
i∈X (k)

x−k
i .

This gives

ϕ`(Pµ) = xµ
(0)

I (0)

p−1∏
k=1

xµ
(k)

X (k)
×

∑
w∈W

ε(w)ϕ`

( ∏
i∈I (0)

x−w(i)i

p−1∏
k=1

∏
i∈X (k)

x−w(i)−k
i

)
.

The contribution of a fixed w ∈ W in the above sum is nonzero if and only if{
i ∈ I (0) H⇒ w(i) ≡ 0 mod `
i ∈ X (k) H⇒ w(i) ≡ −k mod ` for any k = 1, . . . , p − 1.

(33)

Thus we must havew(I
(0)
∪ I (0)) ⊂ J (0) and for any k = 1, . . . , p−1, w(X (k)) ⊂ J (`−k). Recall

that J
(0)
= J (0) and J

(`−k)
= J (k) for k = 1, . . . , p − 1. Moreover

I (0) ∪ I
(0)

p−1⋃
k=1

X (k) ∪ X
(k)
= Jn and J (0) ∪

p−1⋃
k=1

J (k) ∪ J (`−k)
= Jn .

Since the sets appearing on the left hand sides of these two equalities are pairwise disjoint, we

must have w(I
(0)
∪ I (0)) = J (0), and for k = 1, . . . , p − 1, w(X (k)) = J (`−k). In particular

card(J (0)) = 2 card(I (0)) = 2r0 and card(J (`−k)) = card(X (k)) = rk for any k = 1, . . . , p − 1.
We have the equivalences

ϕ`

( ∏
i∈I (0)

x−w(i)i

p−1∏
k=1

∏
i∈X (k)

x−w(i)+k
i

)
6= 0⇐⇒

(i)w(I
(0)
∪ I

(0)
) = J (0)

(ii)w(X (k)) = J (`−k)

for any k = 1, . . . , p − 1.
(34)

Note that condition (ii) can be rewritten: w(X
(k)
) = J (k) for any k = 1, . . . , p − 1.

We can set J (0) = (−r0`, . . . , r0`) and for k = 1, . . . , p − 1,

J (`−k)
= (−k − αk`, . . . ,−k + βk`), J (k) = (k − βk`, . . . , k + αk`)

with αk + βk + 1 = rk .

Consider w0 ∈ W defined by

w0(i
(0)
a ) = a` for a ∈ {1, . . . , r0} (35)

w0(i
(k)
a ) = −k − αk`+ (a − 1)` for any k = 1, . . . , p − 1.

Denote by W the set of signed permutations w which verify (i) and (ii) in (34). We have
w0 ∈ W . Each w ∈ W can be written w = w0v where v = (v(0), τ (1), . . . , τ (p−1))

belongs to the direct product WI (0) × SX (1) × · · · × SX (p−1) . Here WI (0) is the group of

signed permutations defined on I
(0)
∪ I (0) and for k = 1, . . . , p − 1, SX (k) is the group of
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signed permutations τ (k) defined on X
(k)
∪ X (k) and verifying τ (k)(X (k)) = X (k). Indeed if

τ (k)(x) ∈ X
(k)

and x ∈ X (k), we would have w(x) ∈ J (k) and x ∈ X (k) which contradicts
(ii). This means that SX (k) is, in fact, isomorphic to the symmetric group Srk . Since the sets
I (0) and X (k), k = 1, . . . , p − 1 are increasing subsequences of Jn , we have by Lemma 2.1.1
ε(w) = ε(w0)(−1)l(v

(0))(−1)l(τ
(1))
× · · · × (−1)l(τ

(p−1)).
Set

P0 =
∑

v(0)∈WI (0)

(−1)l(v
(0))ϕ`

( ∏
i∈I (0)

x−w0v
(0)(i)

i

)
and

Pk =
∑

τ (k)∈SX(k)

(−1)l(τ
(k))ϕ`

( ∏
i∈X (k)

x−w0τ
(k)(i)−k

i

)
, k ∈ {1, . . . , p − 1}.

We obtain

ϕ`(Pµ) = ε(w0)x
µ(0)

I (0)
P0

p−1∏
k=1

xµ
(k)

X (k)
Pk .

From (23) and (35), we have w0v
(0)(i (0)a ) = v(0)(a)` for any a = 1, . . . , r0 and

w0τ
(k)(i (k)a ) = −k − αk`+ (τ

(k)(a)− 1)` for any a = 1, . . . , rk .

This yields

P0 =
∑

v(0)∈WI (0)

(−1)l(v
(0))

r0∏
a=1

x−v
(0)(a)

i (0)a
= x
−ρr0
I (0)

∆I (0) and

Pk =
∑

τ (k)∈SX(k)

(−1)l(τ
(k))

rk∏
a=1

x−τ
(k)(a)+(αk+1)

i (k)a
= x

ηrk
X (k)

∆X (k)

where for any k = 1, . . . , p − 1, ηrk = −ρrk + (αk + 1, . . . , αk + 1) ∈ Zrk ,

∆I (0) =
∏

i< j i, j∈I (0)

(
1−

x j

xi

) ∏
r≤s r,s∈I (0)

(1− xr xs)

and ∆X (k) =
∏

i< j i, j∈X (k)

(
1−

x j

xi

)
for any k = 1, . . . , p − 1.

Finally, this gives

ϕ`(Pµ) = ε(w0)x
µ(0)−ρr0
I (0)

∆I (0)

p−1∏
k=1

x
µ(k)−ηrk
X (k)

∆X (k) = ε(w0)x
µ(0)

I (0)
∆I (0)

p−1∏
k=1

xµ
(k)

X (k)
∆X (k)

where

µ(0) =

(
µi + i

`

∣∣∣∣ i ∈ I (0)
)
− (1, . . . , r0) ∈ Zr0 (36)
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and for any k = 1, . . . , p − 1

µ(k) =

(
sign(i)

µ|i | + |i | + sign(i)k
`

∣∣∣∣ i ∈ X (k)
)
− (1, . . . , rk)

+ (αk + 1, . . . ., αk + 1) ∈ Zrk . (37)

Recall that the weights corresponding to the subgroup of Levi type GI are written following the
convention (8).

Theorem 3.2.3. Consider a partition µ of length n and ` = 2p − 1 a positive integer. Let I (0)

and J (0) be as in (31). For any k = 1, . . . , p − 1, define the sets X (k) and J (k) by (31) and (32).

• If card(I (0)) 6= 1
2 card(J (0)) or if there exists k ∈ {1, . . . , p − 1} such that card(X (k)) 6=

card(J (k)) then ϕ`(sµ) = 0.
• Otherwise, set r0 = card(I (0)) and for any k = 1, . . . , p − 1, rk = card(X (k)). Let w0 ∈ W

be as in (35). Consider
(
µ
`

)
= (µ(0), µ(1), . . . , µ(p−1)) where the µ(k)’s are defined by (36)

and (37). Then
(
µ
`

)
is a dominant weight of P+I with I = {I (0), X (1), . . . , X (p−1)

}, and we
have

ϕ`(sµ) = ε(w0)S(µ` ),I .

