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Abstract

This paper presents a numerical study of the gas–powder flow in a typical Lapple cyclone. The turbulence of gas flow is
obtained by the use of the Reynolds stress model. The resulting pressure and flow fields are verified by comparing with
those measured and then used in the determination of powder flow that is simulated by the use of a stochastic Lagrangian
model. The separation efficiency and trajectory of particles from simulation are shown to be comparable to those observed
experimentally. The effects of particle size and gas velocity on separation efficiency are quantified and the results agree well
with experiments. Some factors which affect the performance of cyclone were identified. It is shown that the collision
between gas streams after running about a circle and that just entering occurred around the junction of the inlet duct
and the cylinder of the cyclone, resulting in a short-circuiting flow. The combination of flow source and sink was distrib-
uted near the axis of cyclone, forming a flow dipole at axial section. Particles entering at different positions gave different
separation efficiency. A particle with size exceeding a critical diameter, which was condition-dependant, would stagnate on
the wall of cyclone cone. This was regarded as one of the main reasons for the deposition on the inner conical surface in
such cyclones used in the cement industry.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Gas cyclone separator is widely used in industries to separate dust from gas or for product recovery because
of its geometrical simplicity, relative economy in power and flexibility. The conventional method of predicting
the flow field and the collection efficiency of a cyclone is empirical. In the past decade, application of compu-
tational fluid dynamics (CFD) for the numerical calculation of the gas flow field becomes more and more
popular. One of the first CFD simulations was done by Boysan [1]. He found that the standard k–e turbulence
model is inadequate to simulate flows with swirl because it leads to excessive turbulence viscosities and
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doi:10.1016/j.apm.2006.03.011

* Corresponding author. Tel.: +61 2 9385 4429; fax: +61 2 9385 5956.
E-mail address: a.yu@unsw.edu.au (A.B. Yu).

https://core.ac.uk/display/81927305?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:a.yu@unsw.edu.au


Nomenclature

CD drag coefficient
d particle diameter, m
�d characteristic diameter
Fk momentum transport coefficient, t�1

g acceleration due to gravity, m s�2

m particle mass, kg
n distribution parameter
p 0 dispersion pressure, Pa
rp radius of particle, m
Re Reynolds number
t time, s
u instantaneous velocity, m s�1

u 0 dispersion velocity, m s�1

�u time average velocity in axial direction, m s�1

up particle instantaneous velocity in axial direction, m s�1

vp particle instantaneous velocity in radial direction, m s�1

�v time average velocity in radial direction, m s�1

wp particle instantaneous velocity in tangential direction, m s�1

�w time average velocity in tangential direction, m s�1

x axis, m
d Kronecker factor
l fluid viscosity, kg m�1 s�1

q density, kg m�3

Subscripts

g gas
i, j,k 1,2,3
p particle
t tangential direction
z axial direction
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unrealistic tangential velocities. Recent studies suggest that Reynolds stress model (RSM) [2–4] can improve
the accuracy of numerical solution.

Currently, particle turbulent dispersion due to interaction between particles and turbulent eddies of fluid
is generally dealt with by two methods [5]: mean diffusion which characterizes only the overall mean (time-
averaged) dispersion of particles caused by the mean statistical properties of the turbulence, and structural
dispersion which includes the detail of the non-uniform particle concentration structures generated by local
instantaneous features of the flow, primarily caused by the spatial-temporal turbulent eddies and their evo-
lution. To predict the mean particle diffusion in turbulent flow, both Lagrangian and Eulerian techniques
can be used. Since the early work of Yuu et al. [6] and Gosman and Ioannides [7], the stochastic Lagrang-
ian model has shown significant success in describing the turbulent diffusion of particles. It has been
reported that it is necessary to trace up to 3 · 105 particle trajectories in order to achieve statistically mean-
ingful solution even for a two-dimensional flow [8,9]. In order to enhance such application in industries,
some modified models were proposed. Sommefeld and Simonin [10] proposed Langevin stochastic differen-
tial equation models by making use of possibility density function (PDF). Litchford and Jeng [11] devel-
oped a stochastic dispersion-width transport model, where the dispersion-width is explicitly computed
through the linearized equation of motion using the concept of particle–eddy interactions. Moreover, Chen
and Pereira [12] reported a SPEED model where a combined stochastic-probabilistic method is used to
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describe the turbulent motion of discrete particles so that only a small number of particle trajectories are
required.

