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Abstract

For the block system of weakly nonlinear equations Ax = G(x), where A∈Rn×n is a large sparse block matrix and
G : Rn → Rn is a block nonlinear mapping having certain smoothness properties, we present a class of asynchronous
parallel multisplitting block two-stage iteration methods in this paper. These methods are actually the block variants
and generalizations of the asynchronous multisplitting two-stage iteration methods studied by Bai and Huang (Journal
of Computational and Applied Mathematics 93(1) (1998) 13–33), and they can achieve high parallel e�ciency of the
multiprocessor system, especially, when there is load imbalance. Under quite general conditions that A∈Rn×n is a block
H -matrix of di�erent types and G : Rn → Rn is a block P-bounded mapping, we establish convergence theories of these
asynchronous multisplitting block two-stage iteration methods. Numerical computations show that these new methods
are very e�cient for solving the block system of weakly nonlinear equations in the asynchronous parallel computing
environment. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider the system of weakly nonlinear equations

Ax = G(x); (1)
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where A∈Rn×n is a large sparse nonsingular matrix, and G : Rn → Rn is a nonlinear function with
certain smoothness properties. This system arises in many problems of science and engineering, and
in particular in discretizations of certain nonlinear di�erential equations, e.g., of the form �u=�(u);
see e.g. [26].
Since a general purpose method may be not always e�cient for solving a special structure prob-

lem. Bai [3] established a class of sequential two-stage iteration methods for the system of weakly
nonlinear equations by taking into account concrete properties of the involved matrix and map-
ping. Then, based on the matrix multisplitting technique introduced in O’Leary and White [24],
Bai [4] presented e�cient parallel generalizations of the above sequential two-stage iteration meth-
ods. Furthermore, to exploit the parallel e�ciency of the high-speed multiprocessor systems as far
as possible, Bai and Huang [9] recently proposed asynchronous multisplitting two-stage iteration
methods for solving the system of weakly nonlinear equations (1). These asynchronous methods
have the potentials of converging much faster than their synchronous counterparts in [4], especially,
when there is load imbalance. When the matrix A∈Rn×n is a pointwise H -matrix and the mapping
G : Rn → Rn is a pointwise P-bounded mapping, the convergence of the afore-mentioned two-stage
iteration methods were discussed in detail in [3,4,9], respectively, under suitable conditions imposed
upon the multiple splittings of the matrix A∈Rn×n.
These multisplitting two-stage iteration methods are quite suitable for both the tightly coupled

multiprocessor 2 and the multicomputer with a shared global memory. Regarding the multicomputer
without a shared global memory, for which each processor has its own local memory and process
cooperation occurs either through message passing or through memory shared between pairs of
processors, Frommer and Szyld [21] presented another approach of multisplitting two-stage iteration
methods, which are closely related to the additive Schwarz iteration methods. For further details we
refer to Frommer and Schwandt [18] and Frommer et al. [19]. The generalizations of this class of
asynchronous multisplitting iteration methods to the nonlinear �xed-point problems were studied by
Bahi et al. [2] and Baz et al. [13].
In this paper, we are interested in block variants of the asynchronous multisplitting two-stage

iteration methods in Bai and Huang [9] for the block system of weakly nonlinear equations (1) in
which the matrix A∈Rn×n is partitioned into N × N blocks A‘j ∈Rn‘×nj , with ∑N

j=1 nj = n, i.e.,

A∈ Ln(n1; : : : ; nN ) = {A∈Rn×n |A= (A‘j); A‘j ∈Rn‘×nj ; 16‘; j6N}
and Ajj being nonsingular for j=1; 2; : : : ; N , and the vectors x and G(x) are partitioned into subvectors
xj ∈Rnj and Gj(x)∈Rnj ; j = 1; 2; : : : ; N , in a way conformally with the partition of A, i.e.,

x∈Vn(n1; : : : ; nN ) = {x∈Rn | x = (xT1 ; : : : ; xTN )T; xj ∈Rnj ; 16j6N}:
When the context is clear we will simply use Ln for Ln(n1; : : : ; nN ) and Vn for Vn(n1; : : : ; nN ), re-
spectively. This partition may correspond to a partition of the underlying grid, or of the domain
of the di�erential equation being studied, or it may originate from a partitioning algorithm of the
sparse matrix A, as done, e.g., in [14,25]. We will discuss convergence properties of the above
asynchronous multisplitting block two-stage iteration methods for rather general class of nonsingular
matrices including block H -matrices of di�erent types (see e.g. [5–7,17]), and nonlinear mappings

2 A simple processor intercommunication pattern of this MIMD-system assumes that all processors work through a
central switching mechanism to reach a shared global memory.
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including block P-bounded mappings (see e.g. [12]). At last, some numerical results are given which
show that the asynchronous multisplitting block two-stage iteration methods can achieve higher par-
allel e�ciency than their synchronous counterparts as well as the asynchronous multisplitting point
two-stage iteration methods in [9].
The rest of this paper is arranged as follows: We describe the asynchronous multisplitting block

two-stage iteration methods paralleling the point versions in [9] in Section 2, and some preliminary
results used in this paper is presented in Section 3. In Section 4, we analyze the global convergence
of these asynchronous multisplitting block two-stage iteration methods, and �nally, in Section 5 we
give some numerical results run on the SGI power challenge multiprocessor computer.