Proof. The proof is essentially the same as in Theorem 3.2.1. We obtain

ϕ`(∆× xµ) = ε(w0)∆I × x(
µ
` )

where on the right-hand side of the preceding equality
(
µ
`

)
is expressed on the basis {εi | i ∈ In}

(see (10)). This permits us to write, as in the case G = GLn ,

ϕ`(sµ) = ε(w0)H ◦ ϕ`(∆× xµ) = ε(w0)H(∆I × x(
µ
` )) = ε(w0)S(µ` ),I . �

Example 3.2.4. Consider µ = (1, 2, 3, 4, 4, 4, 6, 6) and take ` = 3. We have µ +

ρ8 = (2, 4, 6, 8, 9, 10, 13, 14). Thus I (0) = {3, 5}, X (1) = {7, 6, 2, 1, 4, 8} and J (0) =
{6, 3, 3, 6}, J (1) = {8, 5, 2, 1, 4, 7}, J (2) = {7, 4, 1, 2, 5, 8}. In particular α1 = 2. Then
µ(0) = (1, 1) and µ(1) =(

−
13− 1

3
− 1+ 3,−

10− 1
3
− 2+ 3,−

4− 1
3
− 3+ 3,

2+ 1
3
− 4+ 3,

8+ 1
3
− 5+ 3,

14+ 1
3
− 6+ 3

)
= (−2,−2,−1, 0, 1, 2)

with the convention (8). We have GI ' Sp4 × GL6.

3.2.2.2. The even case ` = 2p. With the same notation as in the odd case, (30) can be rewritten

Pµ = x`µ
(0)

I (0)
x`µ

(p)

I (p)

p−1∏
k=1

x`µ
(k)

X (k)
×

∑
w∈W

ε(w)
∏

i∈I (0)
x−w(i)i

∏
i∈I (p)

x−w(i)−p
i

p−1∏
k=1

∏
i∈X (k)

x−w(i)−k
i

where

µ(p) =

(
µi + i + p

`

∣∣∣∣ i ∈ I (p)
)
.
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This gives

ϕ`(Pµ) = xµ
(0)

I (0)
xµ

(p)

I (p)

p−1∏
k=1

xµ
(p)

X (k)
×

∑
w∈W

ε(w)ϕ`

×

( ∏
i∈I (0)

x−w(i)i

∏
i∈I (p)

x−w(i)−p
i

p−1∏
k=1

∏
i∈X (k)

x−w(i)−k
i

)
.

The contribution of a fixed w ∈ W in the above sum is nonzero if conditions (34) are verified
and

i ∈ I (p) H⇒ w(i) ∈ J (p).

Since p ≡ −p mod ` we have J (p) = J
(p)
= {−p − αp`, . . . ,−p, p, . . . , p + αp`}. This

implies that w(I (p) ∪ I
(p)
) = J (p) and thus card(I (p)) = 1

2 card(J (p)). We then define w0 by

requiring (35) and w0(i
(p)
a ) = p+ (a−1)` for a ∈ {1, . . . , rp}. By using similar arguments as in

the odd case, we obtain that w can be written w = w0ν where ν = (v(0), τ (1), . . . , τ (p−1), v(p))

belongs to the direct product WI (0) × SX (1) × · · · × SX (`−1) × WI (p) with WI (p) the group of
signed permutations defined on I (p) ∪ I (p). Note that WI (p) is a Weyl group of type Brp . By

Lemma 2.1.1, we have also ε(w) = ε(w0)(−1)l(v
(0))(−1)l(τ

(1))
× · · · × (−1)l(τ

(p))
× (−1)l(v

(p)).
We obtain

ϕ`(Pµ) = ε(w0)x
µ(0)

I (0)
P0 × xµ

(p)

I (p)
Pp

p−1∏
k=1

xµ
(k)

X (k)
Pk where

Pp =
∑

v(p)∈WI (p)

(−1)l(v
(p))ϕ`

( ∏
i∈I (p)

x−w0v
(p)(i)−p

i

)
.

The functions Pk, k = 0, . . . , p − 1 can be computed as in the odd case. For Pp, observe that
each v(p) ∈ WI (p) can be written v(p) = ζσ according to the decomposition of WI (p) as the
semidirect product (Z/2Z)rp ∝ SI (p) . We have then for any a = 1, . . . , rp, w0v

(p)(i (p)a ) =

ξ(a)(p + (σ (a)− 1)`). This yields

Pp =
∑

v(p)∈WI (p)

(−1)l(v
(p))ϕ`

( rp∏
a=1

x−ξ(a)(p+(σ (a)−1)`)−p
i

)

=

∑
v(p)∈WI (p)

(−1)l(v
(p))

rp∏
a=1

x
−

1−ξ(a)
2 −ξσ (a)

i (p)a
.

Thus

Pp =
∏

i∈I (p)
x−1/2

i

∑
v(p)∈WI (p)

(−1)l(v
(p))

(
v(p) ·

rp∏
a=1

x
−(a− 1

2 )

i (p)a

)
= x
−ρr p

I (p)
∆I (p),Br p

where

∆I (p),Br p
=

∏
i< j i, j∈I (p)

(
1−

x j

xi

) ∏
r<s r,s∈I (p)

(1− xr xs)
∏

i∈I (p)
(1− xi ).
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Indeed the half sum of positive roots is equal to ( 1
2 , . . . , rp −

1
2 ) in type Brp . This means that

when ` is even

ϕ`(Pµ) = ε(w0)x
µ(0)

I (0)
∆I (0)

p−1∏
k=1

xµ
(k)

X (k)
∆X (k) × xµ

(p)

I (p)
∆I (p),Br p

where µ(p) = µ(p) − (1, . . . , rp). In particular the computation of ϕ`(Pµ) makes positive roots
appear corresponding to a root system of type Brp . These roots do not belong to the root lattice
associated with Sp2n . Hence, there cannot exist an analogue of Theorem 3.2.3 when ` is even.
With the previous notation, we only obtain:

Proposition 3.2.5. Suppose G = S P2n and ` = 2p.

• If card(I (0)) 6= 1
2 card(J (0)), card(I (p)) 6= 1

2 card(J (p)) or there exists k ∈ {1, . . . , p−1} such
that card(X (k)) 6= card(J (k)) then ϕ`(sµ) = 0.
• Otherwise, the coefficients appearing in the decomposition of ϕ`(sµ) on the basis of Weyl

characters cannot be interpreted as branching coefficients and have signs alternatively
positive and negative.

3.2.3. For G = SO2n

As for G = Sp2n , the coefficients appearing in the decomposition of ϕ`(sµ) with ` = 2p on
the basis of Weyl characters cannot be interpreted as branching coefficients. Note that there is an
additional difficulty in this case. Indeed, ϕ`(Pµ) cannot be factorized as a product of polynomials
(1− xβ) where β ∈ Zn . For example, we have for SO4

ϕ2(P(0,0)) = ϕ2

((
1−

x2

x1

)
(1− x1x2)

)
= 1+ x2.

This is due to the incompatibility between the signatures defined on the Weyl groups of types B
and D when they are realized as subgroups of the permutation group SJn .

So we will suppose ` = 2p−1 in this paragraph. Recall that the elements of W are the signed
permutations w defined on Jn = {n, . . . , 1, 1, . . . , n} such that card({i ∈ In | w(i) < 0}) is
even. Set Kn = {n − 1, . . . , 1, 0, 1, . . . , n − 1}. Each w ∈ W can be written w = ζσ according
to the decomposition of W as the semidirect product (Z/2Z)n−1

∝ Sn . For any x ∈ Jn , we have
then ξ(x) = 1 if w(x) > 0 and ξ(x) = −1 otherwise. Given w ∈ W , we define ŵ : Jn → Kn
such that ŵ(x) = w(x)− ξ(x) for any x ∈ Jn . Then ŵ(x) = ŵ(x).

For type Dn , we have ρ = ρ′n = (0, 1, . . . , n − 1) = ρn − (1, . . . , 1). Hence

w · ρ′n = w · ρn − (ξ(1), . . . , ξ)(n) = (ŵ(1), . . . , ŵ(n)) = ŵ · ρn .

Then we obtain

Pµ = x (µ1+0)
1 · · · x (µn+n−1)

n

∑
w∈W

ε(w)x−ŵ(1)1 · · · x−ŵ(n)n .