In this paper, we used the RSM and stochastic Lagrangian model in the commercial software package
‘‘Fluent’’ to study the gas–solid flow in a typical Lapple cyclone separator. The model is verified by comparing
the simulated and measured results in term of gas pressure and flow field, solid flow pattern and collection
efficiency. The effects of particle size, gas velocity and inlet condition are investigated.

2. Model description

There are three models commonly used in cyclone simulation: k–e model, algebraic stress model (ASM) and
RSM. The k–e model adopts the assumption of isotropic turbulence, so it is not suitable for the flow in a
cyclone which has anisotropic turbulence. ASM cannot predict the recirculation zone and Rankine vortex
in strongly swirling flow [13]. RSM forgoes the assumption of isotropic turbulence and solves a transport
equation for each component of the Reynolds stress. It is regarded as the most applicable turbulent model
for cyclone flow even though it has the disadvantage of being computationally more expensive [2–4].

In the RSM, the transport equation is written as
o
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and the source term: S.
In the modelling of particle dispersion, the interaction between particles is neglected since only dilute flow is
considered in this work. Only the gravity and gas drag forces on particles are calculated. Gas drag force is
decomposed into two components: one caused by average velocity of fluid, and another caused by the disper-
sion velocity of fluid. Then the momentum equation of a particle in the two-phase flow at ambient temperature
can be expressed as
dup
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is the momentum transport coefficient between fluid and particles, and the drag coeffi-

cient is given as
CD ¼

24

Re
Rep 6 1;

24ð1þ 0:15Re0:687
p Þ

Rep

1 < Rep 6 1000;

0:44 Rep > 1000;

8>>>>><
>>>>>:



B. Wang et al. / Applied Mathematical Modelling 30 (2006) 1326–1342 1329
where Rep ¼
dpqgj~ug� ~upj

l is the particle Reynolds number, u can be u, v and w. When the particle interacts with
fluid eddy, u 0, v 0, w 0 is obtained by sampling from an isotropic Gaussian distribution with a standard deviation
of

ffiffiffiffiffiffiffiffiffiffi
2k=3

p
. Particle–eddy interaction time and dimension should not be larger than the lifetime and size of a

random eddy.

3. Condition for numerical and physical experiments

The cyclone considered is a typical Lapple cyclone. Fig. 1(a) shows the notations of the cyclone dimensions
and Table 1 gives their values. Fig. 1(b) shows the computational domain, containing 45,750 CFD cells. The
whole computational domain is divided by structured hexahedron grids. At the zone near wall and vortex fin-
der the grids are dense, while at the zone away from wall the grids are refined. Three grid domains were tested
in our preliminary computation, containing 25,900, 47,750, 95,350 cells, respectively. The difference is less than
5% for all variables examined, suggesting that computed results are independent of the characteristics of the
mesh size.

Physical experiments have also been conducted to validate the numerical model. In such an experiment,
air was blown into the inlet of the cyclone, with its flowrate measured by a flowmeter. The inlet gas
velocity and the particle velocity were both 20 m/s. The exit tube was open to the air and the gas
pressure at the top of the vortex finder was 1 atm. The volume fraction of particle phase was less than
10%.

A five-hole probe consisting of an adjustable frame and five pressure transducers was used to measure the
velocity and pressure of the gas field. When the five-hole probe was placed in a flow field, voltage signals
obtained through the five pressure transducers were transferred to an amplifier. The magnified voltage signals
were acquired through a data acquisition system containing a microprocessor and a personal computer.

The material used was a typical cement raw material. Its particle size distribution can be well described by
the Rosin–Rammler equation:
Table
Geome

a/D

0.25
RðdÞ ¼ expb�ðd=�dÞnc; ð5Þ
Fig. 1. Schematic and grid representation of the cyclone considered.
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where d is particle diameter, and R(d) means the mass fraction of droplets with diameter greater than d. The
characteristic diameter �d equals 29.90 lm and the distribution parameter n is 0.806. The particle density is
3320 kg/m3.