2. The asynchronous multisplitting block two-stage methods

Assume the multiprocessor system consist of � processors and consider the (outer and inner)
splittings 3 A = Bi − Ci; Bi = Mi − Ni; i = 1; 2; : : : ; �, and a set of diagonal nonnegative matrices
Ei; i = 1; 2; : : : ; �, such that

∑�
i=1 Ei = I (the identity matrix).

4 Let �i(p) be a nonnegative integer
that represents the index of an older global iterate which the ith processor uses to compute its pth
local approximation, and J (p) be a nonempty subset of the integer set {1; 2; : : : ; �} that satis�es
i∈ J (p) if and only if the ith processor starts its computation of a new iterate at the pth step.
As is customary in the descriptions and analyses of asynchronous methods, we assume that the
superscripts �i(p) and the subsets J (p); p∈N0 = {0; 1; 2; : : :}, satisfy the following conditions: (a)
�i(p)6p for all i∈{1; 2; : : : ; �} and p∈N0; (b) limp→∞ �i(p) =∞ for all i∈{1; 2; : : : ; �}; and (c)
The set {p∈N0 | i∈ J (p)} is in�nite for all i∈{1; 2; : : : ; �}. Condition (a) assumes that the currently
unavailable information should not be used in the current computations; Condition (b) requires that
every processor of the multiprocessor system must adopt new information to update its local variables
continually; and Condition (c) demands that all processors of the multiprocessor system must proceed
their local iterations without dead breakdown.
With these notations, the new asynchronous multisplitting block two-stage iteration method can

be described as follows.

Method 1. (ASYNCHRONOUS MULTISPLITTING BLOCK TWO-STAGE METHOD). Given an initial vec-
tor x0 ∈Vn. Suppose that we have got approximations x0; x1; : : : ; xp to the solution x∗ ∈Vn of the
block system of weakly nonlinear equations (1). Then the next approximation xp+1 is obtained by

xp+1 =
∑
i∈J (p)

Eixp+1; i +
∑
i 6∈ J (p)

Eixp; (2)

where for each i∈ J (p); xp+1; i = xp; i; si(p) is computed from the recursive formula

xp; i; k+1 =M−1
i (Nix

p; i; k + Cix�i(p) + G(x�i(p))); k = 0; 1; : : : ; si(p)− 1;
with the starting point xp; i; 0 = x�i(p).

3 A= B− C is called a splitting of the matrix A if the matrix B is nonsingular. One can refer to Section 3 for detail.
4 Such a kind of matrices Ei (i = 1; 2; : : : ; �) is called weighting matrices.
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We remark that the mathematical description of Method 1 is much similar to its point counterpart
in [9]. However, the philosophies behind these two methods are quite di�erent because the operations
of the former are understood in the blockwise sense while the operations of the latter in the pointwise
sense.
A practical example of Method 1 can be given by letting

Mi := Mi(; !) =
1
!
(Di − Li);

Ni := Ni(; !) =
1
!
((1− !)Di + (!− )Li + !Ui);

i = 1; 2; : : : ; �;

where  and ! (6= 0) are relaxation parameters and for i = 1; 2; : : : ; �; Di = Diag(Bi) are the block
diagonal matrices of Bi; Li are strictly block lower-triangular matrices and Ui are block zero-diagonal
matrices satisfying Bi = Di − Li − Ui(i = 1; 2; : : : ; �). The resulted method is called asynchronous
multisplitting block two-stage AOR (accelerated overrelaxation) method.

Method 2. (ASYNCHRONOUS MULTISPLITTING BLOCK TWO-STAGE AOR METHOD). Given an initial
vector x0 ∈Vn. Suppose that we have got approximations x0; x1; : : : ; xp to the solution x∗ ∈Vn of the
block system of weakly nonlinear equations (1). Then the next approximation xp+1 is obtained by
(2) where for each i∈ J (p); xp+1; i = xp; i; si(p) is computed from the recursive formula

xp; i; k+1 = (Di − Li)−1{((1− !)Di + (!− )Li + !Ui)xp; i; k
+!(Cix�i(p) + G(x�i(p)))}; k = 0; 1; : : : ; si(p)− 1

with the starting point xp; i; 0 = x�i(p).

If G(x) ≡ b (a constant vector), then system (1) reduces to the system of linear equations Ax=b.
For this special situation, Method 2 becomes the synchronous multisplitting block relaxation method
in Bai [5] when si(p) = 1 and �i(p) = p (i = 1; 2; : : : ; �; p∈N0), and it turns to the asynchronous
multisplitting block relaxation method in Bai [7] when si(p)= 1 (i=1; 2; : : : ; �; p∈N0). We refer to
Bai [8] for an improvement and generalization of this asynchronous multisplitting block relaxation
method, and Bai [6] and Evans and Bai [17] for the two-sweep relaxed synchronous multisplitting
block iteration method.
After direct calculations, we can briey express Methods 1 and 2 in the matrix–vector forms

xp+1 =
∑
i∈J (p)

Ei

{
(M−1

i Ni)
si(p)x�i(p) +

si(p)−1∑
k=0

(M−1
i Ni)

kM−1
i (Cix

�i(p) + G(x�i(p)))