For any k = 0, . . . , `− 1, set

I (k) = (i ∈ In | µi + i − 1 ≡ k mod `) and J (k) = (x ∈ Kn | x ≡ k mod `). (38)

We then proceed essentially as in Section 3.2.2 by using ŵ instead of w and ρ′n = (0, 1, . . . ,
n − 1) instead of ρn = (1, . . . , n). We only sketch below the main steps of the computation.
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Set r0 = card(I (0)) and for any k = 1, . . . , p− 1, sk = card(Ik), rk = card(Ik)+ card(I`−k).

For k = 1, . . . , p − 1, X (k) is defined as the increasing reordering of I
(k)
∪ I (`−k). Consider

µ(0) =

(
µi + i − 1

`

∣∣∣∣ i ∈ I (0)
)
∈ Zr0 and for k > 0,

µ(k) =

(
sign(i)

µ|i | + |i | − 1+ sign(i)k
`

∣∣∣∣ i ∈ X (k)
)
∈ Zrk .

We obtain

ϕ`(Pµ) = xµ
(0)

I (0)

p−1∏
k=1

xµ
(p)

X (k)
×

∑
w∈W

ε(w)ϕ`

( ∏
i∈I (0)

x−ŵ(i)i

p−1∏
k=1

∏
i∈X (k)

x−ŵ(i)−k
i

)
.

We also have the equivalences

ϕ`

( ∏
i∈I (0)

x−w(i)i

p−1∏
k=1

sk∏
i∈X (k)

x−ŵ(i)+k
i

)
6= 0

⇐⇒

{
(i)ŵ(I (0) ∪ I

(0)
) = J (0)

(ii)ŵ(X (k)) = J (`−k) for any k = 1, . . . , p − 1
. (39)

We can write J (0) = (−(r0 − 1)`, . . . , 0, . . . , (r0 − 1)`) and for k = 1, . . . , p,

J (`−k)
= (−k − αk`, . . . ,−k + βk`), J (k) = (k − βk`, . . . , k + αk`)

with αk + βk + 1 = rk . Consider w0 ∈ W defined by

ŵ0(i
(0)
a ) = (a − 1)` for a ∈ {1, . . . , r0} (40)

ŵ0(i
(k)
a ) = −k − αk`+ (a − 1)` for any k = 1, . . . , p − 1.

Denote by W the set of signed permutations w ∈ W which verify (i) and (ii) in (39). We have
w0 ∈ W . Each w ∈ W can be written w = w0v where v = (v(0), τ (1), . . . , τ (p−1)) belongs to
the direct product WI (0) × SX (1) ×· · ·× SX (p−1) with WI (0) the Weyl group of type Dr0 defined on

I
(0)
∪ I (0). We have by Lemma 2.1.1 ε(w) = ε(w0)(−1)l(v

(0))(−1)l(τ
(1))
× · · · × (−1)l(τ

(p−1)).
Set

P0 =
∑

v(0)∈WI (0)

(−1)l(v
(0))ϕ`

( ∏
i∈X (0)

x−ŵ0v
(0)(i)

i

)

Pk =
∑

τ (k)∈SX(k)

(−1)l(τ
(k))ϕ`

( ∏
i∈X (k)

x−ŵ0v
(k)(i)−k

i

)
for any k ∈ {1, . . . , p − 1}.

We obtain

ϕ`(Pµ) = ε(w0)x
µ(0)

I (0)
P0

p−1∏
k=1

xµ
(k)

X (k)
Pk .

Given v(0) ∈ WI (0) , we define v̂(0) = v(0) − ξv where ξv(ia) = 1 if v(ia) > 0 and −1
otherwise. By (40), we have for any a = 1, . . . , r0, ŵ0v

(0)(i (0)a ) = v̂(0)(a)`. Moreover, since
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τ (k) ∈ SX (k) ,

ŵ0τ
(k)(i (k)a ) = −k − αk`+ (τ

(k)(a)− 1)` for any a = 1, . . . , rk .

This yields

P0 =
∑

v(0)∈WI (0)

(−1)l(v
(0))

r0∏
a=1

x−v̂
(0)(a)

i (0)a
= x
−ρ′r0
I (0)

∆I (0) and

Pk =
∑

τ (k)∈SX(k)

(−1)l(τ
(k))

rk∏
a=1

x−τ
(k)(a)+(αk+1)

i (k)a
= x

ηrk
X (k)

∆X (k)

where for any k = 1, . . . , p−1, ηrk = −ρ
′
rk
+(αk, . . . , αk) = −ρrk+(αk+1, . . . , αk+1) ∈ Zrk ,

∆I (0) =
∏

i< j,i, j∈I (0)

(
1−

x j

xi

) ∏
r<s,r,s∈I (0)

(1− xr xs) and

∆X (k) =
∏

i< j,i, j∈X (k)

(
1−

x j

xi

)
for any k = 1, . . . , p − 1.

This gives

ϕ`(Pµ) = ε(w0)x
µ(0)−ρ′r0
I (0)

∆I (0)

p−1∏
k=1

x
µ(k)−ηrk
X (k)

∆X (k) = ε(w0)x
µ(0)

I (0)
∆I (0)

p−1∏
k=1

xµ
(k)

X (k)
∆X (k)

where

µ(0) =

(
µi + i − 1

`

∣∣∣∣ i ∈ I (0)
)
− (0, . . . , r0 − 1) ∈ Zr0 , (41)

and for any k = 1, . . . , p − 1,

µ(k) = | i ∈ X (k)
(

sign(i)
µ|i | + |i | − 1+ sign(i)k

`
| i ∈ X (k)

)
− (0, . . . , rk − 1)+ (αk, . . . ., αk) ∈ Zrk . (42)

Note that these formulas are essentially the same as for G = Sp2n , except that we use
ρ′n = (0, . . . , n − 1) instead of ρn = (1, . . . , n) for the half sum of positive roots. This gives the
following theorem, whose proof is identical to that of Theorem 3.2.3:

Theorem 3.2.6. Consider a partition µ of length n and ` = 2p − 1 a positive integer. Let I (0)

and J (0) be as in (38). For any k = 0, . . . , p − 1, define the sets X (k) and J (k) by (31) and (38).

• If card(I (0)) 6= 1
2 (card(J (0))+ 1) or if there exists k ∈ {1, . . . , p− 1} such that card(X (k)) 6=

card(J (k)), then ϕ`(sµ) = 0.
• Otherwise, set r0 = card(I (0)) and for any k = 0, . . . , p − 1, rk = card(X (k)). Let w0 ∈ W

be as in (40). Consider
(
µ
`

)
= (µ(0), . . . , µ(`−1)) where the µ(k)’s are defined by (41) and

(42). Then
(
µ
`

)
is a dominant weight of P+I with I = {I (0), X (1), . . . , X (p−1)

}, and we have

ϕ`(sµ) = ε(w0)S(µ` ),I .
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Example 3.2.7. Consider µ = (1, 2, 3, 4, 4, 4, 6, 6) and take ` = 3. We have µ + ρ′8 =
(1, 3, 5, 7, 8, 9, 12, 13). Thus I (0) = {2, 6, 7}, X (1) = {8, 4, 1, 3, 5} and J (0) = {6, 3, 0,
3, 6}, J (1) = {5, 2, 1, 4, 7} and J (2) = {7, 4, 1, 2, 5}. In particular, α1 = 2. Then µ(0) = (1, 2, 2)
and

µ(1) =

(
−

13− 1
3
− 1+ 3,−

7− 1
3
− 2+ 3,−

1− 1
3
− 3+ 3,

×
5+ 1

3
− 4+ 3,

8+ 1
3
− 5+ 3

)
= (−2,−1, 0, 1, 1).

We have GI ' SO6 × GL5.