4. Results and discussion

4.1. Gas flow field

4.1.1. Pressure field

Fig. 2 shows that the static pressure decreases radially from wall to centre, and a negative pressure zone
appears in the centre. The black line in Fig. 2(A–A) is the dividing line between the positive static pressure
and negative static pressure. The pressure gradient is the largest along radial direction, as there is a highly
intensified forced vortex.

Fig. 3 shows the relationship between the pressure drop and the inlet gas velocity. With the increase of the
inlet gas velocity, the pressure drop increases. The experimental data obtained agree reasonably well with the
calculated results, although they are consistently slightly higher.

4.1.2. Tangential velocity

Fig. 4 shows the experimental and calculated tangential velocities at the cylindrical section of the cyclone.
The simulation results are in good agreement with the experimental results. The flow field in the cyclone indi-
cates the expected forced/free combination of the Rankine type vortex. Moreover, because the cyclone has
only one gas inlet, the axis of the vortex does not coincide with the axis of the geometry of cyclone.

Fig. 5 shows the calculated tangential velocity distribution in detail. The tangential velocity distribution is
similar to the dynamic pressure distribution. This means the tangential velocity is the dominant velocity in the
cyclone. The value of the tangential velocity equals zero on the wall and in the centre of the flow field. From
Fig. 5(C–C), it can be seen that high speed gas enters the inlet and is accelerated up to 1.5–2.0 times of the inlet
velocity at point A. Then the velocity decreases as the gas spins down along the wall. Before it goes below the
vortex finder, the gas flow collides with the follow-up flow and forms a chaotic flow close to the vortex finder
outside wall (point B). In the meantime, gas velocity decreases sharply at point B, and may even be in the
reverse direction. It would increase the loss of energy and the pressure drop in cyclone. This is the main cause
Fig. 2. Contour of static pressure with the zero pressure highlighted by the line in section A–A.
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Fig. 4. Experimental vs. calculated tangential velocities.
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of the short-circuiting flow and often results in a high pressure drop. To overcome this problem, it is suggested
that the inlet shape should be modified [14].

4.1.3. Axial velocity

Fig. 6 shows that the forced vortex is a helical twisted cylinder and not completely axially symmetric, espe-
cially in the conical part. The results are qualitatively similar to those obtained by Cullivan et al. [15] for
hydrocyclone. The black line in Fig. 6(A–A) is the dividing line between the upward flow and the downward
flow. The diameter of upward flow is slightly larger than that of the vortex finder. Moreover, since much gas
flows over into the vortex finder, the axial velocity reaches a peak value under the vortex finder. Meanwhile,
the dip in axial velocity near the axis except the section under the vortex finder is clearly visible. It can be
observed from Fig. 6(B–B) that the centre of the upward flow does not coincide with the geometrical centre
of the cyclone. This should be one of the main reasons why there is an eccentric vortex finder in some cyclones
to reduce the pressure drop. Fig. 5(C–C) also suggests that the presence of the eccentric vortex finder will help
weaken the chaotic flow.



Fig. 5. Contour of tangential velocity (anti-clockwise is positive and clockwise is negative).

Fig. 6. Contour of axial velocity (upward is positive and downward is negative, the axial velocity on the line in section A–A equals zero).
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4.1.4. Radial velocity

Fig. 7(A–A) shows that the forced vortex in the centre is a helical twisted cylinder. The axis of the forced
vortex does not coincide with the geometrical axis of cyclone, and is not straight but curved. The distribution
of radial velocity in the central vortex core based on the axially symmetric line is eccentric. The value of one



Fig. 7. Contour of radial velocity distribution (outward is positive and inward is negative).
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side is positive and the other is negative. Thereby, the combination of flow source and sink is distributed near
the axis of cyclone, forming a flow dipole at axial section, shown in Fig. 7(B–B). The orientation of dipole is
observed to locate upward along the cyclone central line. This is probably mainly because the vortex rotates
together with the flow around the geometric axis of the cyclone and has a pronounced helical structure [16].
This structure could be caused by the extrusion among gas, represented by the velocity vector in the figure,
would result in instability in cyclone. There is a zone right under the vortex finder, at point A, where gas
directly flows into the vortex finder instead of spinning down to the conical part and then flowing upward.
Moreover, at point B, the radial velocity becomes negative again, directing to the centre, because of the col-
lision among gas. Both points A and B indicate the short-circuiting flow, which deteriorates cyclone perfor-
mance. In the conical part, the radial velocity is much larger than that of cylindrical part. Fig. 7(B–B)
shows that the distribution of radial velocity is nearly uniform in the quasi-free vortex area. The distribution
of the radial velocity in the forced vortex is eccentric because of the non-symmetrical geometry of the cyclone.
Fig. 7(C–C) shows that the radial velocity is negative, corresponding to the inward flow in the gas inlet, and
then becomes zero rapidly. Afterwards it becomes positive due to the effect of centrifugal force around the
vortex finder.
4.1.5. Secondary circulation in cyclone