}
+

∑
i 6∈ J (p)

Eixp (3)

and

xp+1 =
∑
i∈J (p)

Ei(Mi(; !)−1Ni(; !))si(p)x�i(p) +
∑
i 6∈ J (p)

Eixp

+
∑
i∈J (p)

Ei
si(p)−1∑
k=0

(Mi(; !)−1Ni(; !))kMi(; !)−1(Cix�i(p) + G(x�i(p))); (4)

respectively.
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3. Preliminaries

The representations x∈Rn and A∈Rn×n mean that the vector x and the matrix A are understood
in the pointwise sense, while the representations x∈Vn and A∈ Ln mean that the vector x and the
matrix A are understood in the blockwise sense. A vector x∈Rn is said nonnegative (positive),
denoted x¿0 (x¿ 0), if all its components are nonnegative (positive). For x; y∈Rn; x¿y (x¿y)
means that x − y¿0 (x − y¿ 0); and |x| denotes the point absolute value of x, which is de�ned
to be the vector whose components are the absolute values of the corresponding components of x.
These de�nitions carry over immediately to matrices. A nonsingular matrix A∈Rn×n is called an
M -matrix if it has non-positive o�-diagonal entries and it is monotone (i.e., A−1¿0). By �(A) we
denote the spectral radius of the square matrix A. Let DA = diag(A) and BA = DA − A. Then A is
an M -matrix if and only if DA is positive diagonal, BA is nonnegative and �(D−1

A BA)¡ 1. For the
mathematical properties of nonnegative matrix, monotone matrix and M -matrix, we refer the reader
to Varga [27] and Ortega and Rheinboldt [26].
We de�ne the following subset of Ln used in the analysis of iterative methods for block H -matrices:
Ln; I (n1; : : : ; nN ) = {A= (A‘j)∈ Ln |A‘ ‘ ∈Rn‘×n‘ nonsingular; ‘ = 1; : : : ; N}:

Again, we do not write the parameters (n1; : : : ; nN ), when they are clear from the context. For a
matrix A∈ Ln, let D(A) = Diag(A11; : : : ; ANN ), i.e., its block-diagonal part. Thus, A∈ Ln; I if and only
if A∈ Ln and D(A) is nonsingular.
For any matrix A= (a‘j)∈Rn×n, we de�ne its comparison matrix ˝(A) = (˝(A)‘j) by ˝(A)‘ ‘ =

|a‘ ‘|; ˝(A)‘j = −|a‘j|; ‘ 6= j. Similarly, for A∈ Ln; I we de�ne its type-I and type-II comparison
matrices 〈A〉=(〈A〉‘j)∈RN×N and 〈〈A〉〉=(〈〈A〉〉‘j)∈RN×N as 〈A〉‘ ‘=‖A−1

‘ ‘ ‖−1; 〈A〉‘j=−‖A‘j ‖ ; ‘ 6=
j, and 〈〈A〉〉‘ ‘ = 1; 〈〈A〉〉‘j = −‖A−1

‘ ‘A‘j ‖ ; ‘ 6= j, ‘; j = 1; 2; : : : ; N , respectively. We also de�ne,
for A∈ Ln, the block absolute value [A] = (‖A‘j ‖)∈RN×N . The de�nition for a vector v∈Vn is
analogous. Here ‖ · ‖ is some consistent matrix norm satisfying ‖I ‖=1, which could be de�ned by
‖A‘j ‖ =max‖ xj ‖ j=1‖A‘jxj ‖‘, ‘; j=1; 2; : : : ; N , with ‖ • ‖‘ some vector norm in Rn‘ ; ‘=1; 2; : : : ; N .
This block absolute value has the following properties.

Lemma 1 (Bai [5]). Let A; B∈ Ln; x; y∈Vn and ∈R. Then;
(a) |[A]− [B]|6[A+ B]6[A] + [B]; |[x]− [y]|6[x + y]6[x] + [y];
(b) [AB]6[A][B]; [Ax]6[A][x]; and
(c) [A]6||[A]; [x]6||[x].

A∈Rn×n is said to be an H -matrix if ˝(A) is an M -matrix (A∈HP). A∈ Ln; I is said to be
a Type-I (Type-II) block H -matrix if 〈A〉 (〈〈A〉〉) is an M -matrix in RN×N (A∈H I

B (A∈H II
B )). It

follows that H I
B⊂H II

B with the inclusion being strict. For A∈Rn×n, the representation A = M − N
is called a splitting if M is nonsingular. It is called a convergent splitting if �(M−1N )¡ 1. For
A∈ Ln; I , a splitting A=M −N is called an H I

B-compatible (H
II
B -compatible) splitting if 〈A〉= 〈M 〉−

[N ] (〈〈A〉〉 = 〈〈M 〉〉 − [D(M)−1N ]). We refer the readers to [1,16,23,28] for di�erent concepts and
their motivations about block M -matrices and block H -matrices. The sequel convergence results
about the asynchronous multisplitting block two-stage methods can be straightforwardly generalized
to these variants of block H -matrices, with slight and technical modi�catons. A mapping G : Vn →
Vn is called block P-bounded if there exists a nonnegative matrix P ∈RN×N such that [G(x) −
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G(y)]6P[x − y] holds for all x; y∈Vn. We point out that these concepts naturally reduce to the
standard point ones in [15,20,22,27] when the parameters (n1; : : : ; nN ) are specialized to (1; : : : ; 1).