3.2.4. For G = SO2n+1

Set Ln = {n − 1, . . . , 1, 0, 1, . . . , n}. Each w ∈ W can be written w = ζσ according to
the decomposition of W as the semidirect product (Z/2Z)n ∝ Sn . Given w ∈ W we define
w̃ : Jn → Ln such that w̃(x) = w(x) + 1

2 (1 − ξ(x)) for any x ∈ Jn . For any y ∈ Ln, set
y∗ = y + 1. We have then w̃(x) = (w(x))∗ = w(x)+ 1.

Observe that ρ = ρ′′n = (
1
2 ,

3
2 , . . . , n − 1

2 ) = ρn − (
1
2 , . . . ,

1
2 ). Thus

w · ρ′′n = w · ρn −
1
2
(ξ(1), . . . , ξ(n)) = (w̃(1), . . . , w̃(n))−

1
2
(1, . . . , 1).

This permits us to write

Pµ = x (µ1+1)
1 · · · x (µn+n)

n

∑
w∈W

ε(w)x−w̃(1)1 · · · x−w̃(n)n . (43)

For any k = 1, . . . , ` (observe that k does not run over {0, . . . , `− 1} as for G = Sp2n or SO2n),
set

I (k) = (i ∈ In | µi + i ≡ k mod `) and J (k) = (x ∈ Ln | x ≡ k mod `). (44)

Note that (J (k))∗ = J (l−k+1). We then proceed essentially as in Section 3.2.2 by using w̃ instead
of w. We are going to see that for G = SO2n+1, there exists an analogue of Theorem 3.2.3
whatever the parity of `.

3.2.4.1. The even case ` = 2p. For any k = 1, . . . , p, set sk = card(I (k)), rk = card(I (k)) +

card(I (`−k+1)) and define X (k) as the increasing reordering of I
(k)
∪ I (`−k+1). Set

X (k) = (i (k)1 , . . . , i (k)rk
). (45)

For k = 1, . . . , p consider the rk-tuple µ(k) such that

µ(k) =

(
sign(i)

µ|i | + |i | + sign(i)k − 1+sign(i)
2

`

∣∣∣∣∣ i ∈ X (k)
)
∈ Zrk .

For any i ∈ I (k) with k = 1, . . . , p, we have x−w̃(i)−1
i = x−w̃(i)

i
. Thus∏

i∈X (k)
x−w̃(i)i =

∏
i∈I

(k)

x−w̃(i)i

∏
i∈I (`−k+1)

x−w̃(i)i =

∏
i∈I (k)

x−w̃(i)−1
i

∏
i∈I (`−k+1)

x−w̃(i)i
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and by definition of the µ(k)’s, (43) can be rewritten

Pµ =
p∏

k=1

x`µ
(k)

X (k)
×

∑
w∈W

ε(w)

p∏
k=1

∏
i∈X (k)

x−w̃(i)i ×

p∏
k=1

∏
i∈X (k)

x−k+1
i .

We obtain

ϕ`(Pµ) =
p∏

k=1

xµ
(k)

X (k)
×

∑
w∈W

ε(w)ϕ`

(
p∏

k=1

∏
i∈X (k)

x−w̃(i)−k+1
i

)
.

We deduce the equivalences

ϕ`

(
p∏

k=0

sk∏
i∈X (k)

x−w(i)+k−1
i

)
6= 0⇐⇒ w̃(X (k)) = J (`−k+1) for any k = 1, . . . , p. (46)

In particular, we must have card(J (`−k+1)) = card(J (k)) = rk . We can write

J (`−k+1)
= (−k + 1− αk`, . . . ,−k + 1+ βk`) and

J (k) = (k − βk`, . . . , k + αk`)

with αk + βk + 1 = rk . Consider w0 ∈ W defined by

w̃0(i
(k)
a ) = −k + 1− αk`+ (a − 1)` for any k = 1, . . . , p. (47)

Denote by W the set of signed permutations w ∈ W which verify the right-hand side of (46).
We have w0 ∈ W . Each w ∈ W can be written w = w0v, where τ = (τ (1), . . . , τ (p)) belongs
to the direct product SX (1)×· · ·×SX (p) . We have also by Lemma 2.1.1 ε(w) = ε(w0)(−1)l(τ

(1))
×

· · · × (−1)l(τ
(p)).

For any k = 1, . . . , p, set

Pk =
∑

τ (k)∈SX(k)

(−1)l(τ
(k))ϕ`

( ∏
i∈X (k)

x−w̃0τ
(k)(i)−k+1

i

)
.

We obtain

ϕ`(Pµ) = ε(w0)

p∏
k=1

xµ
(k)

X (k)
Pk .

By (47), we have

w0τ
(k)(i (k)a ) = −k + 1− αk`+ (τ

(k)(a)− 1)` for any a = 1, . . . , rk .

This yields

Pk =
∑

τ (k)∈SX(k)

(−1)l(τ
(k))

rk∏
a=1

x−τ
(k)(a)+(αk+1)

i (k)a
= x

ηrk
X (k)

∆X (k)

where for any k = 1, . . . , p, ηrk = −ρrk + (αk + 1, . . . , αk + 1) ∈ Zrk and

∆X (k) =
∏

i< j i, j∈X (k)

(
1−

x j

xi

)
.



180 C. Lecouvey / European Journal of Combinatorics 30 (2009) 157–191

Note that the computation only makes root systems of type A appear in this case. This gives

ϕ`(Pµ) = ε(w0)

p∏
k=1

x
µ(k)−ηrk
X (k)

∆X (k) = ε(w0)

p∏
k=1

xµ
(k)

X (k)
∆X (k)

where for any k = 1, . . . , p,

µ(k) =

(
sign(i)

µ|i | + |i | + sign(i)k − 1+sign(i)
2

`

∣∣∣∣∣ i ∈ X (k)
)

− (1, . . . , rk)+ (αk+1, . . . ., αk+1) ∈ Zrk . (48)

Similarly to Theorem 3.2.3 we obtain:

Theorem 3.2.8. Consider a partition µ of length n and ` = 2p a positive integer. For any
k = 1, . . . , p define the sets X (k), J (k) by (44) and (45).

• If there exists k ∈ {1, . . . , p} such that card(X (k)) 6= card(J (k)), then ϕ`(sµ) = 0.
• Otherwise, for any k = 1, . . . , p, set rk = card(X (k)). Let w0 ∈ W be as in (47). Consider(

µ
`

)
= (µ(1), . . . , µ(p)) where the µ(k)’s are defined by (48). Then

(
µ
`

)
is a dominant weight

of P+I with I = {X (1), . . . , X (p)} and we have

ϕ`(sµ) = ε(w0)S(µ` ),I .

Example 3.2.9. Consider µ = (2, 5, 5, 6, 7, 9) and ` = 2. Then µ + ρ6 = (3, 7, 8, 10, 12, 15).
Hence I1 = {1, 2, 6} and I2 = {3, 4, 5}. Moreover, J2 = {4, 2, 0, 2, 4, 6} and J1 = {5, 3,
1, 1, 3, 5}. Then w̃0 sends X1 = {6, 2, 1, 3, 4, 5} on J2. This gives

w̃0 =

(
6 5 4 3 2 1 1 2 3 4 5 6
4 5 3 1 2 0 1 3 2 4 6 5

)
by using (47). Hence

w0 =

(
6 5 4 3 2 1 1 2 3 4 5 6
5 6 4 2 3 1 1 3 2 4 6 5

)
.

We have ε(µ) = 1, α1 = 2 and

µ(1) = (−7,−3,−1, 4, 5, 6)− (1, 2, 3, 4, 5, 6)+ (3, 3, 3, 3, 3, 3)

= (−5,−2,−1, 3, 3, 3).

We have then GI ' GL6.