Secondary circulation can deteriorate the performance of cyclone. There are three regions where the sec-
ondary circulation formed by axial velocity and radial velocity occurs, as shown at points A, B and C in
Fig. 8, respectively. Firstly, at point A, because of the collision among gas, part of gas flows inward and
exhausts out quickly from the region right under the vortex finder, which forms a short-circuiting flow (it
is also shown in Sections 4.1.2 and 4.1.4). Secondly, at point B, there is a slow laminar flow layer below
the roof of the cyclone where the gas flows to and hits the roof, and flows reversely toward the vortex finder
since the pressure reaches a lower value than in the strong rotational flow. This phenomenon is called the eddy
flow. It can result in particles accumulating on the wall escaped from the vortex finder to the top, forming
swilling dust ceiling, and decreasing the efficiency of separation. Thirdly, at point C, because of the enlarging
dust box and the friction from particles accumulating walls, the rotational velocity of gas entering the dust box
will decrease. Then the gas will turn back on the central line from dust box to cyclone body and mix with the
following-up downward rotational flow, which causes intensive momentum transfer and energy loss. It is
called eccentric circumfluence. The damage of short-circuiting flow (A) and eddy flow (B) can be reduced
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by increasing the length of vortex finder in cyclone body. However, a longer vortex finder will result in a higher
pressure drop in cyclone.

4.1.6. Comparison with other literature results

In order to validate the proposed model more generally, comparison has been extended to the Hoeksta’s
experiment [17] using a Stairmand high-efficiency cyclone. Fig. 9 shows the comparison between the numerical
and experimental velocity profiles at three axial locations. The agreement between the simulated and experi-
mental results is very good. In particular, details such as the asymmetry of the axial velocity profiles in the
conical part of the cyclone are well reproduced by the model.

Recently, Schmidt et al. [18] reported that the exit tube length affects the overall flow properties of cyclones.
To test if there is such an effect in the considered system, numerical computation has also been performed with
different outflow lengths ranging from 0 to 4D. The results in Fig. 10 show the outflow length does not affect
the flow field under steady state flow conditions. Unsteady state conditions may affect the flow field. However,
this effect is not so significant. As shown in Fig. 11, the axial velocity profiles in cyclones with different outflow
length are qualitatively comparable. Quantitatively, as shown in Fig. 12, changing the outflow length makes
the data more scattered, but the pattern in tangential and axial velocity profiles is still maintained. Therefore,
although seemingly short, a constant outflow length is used in this work, i.e. 0.5D. This value is also used in
our physical experiment.

4.2. Particles flow pattern

4.2.1. The effect of inlet condition on separation efficiency

The separation efficiency for particles entering the cyclone at different position varies because they have dif-
ferent flow paths. Based on the computed results, it is found that the inlet area can be divided into four regions
to describe this behaviour, as shown in Fig. 13. Fig. 14 shows the trajectories of particles with cut diameter
dc50 = 3 · 10�7 m from the four different areas. The particle from region A escapes from vortex finder directly
because of the short-circuiting flow mentioned above. The particle from region B has circular motion below
the roof and may form swirling dust ceiling. Once it enters the central vortex, they cannot be collected.
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Fig. 9. Velocity profiles along the axis of the cyclone at three axial locations (from top to bottom: z = 3.25D, z = 2.0D and z = 1.5D. The
left is tangential velocity profile; the right is axial velocity profile).
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Fig. 11. Contour of axial velocity distributions with different outflow length under unsteady state conditions.