Lemma 2. (a) If A∈HP; then |A−1|6˝(A)−1.
(b) If A∈H I

B⊂ Ln; I ; then [A−1]6〈A〉−1 [5]:
(c) If A∈H II

B ⊂ Ln; I ; then [A−1]6〈〈A〉〉−1[D(A)−1] [5].

We remark that when n1 = n2 = · · ·= nN = 1 and N = n, both H I
B- and H

II
B -matrix classes reduce

to the HP-matrix class, and both statements (b) and (c) reduce to the statement (a), too.

Lemma 3 (Bai [5]). Let A=M−N be a splitting. If the splitting is H I
B-compatible (H

II
B -compatible);

then both A and M ∈H I
B (∈H II

B ).

Lemma 4 (Bai et al. [12]). Let A∈Rn×n be nonsingular. Then the block system of weakly nonlin-
ear equations (1) has a unique solution provided either of the following two conditions holds:
(a) A∈H I

B; G is block P-bounded; and �(〈A〉−1P)¡ 1.
(b) A∈H II

B ; G is block P-bounded; and �(〈〈A〉〉−1[D(A)−1]P)¡ 1.

Lemma 5 (Bai et al. [11]). Let {H (p)
i }p∈N0 (i = 1; 2; : : : ; �) be sequences of nonnegative matrices

in RN×N ; Ẽi (i = 1; 2; : : : ; �) be nonnegative diagonal matrices in RN×N satisfying
∑�

i=1 Ẽi6I; and
{�p}p∈N0 be sequence in RN de�ned by

�p+1 =
∑
i∈J (p)

Ẽi��i(p) +
∑
i 6∈ J (p)

Ẽi�p; p= 0; 1; 2; : : :

with {J (p)}p∈N0 and {�i(p)}p∈N0 (i=1; 2; : : : ; �) being described in Section 2. Then limp→∞ �p=0
holds for any �0 ∈RN ; provided there exist a constant �∈ [0; 1) and a positive vector v∈RN such
that H (p)

i v6�v (i = 1; 2; : : : ; �; p∈N0).

Lemma 5 presents a basic criterion for examining the convergence of an asynchronous matrix
multisplitting iterative method for the monotone matrix class. An improvement and generalization of
this result to an asynchronous multisplitting iterative method with dynamic multiple splittings and
to a group of linear �xed-point equations with a common �xed-point was studied in Bai et al. [10].

4. The global convergence analyses

In this section, we will prove the global convergence of Methods 1 and 2 for any number of
inner iterations when the matrix A∈ Ln is a block matrix of di�erent types and when the mapping
G :Vn → Vn is a block P-bounded mapping.

Theorem 6. Let A∈H I
B (H

II
B )⊂ Ln; I (n1; : : : ; nN ). Let the splittings A=Bi−Ci and Bi=Mi−Ni; i=

1; 2; : : : ; �, be H I
B-compatible (H

II
B -compatible and such that D(Mi)=D(Bi)=D(A)); and the weight-

ing matrices Ei; i = 1; 2; : : : ; �; satisfy
∑�

i=1 [Ei]6I . Assume further that G :Vn → Vn is a block
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P-bounded mapping such that �(〈A〉−1P)¡ 1(�(〈〈A〉〉−1[D(A)−1]P)¡ 1). Then; the asynchronous
multisplitting block two-stage Method 1 converges to the unique solution of the system of weakly
nonlinear equations (1); for any initial vector x0 ∈Vn and any sequence of numbers of inner itera-
tions si(p)¿1; i = 1; 2; : : : ; �; p∈N0.

Proof. Lemma 4 implies that (both in the Type-I and Type-II cases) there exists a unique vector
x∗ ∈Vn such that Ax∗ = G(x∗) under the assumptions of this theorem. Thus, if we let �p = xp − x∗
be the error at the pth iteration of Method 1, then according to (3) {�p}p∈N0 satis�es

�p+1 =
∑
i∈J (p)

Ei

{
(M−1

i Ni)
si(p)��i(p) +

si(p)−1∑
k=0

(M−1
i Ni)

kM−1
i (Ci�

�i(p) + G(x�i(p))− G(x∗))
}

+
∑
i 6∈ J (p)

Ei�p: (5)

For the Type-I case, we note that the H I
B-compatibility of the splittings imply that Mi ∈H I

B, and
thus by Lemma 2(b), we have [M−1

i ]6〈Mi〉−1; i = 1; 2; : : : ; �. Using these inequalities, by taking
block absolute values on both sides of (5), applying Lemma 1 and the block P-bounded property
of G, we obtain the inequality

[�p+1]6
∑
i∈J (p)

[Ei]T
(p)
i; I [�

�i(p)] +
∑
i 6∈ J (p)