3.2.4.2. The case ` = 2p + 1. In addition to the sets X (k), k = 1, . . . , p defined in (45), we
have also to consider I (p+1)

= {i (p+1)
1 , . . . , i (p+1)

rp+1 }. This yields

µ(p+1)
=

(
µi + i + p

`
| i ∈ I (p+1)

)
We have

ϕ`(Pµ) = xµ
(p+1)

I (p+1)

p∏
k=1

xµ
(k)

X (k)
×

∑
w∈W

ε(w)ϕ`

( ∏
i∈I (p+1)

x−w̃(i)−p
i

p∏
k=1

∏
i∈X (k)

x−w̃(i)−k−1
i

)
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and the equivalence

ϕ`

( ∏
i∈I (p+1)

x−w̃(i)−p
i

p∏
k=1

∏
i∈X (k)

x−w(i)+k−1
i

)
6= 0

⇐⇒

{
w̃(X (k)) = J (`−k+1) for any k = 1, . . . , p

w̃(I (p+1)
∪ I

(p+1)
) = J (`−p)

= J (p+1).
(49)

Indeed, (J (p+1))∗ = J (p+1). In particular, we must have card(J (p+1)) = 2card(I (p+1)) =

2rp+1. Thus we can set J (p+1)
= (−p − (rp+1 − 1)`, . . . ,−p + rp+1`). Consider w0 ∈ W

defined by (47) and

w̃0(i
(p+1)
a ) = −p + a` for any a = 1, . . . , rp+1. (50)

Denote by W the set of signed permutations w ∈ W which verify the right-hand side of (49).
We have w0 ∈ W . Each w ∈ W can be written w = w0v, where v = (τ (1), . . . , τ (p), v(p+1))

belongs to the direct product SX (1)×· · ·×SX (p)×WI (p+1) . We have also ε(w) = ε(w0)(−1)l(τ
(1))
×

· · · × (−1)l(τ
(p))(−1)l(v

(p+1)). This permits us to write

ϕ`(Pµ) = ε(w0)x
µ(p+1)

I (p+1) Pp+1

p∏
k=1

xµ
(k)

X (k)
Pk where

Pp+1 =
∑

v(p+1)∈WI (p+1)

(−1)l(v
(p+1))ϕ`

( ∏
i∈I (p+1)

x−w̃0v
(p+1)(i)−p

i

)
.

The functions Pk, k = 1, . . . , p can be computed as in the even case. For Pp+1, observe that each
v(p+1)

∈ WI (p+1) can be written v(p+1)
= ζσ with σ ∈ SI (p+1) . According to this decomposition,

we have for any a = 1, . . . , rp+1, w̃0v
(p+1)(i (p+1)

a ) = ξ(a)(−p + σ(a)`).

Pp+1 =
∑

v(p+1)∈WI (p+1)

(−1)l(v
(p+1))ϕ`

(rp+1∏
a=1

x−ξ(a)(−p+σ(a)`)−p

i (p+1)
a

)

=

∑
v(p+1)∈WI (p+1)

(−1)l(v
(p+1))

rp+1∏
a=1

x
−

1−ξ(a)
2 −ξσ (a)

i (p+1)
a

.

Thus

Pp+1 =
∏

i∈I (p+1)

x−1/2
i

∑
v(p+1)∈WI (p+1)

(−1)l(v
(p+1))

(
ν(p+1)

·

rp+1∏
a=1

x
−(a− 1

2 )

i (p+1)
a

)

= x
−ρr p+1

I (p+1) ∆I (p+1)

∆I (p+1) =

∏
i< j i, j∈I (p+1)

(
1−

x j

xi

) ∏
r<s r,s∈I (p+1)

(1− xr xs)
∏

i∈I (p+1)

(1− xi ).

This means that when ` is odd

ϕ`(Pµ) = ε(w0)

p∏
k=1

xµ
(k)

X (k)
∆X (k) × xµ

(p+1)

I (p+1) ∆I (p+1)
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where

µ(p+1)
=

(
µi + i + p

`

∣∣∣∣ i ∈ I (p+1)
)
− (1, . . . , rp+1) ∈ Zrp+1 . (51)

This gives the following theorem:

Theorem 3.2.10. Consider a partition µ of length n and ` = 2p + 1 a positive integer. Define
X (k), J (k)k = 1, . . . , p and I (p+1), J (p+1) by (44) and (45).

• If card(I (p+1)) 6= 1
2 card(J (p+1)) or if there exists k ∈ {1, . . . , p} such that card(X (k)) 6=

card(J (k)), then ϕ`(sµ) = 0.
• Otherwise, set rp+1 = card(I (p+1)) and for any k = 1, . . . , p, rk = card(X (k)). Let w0 ∈ W

verifying (47) and (50). Consider
(
µ
`

)
= (µ(p+1), µ(1), . . . , µ(p))where theµ(k)’s are defined

by (48) and (51). Then
(
µ
`

)
is a dominant weight of P+I with I = {I (p+1), X (1), . . . , X (p)},

and we have

ϕ`(sµ) = ε(w0)S(µ` ),I .

Example 3.2.11. Consider µ = (1, 5, 5, 6, 7, 9) and take ` = 3. We have µ + ρ6 = (2, 7, 8,
10, 12, 15). Thus X (1) = {4, 2, 5, 6}, I (2) = {1, 3} and J (1) = {5, 2, 1, 4}, J (2) = {4, 1, 2, 5}. In
particular α2 = 1. Then

µ(1) =

(
−

10− 1
3
− 1+ 1,−

7− 1
3
− 2+ 1,

12
3
− 3+ 1,

15
3
− 4+ 1

)
= (−2,−2, 3, 3)

and µ(2) = ( 2+1
3 − 1, 8+1

3 − 2) = (0, 1). Moreover, one has by using (47)

w̃0 =

(
6 5 4 3 2 1 1 2 3 4 5 6
3 0 5 4 2 1 2 3 5 6 1 4

)
.

Hence

w0 =

(
6 5 4 3 2 1 1 2 3 4 5 6
4 1 6 5 3 2 2 3 5 6 1 4

)
and ε(µ) = 1. We have, moreover, GI ' SO5 × GL4.

4. Parabolic Kazhdan–Lusztig polynomials

We recall briefly in this section some basics on Affine Hecke algebras and parabolic
Kazhdan–Lusztig polynomials associated with classical root systems. The reader is referred
to [14,16] for detailed expositions. Note that the definition of the Hecke algebra used in [14]
coincides with that used in [9,16] (with generators Hw) up to the change q → q−1.

4.1. Extended affine Weyl group

Consider a root system of type An−1, Bn,Cn or Dn . For any β ∈ P , we denote by tβ the
translation defined in h∗R by γ 7−→ γ + β. The extended affine Weyl group Ŵ is the group

Ŵ = {wtβ | w ∈ W, β ∈ P}
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with multiplication determined by the relations tβ tγ = tβ+γ and wtβ = tw·βw. The group Ŵ is
not a Coxeter group but contains the affine Weyl group W̃ generated by reflections through the
affine hyperplanes Hα,k = {β ∈ h∗R | (β, α

∨) = k}. It makes sense to define a length function on
Ŵ verifying

l(wtβ) =
∑
α∈R+

∣∣(β, α∨)+ 1R−(w · α)
∣∣ (52)

where for any w ∈ W , 1R−(w · α) = 0 if w · α ∈ R+ and 1R−(w · α) = 1 if w · α ∈ −R+ = R−.
Write nβ for the element of maximal length in W tβW . It follows from (52) that for any λ ∈ P+,
we have l(wtλ) = l(w)+ l(tλ). This gives

nλ = w0tλ (53)

where w0 denotes the longest element of W . There exists a unique element η ∈ R+ such that the
fundamental alcove

A = {β ∈ h∗R | (β, α
∨) ≥ 0 ∀α ∈ R+ and (β, η∨) < 1}

is a fundamental region for the action of W̃ on h∗R. This means that, for any β ∈ h∗R, the orbit
W̃ ·β intersectsA in a unique point. Each w ∈ Ŵ can be written in the form w = wAwaff, where
waff ∈ W̃ and wA belongs to the stabilizer of A under the action of Ŵ . This implies that A is
also a fundamental domain for the action of Ŵ on h∗R. The Bruhat ordering on Ŵ is defined by
taking the transitive closure of the relations

w < sw whenever l(w) < l(sw)

for all w ∈ Ŵ and all (affine) reflections s ∈ W̃ .
In fact, the natural action of Ŵ on the weight lattice P obtained by considering P as a

sublattice of h∗R is not one which is relevant for our purpose. For any integer m ∈ Z∗, we obtain
a faithful representation πm of Ŵ on P by setting for any β, γ ∈ P, w ∈ W

πm(w) · γ = w · γ and πm(tβ) · γ = γ + mβ.