-0.10 -0.05 0.00 0.05 0.10

0

5

10

15

20

25

30

R (m)

T
an

ge
nt

ia
l v

el
oc

ity
 (

m
/s

)

 0D
 0.5D
 1D
 1.5D
 2D
 2.5D
 4D

-0.10 -0.05 0.00 0.05 0.10

-6

-4

-2

0

2

4

6

8

10

12

A
xi

al
 v

el
oc

ity
 (

m
/s

)

R (m)

 0D
 0.5D
 1D
 1.5D
 2D
 2.5D
 4D

Fig. 12. The velocity profiles of cyclone with different outflow length under unsteady state conditions (left: tangential velocity, right: axial
velocity, unsteady).

1336 B. Wang et al. / Applied Mathematical Modelling 30 (2006) 1326–1342
Particles from regions C and D collide with the wall, and go downwards to the separating space in the cyclone.
The difference between particles from regions C and D is that particles from the latter take a shorter time to
contact the wall.

Fig. 15 shows the experimental trajectories of particles entering from different inlet regions. Obviously, par-
ticles can have different descending angles. Particles entering from region A have high positions in the cylin-
drical part and their descending angle is small. In other words, if particles enter the cyclone from region A, the
separation efficiency would be low. Entering from region B gives similar results, and the only difference is that
particles from region B have lower positions, producing a higher separation efficiency. A particle entering
from region C has a low position and its descending angle is big, meaning the separation efficiency is high.
When particles enter from region D, the separation efficiency is the highest because they have a largest
descending angle.



Fig. 13. Inlet area divided into four regions in this work.

Fig. 14. The trajectories of particles with cut diameter dc50 = 3 · 10�7 m from different inlet regions (refer to Fig. 13).
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Therefore, physical and numerical experiments produce results qualitatively comparable. In general, if par-
ticles enter the cyclone from the top part of the inlet, their separation efficiency will be relatively low. On the
contrary, if particles enter the cyclone from the bottom of the inlet, their separation efficiency will be high.
This factor should be taken into account in cyclone design and performance control, although more detailed
studies are necessary to fully understand and quantify its effect.

4.2.2. The effect of particle diameter on residence time

Fig. 16 shows the change in location with time for 15,000 particles with five diameters within 1 s. It can be
seen from this figure that the trajectory of the largest particles (red) concentrates in the upside of the cone, and
the trajectory of the smallest particles (blue) is in the downside of the cone. The other three sized particles are
largely in-between the two extremes.

As shown in Fig. 17, large particles are collected while small particles escape from the cyclone. Particles
with a too small diameter cannot move outward to the wall of cyclone since the centrifugal force on them
are not bigger than the gas drag force on particles. For the system considered in this work, particles with diam-
eter of 2 · 10�6 m and 7 · 10�6 m can spin down to the conical part and then be collected while bigger



Fig. 15. Experimental results showing the trajectories of tracing particles entering from different inlet regions (refer to Fig. 13).
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particles with diameter of 3 · 10�5 m and 1 · 10�4 m spin downward first and then keep spinning near the wall
at a certain horizontal level.

In order to verify this numerical observation, physical experiments have been done by use of ceramic balls
whose density is similar to the cement raw material. The experimental results are shown in Fig. 18. In
Fig. 18(a), the original cement raw material was used. It was observed that particles flow downward at the
cone section and display a certain descending angle. On the other hand, as shown in Fig. 18(b), large ceramic
balls keep spinning at a certain height and do not show a descending angle. It indicates that the ceramic balls
are difficult to be collected directly at the bottom. The result supports the numerical result. Interestingly, Brad-
ley [19] reported a similar observation for hydrocyclone flow.

According to Fig. 17, particles with diameter of 2 · 10�6 m and 7 · 10�6 m can spin down to the conical
part of cyclone and be collected at the bottom, while particles with diameter of 3 · 10�5 m and 1 · 10�4 m spin
downward first and then keep spinning near the wall at a certain height. This is probably because when a big
particle moves down to the conical body, the radius at the cyclone decreases, but the tangential velocity of the
particle dose not change much. So the centrifugal force on the particle increases. Correspondingly, as shown in
Fig. 19, the supporting force N increases, and the axial component force Nz increases too. When Nz is larger
than the sum of gravity G and the axial component FDz of gas drag force, the particle moves up. If Nz is equal
to the sum of the gravity and the axial component FDz of gas drag force, the particle will keep spinning at a
certain height.