[Ei][�p]; p∈N0; (6)

where

T (p)i; I = (〈Mi〉−1[Ni])si(p) +
si(p)−1∑
k=0

(〈Mi〉−1[Ni])k〈Mi〉−1([Ci] + P) (7)

is a nonnegative matrix in RN×N . Because

(〈Mi〉−1[Ni])si(p) +
si(p)−1∑
k=0

(〈Mi〉−1[Ni])k〈Mi〉−1[Ci] = I −
si(p)−1∑
k=0

(〈Mi〉−1[Ni])k〈Mi〉−1〈A〉;

we can rewrite (7) as

T (p)i; I = I −
si(p)−1∑
k=0

(〈Mi〉−1[Ni])k〈Mi〉−1(〈A〉 − P): (8)

Since 〈A〉−1 and P are nonnegative matrices and by the hypothesis �(〈A〉−1P)¡ 1, the matrix
(〈A〉−P) is a monotone matrix. Let e=(1; 1; : : : ; 1)T ∈RN and v=(〈A〉−P)−1e. Then as (〈A〉−P)−1¿0
and no row of (〈A〉 − P)−1 can have all null entries, we get v¿ 0. The same arguments result in
M−1
i e¿ 0; i = 1; 2; : : : ; �. Then, from (8) we have

T (p)i; I v= v−
si(p)−1∑
k=0

(〈Mi〉−1[Ni])k〈Mi〉−1e

= v− 〈Mi〉−1e −
si(p)−1∑
k=1

(〈Mi〉−1[Ni])k〈Mi〉−1e:
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Because the matrices 〈Mi〉−1 and [Ni] are nonnegative, it follows that T (p)i; I v6v − 〈Mi〉−1e. More-
over, since v− 〈Mi〉−1e¡v, there exist constants �i ∈ [0; 1); i=1; 2; : : : ; �, such that T (p)i; I v6�iv; i=
1; 2; : : : ; �; p∈N0. Hence, by setting �=max16i6� {�i}, we get

T (p)i; I v6�v; i = 1; 2; : : : ; �; p∈N0; (9)

where �∈ [0; 1) is a constant and v∈RN is a positive vector. Note that T (p)i; I ¿0; i=1; 2; : : : ; �; p∈N0.
Now, de�ning the sequence {�p}p∈N0 according to
�0 = [�0]; �p+1 =

∑
i∈J (p)

ẼiT
(p)
i; I �

�i(p) +
∑
i 6∈ J (p)

Ẽi�p; p∈N0;

where Ẽi=[Ei]; i=1; 2; : : : ; �, we can immediately deduce that {�p}p∈N0 is a majorizing sequence of
{[�p]}p∈N0 . That is to say, [�p]6�p holds for all p∈N0. By making use of Lemma 5 we immediately
know that limp→∞ �p=0. Therefore, limp→∞ [�p]=0 and then, limp→∞ �p=0. This ful�ls the proof
for Type-I case.
For the Type-II case, let us denote by P̃=[D(A)−1]P, and for i=1; 2; : : : ; �, B̃i=D(A)−1Bi; C̃i=

D(A)−1Ci; M̃ i = D(A)−1Mi and Ñi = D(A)−1Ni. Observing that M̃ i ∈H I
B; i = 1; 2; : : : ; �, by Lemma

2(b), we have [M̃
−1
i ]6〈M̃ i〉−1; i=1; 2; : : : ; �. By making use of these relations, taking block absolute

values on both sides of (5) as before, after inserting D(A)D(A)−1 in the appropriate places, we
obtain

[�p+1]6
∑
i∈J (p)

[Ei]T
(p)
i; II [�

�i(p)] +
∑
i 6∈ J (p)

[Ei][�p]; p∈N0;

where

T (p)i; II = (〈M̃ i〉−1[Ñi])si(p) +
si(p)−1∑
k=0

(〈M̃ i〉−1[Ñi])k〈M̃ i〉−1([C̃i] + P̃):

This expression has the same form as (6), with matrices of the same structure as (7). Noticing
that the splittings D(A)−1A = B̃i − C̃i, and B̃i = M̃ i − Ñi are H I

B-compatible and they correspond to
the system D(A)−1Ax =D(A)−1G(x), which satisfy the hypotheses of the Type-I case, we therefore
complete the proof.

Theorem 7. Let A∈H I
B(H

II
B )⊂ Ln; I(n1; : : : ; nN ). Let the splittings A = Bi − Ci; i = 1; 2; : : : ; �; be

H I
B-compatible (H

II
B -compatible) such that D(Bi) = D(A); i = 1; 2; : : : ; �; the splittings Bi = Di −

Li − Ui; i = 1; 2; : : : ; �; satisfy
〈Bi〉= 〈Di〉 − [Li]− [Ui]; i = 1; 2; : : : ; �

for Type-I case (and

〈〈Bi〉〉= I − [D−1
i Li]− [D−1

i Ui]; i = 1; 2; : : : ; �

for Type-II case); and the weighting matrices Ei; i=1; 2; : : : ; �; satisfy
∑�

i=1 [Ei]6I . Assume further
that G :Vn → Vn is a block P-bounded mapping such that �(〈A〉−1P)¡ 1(�(〈〈A〉〉−1[D(A)−1]P)¡ 1).
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Then; the asynchronous multisplitting block two-stage Method 2 converges to the unique solution
of the system of weakly nonlinear equations (1); for any initial vector x0 ∈Vn and any sequence
of numbers of inner iterations si(p)¿1; i= 1; 2; : : : ; �; p∈N0; provided the relaxation parameters
 and ! satisfy 066! and