Warning: In the sequel, the extended affine Weyl group Ŵ acts on the weight lattice P via π−`
where ` is a fixed nonnegative integer.

We write for simplicity wtβ · γ rather than π−`(wtβ) · γ . Hence for any w ∈ W and any
β ∈ P , we have wtβ · γ = w · γ − `w · β. The fundamental region for this new action of Ŵ on
P is the alcove A` obtained by expanding A with the factor −`. This gives

A` =
{
{ν = (ν1, . . . , νn) | 0 ≥ ν1 ≥ · · · ≥ νn > −`} for types A, B,C
{ν = (ν1, . . . , νn) | 0 ≥ − |ν1| ≥ ν2 ≥ · · · ≥ νn > −`} for type D.

Consider a weight β ∈ P . Then its orbit intersects A` in a unique weight ν. Then there is a
unique w(β) ∈ Ŵ of minimal length such that w(β) · ν = β. We denote by Wν the stabilizer of
ν ∈ A` in Ŵ . Since ν ∈ A`, Wν is in fact a subgroup of W .

Lemma 4.1.1. Consider λ ∈ P+ and suppose ` > n. Then

1. w(`λ+ ρ) = nλ∗τ−n+1 with λ∗ = −w0(λ) and τ = s1s2 · · · sr−1tε1 for type A.
2. w(`λ+ ρ) = nλ for types B,C and D.

Proof. 1. See Lemma 2.3 in [9].
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2. Observe first that w0 · ρ = −ρ belongs to A` for types B,C, D since ` > n. We have

`λ+ ρ = t−λ · ρ = t−λw0 · (w0 · ρ) = t−λw0 · (−ρ).

Moreover W−ρ = {1}. Since −ρ ∈ A`, this means that w(`λ + ρ) = t−λw0 = w0tw0·(−λ) =

w0tλ = nλ, where the last equality follows from (53). �

4.2. Affine Hecke algebra and K–L polynomials

The Hecke algebra associated with the root system R of type An, Bn,Cn or Dn is the
Z[q, q−1

]-algebra defined by the generators Tw, w ∈ Ŵ and relations

Tw1 Tw2 = Tw1 Tw2 if l(w1w2) = l(w1)+ l(w2),

Tsi Tw = (q
−1
− q)Tw + Tsiw if l(siw) < l(w) and i ∈ In .

In particular, we have T 2
i = (q−1

− q)Ti + 1 for any i ∈ In . The bar involution on Ĥ is the
Z-linear automorphism defined by

q = q−1 and Tw = T−1
w−1 for any w ∈ Ŵ .

Kazhdan and Lusztig have proved that there exists a unique basis {C ′w | w ∈ Ŵ } of Ĥ such that

C
′

w = C ′w and C ′w =
∑
y≤w

py,wTy

where pw,w = 1 and py,w ∈ qZ[q] for any y < w. We will refer to the polynomials py,w(q)
as Kazhdan–Lusztig polynomials. They are renormalizations of the polynomials Py,w originally
introduced by Kazhdan and Lusztig in [6]. Specifically, we have py,w = ql(w)−l(y)Py,w.

Let us define the q-partition function Pq by∏
α∈R+

1
1− qxα

=

∑
β∈Zn

Pq(β)x
β .

Given λ and µ in P , the Lusztig q-analogue Kλ,µ(q) is defined by

Kλ,µ(q) =
∑
w∈W

ε(w)Pq(w ◦ λ− µ).

Then one has the following theorem due to Lusztig:

Theorem 4.2.1. Suppose λ,µ are dominant weights. Then Kλ,µ(q) = pnµ,nµ(q).

One defines the action of the bar involution on the parabolic module Pν = Ĥν, ν ∈ A`, by
setting q = q−1 and h · ν = h · ν for any h ∈ Ĥ . Deodhar has proved that there exist two bases
{C+λ | λ ∈ Ŵ · ν} and {C−λ | λ ∈ Ŵ · ν} of Pν belonging respectively to

L+ν =
∐
λ∈Ŵ ·ν

Z[q]λ and L−ν =
∐
λ∈Ŵ ·ν

Z[q−1
]λ

characterized by{
C
+

λ = C+λ
C+λ ≡ λ mod q L+ν

and

{
C
−

λ = C−λ
C−λ ≡ λ mod q−1L−ν .
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We will only need the basis {C−λ | λ ∈ Ŵ · ν} in the sequel. The parabolic Kazhdan–Lusztig
polynomials P−λ,µ are then defined by the expansion

C−λ =
∑
µ∈Ŵ ·λ

(−1)l(w(λ))+l(w(µ))P−µ,λ(q
−1)µ

(see [16] Theorem 3.5). In particular, they belong to Z[q]. Their expansion in terms of the
ordinary Kazhdan–Lusztig polynomials is given by the following theorem due to Deodhar:

Theorem 4.2.2. Consider ν ∈ A` and λ ∈ Ŵ · ν. Then for any µ ∈ Ŵ · λ, we have

P−λ,µ(q) =
∑

z∈Wν

(−q)l(z) pw(µ)z,w(λ)(q) (54)

with the notation of Section 4.1.

Remark. When ν is regular, that is Wν = {1}, we have P−λ,µ(q) = pw(µ),w(λ)(q).

5. Generalized Hall–Littlewood functions

5.1. Plethysm and parabolic K–L polynomials

Consider ` a nonnegative integer and ζ ∈ C such that ζ 2 is a primitive `-th root of 1. We
briefly recall in this paragraph the arguments of [9] which establish that the coefficients of the
plethysm ψ`(sλ) on the basis of Weyl characters are, up to a sign, parabolic Kazhdan–Lusztig
polynomials specialized at q = 1.

For any λ ∈ P+, denote by Vq(λ) the finite dimensional Uq(g)-module of highest weight λ.
Its character is also the Weyl character sλ. Let Uq,Z(g) be the Z[q, q−1

]-subalgebra of Uq(g)
generated by the elements

E (k)i =
E (k)i

[k]i !
, F (k)i =

F (k)i

[k]i !
and K±1

i

where Ei , Fi , K±1
i , i ∈ In are the generators of Uq(g). The indeterminate q can be specialized at

ζ in Uq,Z(g). Thus it makes sense to define Uζ (g) = Uq,Z(g)⊗Z[q,q−1] C, where Z[q, q−1
] acts

on C by q 7→ ζ . Fix a highest weight vector vλ in Vq(λ). We have Vq(λ) = Uq(g) ·vλ. Similarly,
Vζ (λ) = Uζ (g) ·vλ is a Uζ (g)module called a Weyl module, and one has char(Vζ (λ)) = sλ. The
module Vζ (λ) is not simple but admits a unique simple quotient denoted by L(λ).

From results due to Kazhdan–Lusztig and KashiwaraTanisaki, one obtains the following
decomposition of char(L(λ)) on the basis of Weyl characters:

Theorem 5.1.1. Consider λ ∈ P+.