When a particle keeps spinning in the conical body, forces acting on the particle can be written as
Gþ F Dz ¼ Nz ð6aÞ

or
mg þ 3pldpðugz � upzÞ ¼ m
u2

pt

r
tgh. ð6bÞ
Re-arranging the equation gives
g þ 18l

d2
pqg

ðugz � vpzÞ ¼
u2

pt

r
tgh. ð7Þ



Fig. 16. Snapshots showing the flow of particles of different diameters, where red, orange, green, cyan and blue, respectively, represent five
diameters of particles, which are 1 · 10�4 m, 3 · 10�5 m, 7 · 10�6 m, 2 · 10�6 m and 2 · 10�7 m (For interpretation of the references in
colour in this figure legend, the reader is referred to the web version of this article).
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Eq. (7) indicates that as particle diameter dp decreases, the radius r of the orbit will decrease. If particle diam-
eter is smaller than a critical value, and at the same time r is smaller than the radius of the hopper outlet, a
particle will be collected at the bottom. When a particle is larger than this critical diameter, it will be held on
the wall. There is therefore a critical value to distinguish the flow pattern of particles of different diameter. The
critical value is related to the geometry of cyclone, the gas inlet velocity and the properties of particles. For the
cyclone considered, the critical diameter is approximately 1 · 10�5 m.

Note that the stochastic Lagrangian model does not consider the interaction between particles. In practice,
particles bigger than the critical diameter will be eventually collected at the bottom because of their interaction
with other particles. Such particles, however, may also be stagnant on the wall of cyclone during the process of
collection. In the cement industry, if particles at high temperatures stagnate on the wall, permanent deposition
may be formed, which will seriously damage the performance of the cyclone. Moreover, this behaviour is
probably responsible for the avalanche phenomenon [20].



Fig. 17. The trajectories of particles with different diameters.

Fig. 18. Photos showing the trajectories of the tracing particles of different diameters (a) particles (raw material) flowing downward at the
cone section and displaying a certain descending angle; (b) ceramic balls spinning at a certain height with almost zero descending angle.
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4.2.3. Separation efficiency

The most important economical parameters of a cyclone separator are separation efficiency and pressure
drop. Generally, the increase of gas inlet velocity will increase the separation efficiency, but it will also increase
the pressure drop. In this work, physical and numerical experiments have both been done to find the effect of
gas inlet velocity on separation efficiency and pressure drop. As shown in Fig. 3, the pressure drop increases
with the inlet gas velocity, and there is a good agreement between the predicted and measured results. Fig. 20
shows that the collection efficiency can be enhanced with the increase of inlet gas velocity, as expected. The
prediction matches the measurement reasonably well. The results further confirm the validity of the proposed
model.
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Fig. 19. Schematic diagram showing the forces on a particle in the conical part.
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5. Conclusions

Reynolds stress model has been used to simulate the anisotropic turbulent flow in a Lapple cyclone. Its
applicability has been verified by the good agreement between the calculated and measured pressures and flow
fields. On this basis, a stochastic Lagrangian model has been used to predict the flow pattern of particles in the
cyclone and its validity is confirmed by comparing the predicted and measured solid flow trajectories and col-
lection efficiency. The following conclusions can be drawn from the present study:

• The collision between gas streams after running about a circle and that just entering is the main reason for
the short-circuiting flow. How to decrease the collision is probably key to designing new cyclones with high
separation efficiency and low pressure drop.

• The combination of flow source and sink distributes near the axis of cyclone, resulting in a flow dipole at
axial section. The orientation of the dipole is observed to locate upward along the cyclone central line. The
forced vortex in the cyclone is a helical twisted cylinder.

• The secondary circulation in the cyclone is composed of short-circuiting flow, eddy flow and eccentric cir-
cumfluence. It affects the separation efficiency and pressure drop in the cyclone.
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• Particles entering the cyclone at different inlet positions give different separation efficiency. Generally, par-
ticles entering from the top part of the inlet have higher separation efficiency than those from the bottom
part of the inlet.

• Particles with a size exceeding a critical diameter, which may depend on cyclone geometry and flow condi-
tion, will not be collected at the cyclone bottom and may stagnate on the conical wall of the cyclone as a
result of the balanced forces such as the supporting force from the wall, the gas drag force and the gravity
force. This may lead to the formation of the permanent deposition on the conical part in the cyclone.
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