0¡!¡
2

1 + �(D−1
〈A〉(B〈A〉 + P))

(
0¡!¡

2
1 + �(B〈A〉 + [D(A)−1]P)

)
:

Proof. Let us denote, again, by P̃=[D(A)−1]P, and for i=1; 2; : : : ; �; B̃i=D(A)−1Bi; C̃i=D(A)−1Ci; L̃i=
D(A)−1Li; Ũ i = D(A)−1Ui, and

M̃ i(; !) =
1
!
(I − L̃i);

Ñi(; !) =
1
!
((1− !)I + (!− )L̃i + !Ũ i):

Then we have

〈M̃ i(; !)〉= 〈〈M̃ i(; !)〉〉= 1
!
(I − [L̃i]) ≡ Mi(; !);

[Ñi(; !)]6
1
!
(|1− !|I + (!− )[L̃i] + ![Ũ i]) ≡ Ni(; !):

(10)

Writing Ci = [C̃i] and P= P̃, following similar demonstration to the proof of Theorem 6 we know
from (4) that the error {�p}p∈N0 of Method 2 satis�es

[�p+1]6
∑
i∈J (p)

[Ei]T
(p)
i [��i(p)] +

∑
i 6∈ J (p)

[Ei][�p]; p∈N0 (11)

for both Type-I and Type-II cases, where

T (p)i = (Mi(; !)−1Ni(; !))si(p) +
si(p)−1∑
k=0

(Mi(; !)−1Ni(; !))kMi(; !)−1(Ci +P)

= I −
si(p)−1∑
k=0

(Mi(; !)−1Ni(; !))kMi(; !)−1(〈〈A〉〉 −P): (12)

For Type-I case, we note that 〈〈A〉〉¿I − D−1
〈A〉B〈A〉 and for i = 1; 2; : : : ; �; [L̃i]6D−1

〈A〉[Li]; [Ũ i]6
D−1

〈A〉[Ui]. Therefore,

Mi(; !)¿
1
!
(I − D−1

〈A〉[Li]) ≡ M̂i(; !);

Ni(; !)6
1
!
(|1− !|I + (!− )D−1

〈A〉[Li] + !D
−1
〈A〉[Ui]) ≡ N̂i(; !):
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Since for i = 1; 2; : : : ; �; M̂i(; !) are M -matrices satisfying M̂i(; !)−1¿Mi(; !)−1 and N̂i(; !)
are nonnegative matrices, from (12) we have

T (p)i 6 (M̂i(; !)−1N̂i(; !))si(p) +
si(p)−1∑
k=0

(M̂i(; !)−1N̂i(; !))kM̂i(; !)−1D−1
〈A〉(Ĉi + P)

= I −
si(p)−1∑
k=0

(M̂i(; !)−1N̂i(; !))kM̂i(; !)−1D−1
〈A〉(〈A〉 − P)

≡ T̂
(p)
i ;

where Ĉi = [Ci]; i = 1; 2; : : : ; �. Eq. (11) now gives

[�p+1]6
∑
i∈J (p)

[Ei]T̂
(p)
i [�

�i(p)] +
∑
i 6∈ J (p)

[Ei][�p]; p∈N0: (13)

If we de�ne


Â(!) = 1− !− |1− !|
!

I + D−1
〈A〉(〈A〉 − P);

B̂i(!) =
1− |1− !|

!
I − D−1

〈A〉([Li] + [Ui]); i = 1; 2; : : : ; �;

Ĉi(!) = D−1
〈A〉(Ĉi + P);

then it holds that

Â(!) = B̂i(!)− Ĉi(!); B̂i(!) =M̂i(; !)−N̂i(; !); i = 1; 2; : : : ; �:

Clearly, Ĉi(!)¿0; i = 1; 2; : : : ; �; and B̂i(!) =M̂i(; !)−N̂i(; !); i = 1; 2; : : : ; �, are M -splittings.
In addition, the hypothesis �(〈A〉−1P)¡ 1 immediately implies that D−1

〈A〉(〈A〉 − P) is a monotone
matrix. Hence, we see that Â(!) is an M -matrix. Moreover, the inequalities

Â(!)6B̂i(!)6I; i = 1; 2; : : : ; �

show that B̂i(!); i= 1; 2; : : : ; �, are M -matrices. Up to now, similar to the proof of Theorem 6, we
can demonstrate that there exist a constant �∈ [0; 1) and a positive vector v∈Rn such that

T̂
(p)
i v6�v; i = 1; 2; : : : ; �; p∈N0:

These estimates, together with (13) and Lemma 5, directly result in limp→∞ �p=0 for Type-I case.
The investigation of Type-II case is quite simple. It follows from (10) that

Mi(; !)−Ni(; !) =
1− !− |1− !|

!
I + 〈〈B̃i〉〉; i = 1; 2; : : : ; �:

By making use of these identities as well as (11) and (12), analogously to the proof of Theorem 6
we can also get limp→∞ �p = 0 for Type-II case.
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5. Numerical results

Consider the system of weakly nonlinear equations (1) with A= (A‘j)∈ Ln(ñ; : : : ; ñ),