1. The character of L(λ) decomposes on the form

char(L(λ)) =
∑
µ

(−1)l(w(λ+ρ))−l(w(µ+ρ))P−µ+ρ,λ+ρ(1)sµ (55)

where the sum runs over the dominant weights µ ∈ P+ such that µ+ ρ ∈ Ŵ · (λ+ ρ).
2. The parabolic Kazhdan–Lusztig polynomials P−µ+ρ,λ+ρ(q) have nonnegative integer

coefficients.
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Remark. The decomposition (55) has been conjectured by Kazhdan–Lusztig and proved by
Kashiwara–Tanisaki. In [5], Kashiwara and Tanisaki have also obtained that the parabolic
Kazhdan–Lusztig polynomials have nonnegative integer coefficients as soon as the Coxeter
system under consideration corresponds to the Weyl group of a Kac–Moody Lie algebra, as
in the particular context of this paper.

Consider a nonnegative integer `. The Frobenius map Fr` is the algebra homomorphism
defined from Uζ (g) to U (g) by Fr`(Ki ) = 1 and

Fr`(E
(k)
i ) =

{
e(k/`)i if ` divides k
0 otherwise

and Fr`(F
(k)
i ) =

{
f (k/`)i if ` divides k
0 otherwise

where ei , fi , i ∈ In are the Chevalley generators of the enveloping algebra U (g). This permits
us to endow each U (g)-module M with the structure of a Uζ (g)-module MFr` . Then we have

char(MFr`) = ψ`(char(M))

in particular for any λ ∈ P+, char(V (λ)Fr`) = ψ`(sλ).

Each dominant weight λ ∈ P+, can be uniquely decomposed in the form λ =
r
λ+`

q
λ where

r
λ,

q
λ ∈ P+ and

r
λ = (

r
λ1, . . . ,

r
λn) verifies 0 ≤

r
λi+1 −

r
λi < ` for any i ∈ In .

Theorem 5.1.2. (Lusztig) The simple Uζ (g)-module L(λ) is isomorphic to the tensor product

L(λ) ' L(
r
λ)⊗ V (

q
λ)

Fr` .

By replacing λ by `λ in the previous theorem, we have
r
λ = 0 and

q
λ = λ. Thus L(`λ) '

V (λ)Fr` . Then one deduces from (55) the equality

ψ`(sλ) = char(L(`λ)) =
∑

µ+ρ∈Ŵ ·(`λ+ρ)

(−1)l(w(λ+ρ))−l(w(µ+ρ))P−µ+ρ,`λ+ρ(1)sµ

which shows that the coefficients of the expansion of ψ`(sλ) on the basis of Weyl characters are,
up to a sign, parabolic Kazhdan–Lusztig polynomials specialized at q = 1. This gives∣∣〈ψ`(sλ), sµ〉

∣∣ = ∣∣〈sλ, ϕ(sµ)〉∣∣ = P−µ+ρ,`λ+ρ(1).

By definition of the action of Ŵ on P , we have Ŵ · (`λ+ ρ) = Ŵ · ρ. This implies the

Corollary 5.1.3 (Of Theorems 4.2.2 and 5.1.2). For any nonnegative integer `

ψ`(sλ) =
∑

µ+ρ∈Ŵ ·ρ

(−1)l(w(λ+ρ))−l(w(µ+ρ))P−µ+ρ,`λ+ρ(1)sµ.

In particular ϕ(sµ) 6= 0 if and only if µ+ ρ ∈ Ŵ · ρ, that is µ+ ρ = w · ρ − `β with w ∈ W
and β ∈ P.

Remark. The equivalence ϕ(sµ) 6= 0 ⇐⇒ µ + ρ ∈ Ŵ · ρ can also be obtained as a more
elementary form from algorithms described in Section 3.2.
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5.2. Parabolic K–L polynomials and branching coefficients

Warning: In the sequel of the paper, we will suppose that ` is odd when the Lie groups under
consideration are of type C or D.

Under this hypothesis, we have for any µ ∈ Pnϕ`(sµ) = 0 or

ϕ`(sµ) = ε(w0)S(µ` ),I (56)

according to the results of Section 3.2.

Remark. According to the algorithms described in Section 3.2, when ϕ`(sµ) 6= 0, the
cardinalities of the sets I (k) or X (k) contained in I are determined by those of the sets J (k).
In particular they depend only on n and ` and not on the partition µ considered. Thus in (56), the
underlying subgroup of Levi type GI is, up to isomorphism, independent on µ.

By using Proposition 2.5.2 and Theorems 3.2.1, 3.2.3, 3.2.6, 3.2.8 and 3.2.10, we deduce from
Corollary 5.1.3 the

Theorem 5.2.1. For any λ,µ ∈ Pn such that µ+ ρ ∈ Ŵ · ρ

P−µ+ρ,`λ+ρ(1) =
[
V (λ) : VI

(µ
`

)]
where

(
µ
`

)
and I are obtained from µ and ` by applying the algorithms described in Section 3.2.

5.3. The functions H `
µ

For any µ ∈ Pn , we define the function G`
µ by setting

G`
µ =

∑
λ∈Pn

[
V (λ) : VI

(µ
`

)]
q

sλ (57)

where for any λ ∈ Pn , [V (λ) : VI
(
µ
`

)
]q = P−µ+ρ,`λ+ρ(q). We also consider the function H `

µ

such that

H `
µ = G`

`µ. (58)

Theorem 5.3.1. Consider a partition µ ∈ Pn .

1. The coefficients of G`
µ and H `

µ on the basis of Weyl characters are polynomials in q with
nonnegative integer coefficients.

2. We have H1
µ = sµ.

3. For ` sufficiently large, H `
µ = Q′µ, that is H `

µ coincide with the Hall–Littlewood function
associated with µ.

To prove our theorem, we need the following lemma:

Lemma 5.3.2. Consider β ∈ Zn .

• In type An−1, suppose ` > n. Then the weight `β + ρ is regular.
• In type Bn,Cn or Dn , suppose ` > 2n. Then the weight `β + ρ is regular.
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Proof. Consider w ∈ W and tγ such that tγw · (`β + ρ) = `β + ρ. Then δ = `β + ρ − w ·

(`β + ρ) ∈ (`Z)`. Set β = (β1, . . . , βn). For any i = 1, . . . , n, the i-th coordinate of δ is
δi = `βi + ρi − `βw(i) − ρw(i). Since δi ∈ `Z, we must have

∣∣ρi − ρw(i)
∣∣ ∈ `Z. One verifies

easily that for type An−1,
∣∣ρi − ρw(i)

∣∣ ≤ n − 1 and for types Bn,Cn, Dn
∣∣ρi − ρw(i)

∣∣ ≤ 2n.
Hence when the conditions of the lemma are verified,

∣∣ρi − ρw(i)
∣∣ = 0 for any i = 1, . . . , n. This

gives w = 1. The equality tγw · (`β + ρ) = `β + ρ implies then that γ = 0. Thus the stabilizer
of `β + ρ is reduced to {1}, that is `β + ρ is regular. �

Proof (Of Theorem 5.3.1).

1. Follows from Theorem 5.1.1 and (57).
2. When ` = 1, we have seen that G = GI and

(
µ
`

)
= µ. Thus [V (λ) : VI

(
µ
`

)
]q 6= 0 only if

λ = µ. In this case H1
µ = sµ for [V (λ) : VI

(
µ
`

)
]q = [V (λ) : V (λ)]q = 1.

3. Suppose ` as in the previous lemma. We have [V (λ) : VI
(
`µ
`

)
]q = P−`µ+ρ,`λ+ρ(q). Since

`λ + ρ is regular for the action of Ŵ , we obtain by Theorem 4.2.2, P−`µ+ρ,`λ+ρ(q) =

pw(`µ+ρ),w(`λ+ρ)(q). By using Lemma 4.1.1, we deduce P−`µ+ρ,`λ+ρ(q) = pnµ,nλ(q). Now

by Theorem 4.2.1, this gives P−`µ+ρ,`λ+ρ(q) = Kλ,µ(q). Finally

H `
µ =

∑
λ∈Pn

[
V (λ) : VI

(
`µ

`

)]
q

sλ =
∑
λ∈Pn

Kλ,µ(q)sλ = Q′µ. � (59)

Remarks. (i) By the previous theorem, the functions H `
µ interpolate between the Weyl

characters and the Hall–Littlewood functions.
(ii) When ` is even for types C and D, one can also define the functions G`

µ and H `
µ by setting

G`
µ =

∑
λ∈Pn

P−µ+ρ,`λ+ρ(q)sλ and H `
µ = G`

`µ, respectively. When ` > 2n, we have yet

H `
µ = Q′µ, but the polynomials P−µ+ρ,`λ+ρ(q) cannot be interpreted as quantizations of

branching coefficients.
(iii) The conditions ` > n for type An−1 and ` > 2n for types Bn,Cn, Dn appear also naturally

in the algorithms of Section 3.2. When they are fulfilled, one has ϕ`(s`µ) = 0, or Jk = Ik for
any k = 1, . . . , n and Jk = Ik = ∅ for k 6∈ {1, . . . , n}. Then [(`µ)/`] = µ and GI = H .
Hence [V (λ) : VI

(
µ
`

)
] = Kλ,µ for any λ ∈ Pn . This yields equality (59) specialized at

q = 1.

6. Further remarks

6.1. Quantization of tensor product coefficients

Consider µ ∈ Pn and set µ = (µ(0), . . . , µ(`−1)) as in Theorem 3.2.1. For G = GLn , the
duality cλ

(µ(0),...,µ(`−1))
= [V (λ) : VI

(
µ
`

)
] yields a q-analogue of the Littlewood–Richardson

coefficient cλ
(µ(0),...,µ(`−1))

defined by setting

cλ
(µ(0),...,µ(`−1))

(q) =
[
V (λ) : VI

(µ
`

)]
q
= P−µ+ρ,`λ+ρ(q). (60)

By Theorem 5.1.1, cλ
(µ(0),...,µ(`−1))

(q) have then nonnegative integer coefficients.
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In [10], we have shown that there also exists a duality between tensor product coefficients
for types B,C, D defined as the analogues of the Littlewood–Richardson coefficients by
counting the multiplicities of the isomorphic irreducible components in a tensor product of
irreducible representations and branching coefficients. These branching coefficients correspond
to the restriction of SO2n to subgroups of the form SO2r0 × · · · SO2rp , where the ri ’s are
positive integers summing n. These subgroups are not subgroups of Levi type; thus the
Littlewood–Richardson coefficients for types B,C, D cannot be quantified as in (60) by using
parabolic Kazhdan–Lusztig polynomials.

For G = SO2n+1, Sp2n or SO2n and λ ∈ Pn , denote by V(λ) the restriction of the irreducible
finite dimensional GL N -module of highest weight λ to G. Consider a p-tuple (µ(0), . . . , µ(p−1))

of partitions such that µ(k) ∈ Prk for any k = 0, . . . , p − 1. One can define the coefficients
Dλ
µ(0),...,µ(p−1) as the multiplicity of V (λ) in V(µ(0))⊗ · · · ⊗V(µ(p−1)), that is such that

V(µ(0))⊗ · · · ⊗V(µ(p−1)) '
∐
λ∈Pn

V (λ)
⊕Dλ

µ(0),...,µ(p−1) .

We have also obtained in [10] a duality result between the coefficients Dλ
µ(0),...,µ(p−1) and

branching coefficients corresponding to the restriction of G to the subgroup of Levi type
GLr0 × · · · × GLrp−1 . The coefficients Dλ

µ(0),...,µ(p−1) can be expressed by using a partition
function similarly to Proposition 2.5.1. By quantifying this partition function, one shows that
they admit nonnegative q-analogues. It is conjectured that stable one-dimensional sums defined
in [4] from affine crystals obtained by considering the affinizations of the classical root systems
are special cases of the q-analogues obtained in this way. Recall that the subgroups of Levi
type GI obtained in the theorems of Section 3.2 are, up to isomorphism, determined only by G
and `. This implies that there exist subgroups of Levi type L in G which are not isomorphic to
a subgroup GI . This is, for instance, the case when G = Sp2n for the subgroups of Levi type
GI ' GLr0×· · ·×GLrp−1 such that rk > 1 for any k = 0, . . . , p−1. Indeed, by Theorem 3.2.3,
when r0 = card(I (0)) > 1,GI is isomorphic to

Sp2r0 × GLr1 × · · · × GLrp−1 .

This implies that one cannot obtain in general a quantization of the tensor product coefficients
Dλ
µ(0),...,µ(p−1) by using parabolic Kazhdan–Lusztig polynomials as in (60).

6.2. Combinatorial description of the functions G`
µ

When G = GLn , the functions G`
µ defined in (57) admit the following combinatorial

description:

G`
µ =

∑
T∈Tab`(µ)

qs(T )xT

where Tab`(µ) is the set of `-ribbon tableaux of shape µ on In and s the spin statistic
defined on ribbon tableaux (see [8] page 1057). Recently, Haglund, Haiman and Loehr have
obtained the expansion of the Macdonald polynomials in terms of simple renormalizations of
the LLT polynomials G`

µ. This expansion yields a combinatorial formula for the Macdonald
polynomials [3].
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This suggests investigating the following combinatorial problem:

Problem 6.2.1. Find a combinatorial description of the polynomials G`
µ and the q-analogues

[V (λ) : VI
(
µ
`

)
]q related to the roots systems of type B,C or D.

6.3. Exceptional root systems

It is also possible to define the plethysm ψ` and the dual plethysm ϕ` for exceptional root
systems. Consider such an exceptional root system R and µ a dominant weight for R. Denote
also by sµ the Weyl character of the irreducible finite dimensional module of highest weight λ.
When ` is sufficiently large (the bound depends on R), we have ϕ`(sµ) = sµ. For the other
values of `, one shows that the polynomials ϕ`(eµ

∏
α∈R+(1 − eα)) do not factorize in general

as a product of factors (1 − xβ), where β is a positive root. This implies that one cannot define
generalized Hall–Littlewood functions for exceptional types by proceeding as in (58).

6.4. Stabilized plethysms

When G = Sp2n or SO2n and ` is even, we have seen that the combinatorial methods of
Section 3 do not permit us to obtain the coefficients of the expansion of the plethysms ϕ(sλ)
on the basis of the Weyl characters. In [12], we show that this difficulty can be overcome
by considering stabilized power sum plethysms, i.e. by assuming n ≥ ` |λ|. Under this
hypothesis, one can indeed prove that the coefficients in the expansion of ϕ(sλ) coincide for
G = SO2n+1, Sp2n and SO2n . So it suffices to compute them in type Bn , for which we have a
relevant combinatorial procedure in both cases ` even and ` odd.
Note: While revising a previous version of this work [11], I was informed that Grojnowski and
Haiman [2] also define, in a paper in preparation, generalized Hall–Littlewood polynomials for
reductive Lie groups. Their polynomials are introduced as formal q-characters depending on a
subgroup of Levi type. The coefficients of the corresponding expansion on the basis of the Weyl
characters are also affine parabolic Kazhdan–Lusztig polynomials. As far as the author can see,
the generalization of the Hall–Littlewood polynomials presented in the present paper satisfies
the general definition given in [2] (see Definition 5.12). Nevertheless, our combinatorial results
based on the study of the power sum plethysms on Weyl characters are completely independent
of the approach of Grojnowski and Haiman. It also naturally yields the family of polynomials
{G`

µ | ` ∈ N} in the spirit of the original work by Lascoux, Leclerc and Thibon [8].
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