A‘j =



B̃ if ‘ = j;

−I if |‘ − j|= 1; ‘; j = 1; 2; : : : ; ñ;

0 otherwise

and with G(x)∈Vn(ñ; : : : ; ñ),
Gj(x) = (g(j−1)ñ+1(x); g(j−1)ñ+2(x); : : : ; gjñ(x))T;

where B̃= tridiag(−1; 4 + 10h2;−1)∈Rñ×ñ; h= 1=(ñ+ 1)2 and

g1(x) = h2(|x1|+ �e(�−1)|x1|sin x1)− 10;
gj(x) = h2(|xj|+ �e(�−1)|xj|sin xjcos xj−1); j = 2; 3; : : : ; n− 1;
gn(x) = h2(|xn|+ �e(�−1)|x n|sin xn cos xn−1) + 10:

Evidently, we have N=ñ; nj=ñ (j=1; 2; : : : ; ñ) and n=ñ
2. We solve this system of weakly nonlinear

equations on the SGI Power Challenge multiprocessor having four processors.
The computations are done for the new asynchronous multisplitting block two-stage AOR

method 2 (Block AMTS-AOR method), its corresponding point version in [9], i.e., the asyn-
chronous multisplitting two-stage AOR method (Point AMTS-AOR method), and its corresponding
synchronous version in [12], i.e., the synchronous multisplitting block two-stage AOR method (Block
SMTS-AOR method). These three methods are implemented as PVM applications and tested on the
afore-mentioned parallel computer. In our computations, the splitting matrices for the block methods
are taken to be

Bi = (B
(i)
‘j )∈ Ln(ñ; : : : ; ñ);

B(i)‘j =



A‘j if ‘; j∈ Ji;
A‘‘ if ‘; j 6∈ Ji and ‘ = j; ‘; j = 1; 2; : : : ; ñ;

0 otherwise;

Di =Diag(A11; A22; : : : ; Aññ);

Li = the strictly block lower-triangular matrices of (−Bi);
Ui = the strictly block upper-triangular matrices of (−Bi);
Ei =Diag(�(i−1)n0+1I; �(i−1)n0+2I; : : : ; �(i+1)n0I); �j ∈ [0; 1];

where n0=ñ=(�+1); Ji={(i−1)n0+1; (i−1)n0+2; : : : ; (i+1)n0}; and for j=1; 2; : : : ; 2n0; �(i−1)n0+j=1
if i = 1 and 16j6n0 or if i = � and n0 + 16j62n0, and �(i−1)n0+j = 0:5 otherwise. The splitting
matrices for the point methods can be de�ned in a similar way except that we take Di; Li and Ui
to be point matrices, respectively, in the block case. In particular, we point out that these partitions
allow that the ith processor of the multiprocessor system solves only the variables located in Ji.
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Table 1
Point vs. Block AMTS-AOR method, � = 0:0

� = 1 � = 2 � = 3 � = 4

Point = 1:0 Time (ms) 43 432 35 479 31 233 20 509
AMTS-AOR != 1:0 Speedup 1.0 1.22 1.39 2.11

= 0:8 Time (ms) 42 176 36 190 29 413 21 107
!= 0:7 Speedup 1.0 1.17 1.43 2.0

Block = 1:0 Time (ms) 14 184 9304 7515 6243
AMTS-AOR != 1:0 Speedup 1.0 1.52 1.88 2.27

= 0:9 Time (ms) 15 043 8962 7403 6001
!= 1:1 Speedup 1.0 1.68 2.03 2.51

Table 2
Point vs. Block AMTS-AOR method, � = 1:0

� = 1 � = 2 � = 3 � = 4

Point = 1:0 Time (ms) 24 958 17 034 13 467 11 026
AMTS-AOR != 1:0 Speedup 1.0 1.46 1.85 2.26

= 0:9 Time (ms) 24 101 18 362 13 109 10 816
!= 1:0 Speedup 1.0 1.31 1.84 2.23

Block = 1:0 Time (ms) 13 562 8618 7097 6176
AMTS-AOR != 1:0 Speedup 1.0 1.57 1.91 2.19

= 0:8 Time (ms) 13 225 8512 7203 5814
!= 0:8 Speedup 1.0 1.55 1.84 2.27

Hence, the computation of a single outer iteration takes on one processor 2Tseq=(�+ 1) time, where
Tseq represents the sequential time of computing the outer iteration. Furthermore, since the commu-
nication overheads add to the execution time, (�+ 1)=2 represents an upper bound for the expected
speed-up of the implementations.
All computations are started from an initial vector having all components equal to −1:0, and

terminated once the current iterations xp obey

‖Axp − G(xp)‖1
‖Ax0 − G(x0)‖1610

−5:

For n= ñ2 = 6400, the corresponding timings and speed-ups are listed in Tables 1–4 and plotted in
Figs. 1 and 2. Here, the speed-up is de�ned to be the ratio of the sequential computing time with
the corresponding parallel running; and without particular description, the number of inner iterations
s is assigned a randomly chosen value from the set {1; 2; 3; 4}, i.e., s = rand(1::4), for each outer
iteration and on each processor.
Tables 1 and 3 present some numerical computations of both the point and the block AMTS-AOR

methods for the cases of � = 0:0 and � = 1:0, respectively. Simple comparisons show that the
block AMTS-AOR method requires much less CPU to achieve the stopping criterion than the point
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Table 3
Block SMTS-AOR method, � = 0:0

� = 1 � = 2 � = 3 � = 4

s = 1 = 1:0 Time (ms) 33 617 25 507 23 196 15 684
!= 1:0 Speedup 1.0 1.31 1.44 2.14

= 0:9 Time (ms) 32 901 25 146 23 214 12 998
!= 1:0 Speedup 1.0 1.31 1.42 2.53

s = 2 = 1:0 Time (ms) 21 436 15 662 14 893 9954
!= 1:0 Speedup 1.0 1.36 1.43 2.15

= 0:9 Time (ms) 20 404 15 385 14 504 9610
!= 0:9 Speedup 1.0 1.33 1.41 2.12

s = 3 = 1:0 Time (ms) 17 406 11 639 11 093 7981
!= 1:0 Speedup 1.0 1.49 1.56 2.18

= 0:9 Time (ms) 17 283 10 956 11 205 7503
!= 1:0 Speedup 1.0 1.58 1.54 2.30

s = 4 = 1:0 Time (ms) 15 439 10 120 8941 7077
!= 1:0 Speedup 1.0 1.52 1.72 2.18

= 0:8 Time (ms) 15 205 9872 8504 6812
!= 0:9 Speedup 1.0 1.54 1.79 2.23

Table 4
Block SMTS-AOR method, � = 1:0

� = 1 � = 2 � = 3 � = 4

s = 1 = 1:0 Time (ms) 29 336 26 365 21 044 15 358
!= 1:0 Speedup 1.0 1.11 1.39 1.91

= 0:9 Time (ms) 28 307 26 510 20 834 15 007
!= 0:9 Speedup 1.0 1.07 1.36 1.89

s = 2 = 1:0 Time (ms) 19 410 15 461 11 283 9516
!= 1:0 Speedup 1.0 1.25 1.72 2.03

= 0:9 Time (ms) 17 120 14 902 10 871 9314
!= 1:0 Speedup 1.0 1.15 1.57 1.84

s = 3 = 1:0 Time (ms) 16 260 11 349 9237 7262
!= 1:0 Speedup 1.0 1.43 1.76 2.23

= 0:9 Time (ms) 16 126 10 841 8964 7124
!= 1:0 Speedup 1.0 1.49 1.80 2.26

s = 4 = 1:0 Time (ms) 14 526 10 679 8708 6720
!= 1:0 Speedup 1.0 1.36 1.66 2.16

= 0:8 Time (ms) 13 917 9763 8605 6347
!= 1:0 Speedup 1.0 1.43 1.62 2.19
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Fig. 1. The execution time for the Block AMTS-AOR method as a function of !∈ [0:4; 1:2]. The other parameters are:
� = 1:0; s = rand(1::4); � = 4.

Fig. 2. The execution time for the Block AMTS-AOR method as a function of ∈ [0:4; 1:3]. The other parameters are:
� = 1:0; s = rand(1::4); � = 4.

AMTS-AOR method, and its speed-up is also much higher than the latter one. Regarding the optimal
processor number, four processor case is the best possible one in our experiments since it costs the
least CPU and possesses the highest speedup.
Tables 2 and 4 present numerical performance of the block SMTS-AOR method for the cases of

� = 0:0 and 1:0, respectively. The comparisons are focused on the numbers of the inner iterations
and the processors, respectively. Roughly speaking, s= 3; 4 and �= 4 give the best convergence of
this method for almost all situations.
From Tables 1–4, it is clear that the block AMTS-AOR method has better numerical property

than the block SMTS-AOR method in the senses of both CPU and speedup.
Through depicting the dependence curve of the CPU with respect to the relaxation parameters,

Figs. 1 and 2 show that suitable match of the relaxation parameters can considerably accelerate the
convergence speed of the asynchronous multisplitting block two-stage AOR method.
Concludingly, in all experiments, the Block AMTS-AOR method requires a signi�cantly smaller

number of outer iterations than the Point AMTS-AOR method as well as the Block SMTS-AOR
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method. For each of these three methods, the number of outer iterations remains almost constant when
the number of processors increases. For the Block SMTS-AOR method, the execution time sharply
decreases when the number of inner iterations s is increased from 1 to 3, but stabilizes and eventually
raises if s is further increased. The initial improvement in the execution time is due to a decrease
in the local computation time. We remember that the residual (Ax − G(x)), the most expensive
computation in each outer iteration, only needs to be computed once per outer iteration. However, by
increasing the number of inner iterations beyond 3 or 4, the convergence of the method is a�ected.
When s = 3; 4, the Block SMTS-AOR method tends to be slower than the Block AMTS-AOR
method, and it is expected that on a distributed memory parallel computer the Block AMTS-AOR
method would be signi�cantly better than the more restrictive Block SMTS-AOR method. The Point
AMTS-AOR method is the least performant of the three methods. In addition, the numerical results
clearly show that suitable choices of the relaxation parameters  and ! can signi�cantly improve
the convergence properties of the parallel multisplitting two-stage AOR methods.
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