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Abstract

In a recent paper, a nonmonotone spectral projected gradient (SPG) method was introduced by Birgin et al. for
the minimization of differentiable functions on closed convex sets and extensive presented results showed that this
method was very efficient. In this paper, we give a more comprehensive theoretical analysis of the SPG method.
In doing so, we remove various boundedness conditions that are assumed in existing results, such as boundedness
from below off , boundedness ofxk or existence of accumulation point of{xk}. If ∇f (·) is uniformly continuous,
we establish the convergence theory of this method and prove that the SPGmethod forces the sequence of projected
gradients to zero. Moreover, we show under appropriate conditions that the SPG method has some encouraging
convergence properties, such as the global convergence of the sequence of iterates generated by this method and
the finite termination, etc. Therefore, these results show that the SPG method is attractive in theory.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of minimizing a continuously differentiable mappingf : Rn → R over a nonempty
closed convex set� ⊆ Rn,

min{f (x) : x ∈ �} (1)
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has received considerable attention. Over the last few decades, there have beenmany different methods to
solve problem (1). The simplest of these methods is the gradient projection method which was originally
proposed by Goldstein[12] and Levitin and Polyak[17] and extended by Calamai and Moré[8]. This
method possesses some advantages. Firstly, it is easy to implement (especially, for the optimization
problem with simple bounds), uses little storage and readily exploits any sparsity or separable structure
in ∇f (x) or�. Secondly, it is able to drop and add many constraints from the active set at each iteration.
Hence, it has been developed for solving various cases of problem (1).
Given an inner product norm‖ · ‖, the projection onto a nonempty closed convex set� is the mapping

P� : Rn → � defined by

P�(x) := arg min{‖z − x‖ : z ∈ �}.
The gradient projection algorithm is defined by

xk+1 = xk(�k) = P�(xk − �k∇f (xk)),

where�k >0 is the stepsize and∇f (x) is the gradient off .
Some convergence results of the gradient projection method were obtained (see, for example,

[2,8,9,11–13,17,18,23–26]and references therein). In the algorithms of these papers, we noticed that
the sequence{f (xk)}wasmonotonically decreasing. But for some functions the performance of methods
with monotone strategies is poor. The numerical results imply that themethods with proper nonmonotone
strategies are more efficient than the ones with monotone strategies (see[6,10,15,16,20]). Particularly, in
some cases, the methods with nonmonotone line search can overcome the Maratos effect[6].
The spectral choice of steplength introduced byBarzilai andBorwein[1] is a technique for the choice of

steplength. Numerical results show that this technique is very efficient to solve large-scale unconstrained
optimization (see[3,20–22]).
Recently, combining the spectral choice of steplengthwith nonmonotone line search techniques, Birgin

et al.[4] established nonmonotone spectral projected gradient (SPG) methods. In the paper[4], a mass
of numerical experiments showed that the spectral choice of the steplength represented considerable
progress in relation to constant choices and that the nonmonotone framework was useful. However, the
proof of their convergence theorems (see[4]) contain minor errors. The reason is that in the proof of case
2 (see[4, Theorems 2.3 and 2.4, p. 1200, p. 1202]) they mistook the sequence{xk} for a subsequence
{xk}K , which converged to an accumulation pointx̄. So the convergence results in the paper[4] could
not be obtained. In fact, if we add some appropriate conditions, the convergence theorem will be proved.
In this paper, the authors study the convergence properties of SPG methods. We remove various

boundedness conditions that are assumed in existing results, such as boundedness from below off ,
boundedness ofxk or existence of accumulation point of{xk}. If ∇f (·) is uniformly continuous, we
establish the convergence theory of this method and prove that the SPG method forces the sequence of
projected gradients to zero. Moreover, we show under appropriate conditions that the SPG method has
some encouraging convergence properties, such as the global convergence of the sequence of iterates
generated by this method and the finite termination, which improve and generalize the corresponding
results in the papers[7,19].
The paper is organized as follows. In the next section we introduce some concepts and lemmas which

are used in the remainder of the paper. In Section 3, we present the nonmonotone spectral projected
gradient algorithms. We then prove the convergence theorems in Section 4. In Section 5, we study the
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global convergence of the sequence{xk} of iterates generated by this method. Finally in Section 6, the
finite convergence results under milder conditions are obtained.

2. Definitions and lemmas

We now review some definitions and lemmas that are used in subsequent sections.
We say that a pointx ∈ � is a stationary point of problem (1) if it satisfies condition

〈∇f (x), y − x〉�0 ∀y ∈ �.

The set that consists of all the stationary points and the set that consists of all the global optimal solutions
of problem (1), respectively, are denoted by�+ and�∗. If the mappingf (·) is pseudo-convex on�, then
�∗ = �+.
For a nonempty subsetS of Rn, its polar cone is defined as

S◦ = {y ∈ Rn|〈y, x〉�0 ∀x ∈ S}.
The tangent cone of� atx ∈ � is given by

T�(x) = {d ∈ Rn|∃�k ↓ 0, dk → d ∀k, x + �kdk ∈ �}.
The normal cone of� atx is defined as

N�(x) = T�(x)◦.

We call a mapping∇�f : Rn → Rn the projected gradient off (·) with respect to the set� if

∇�f (x) = PT�(x)
(−∇f (x)) ∀x ∈ �.

By this definition,x ∈ �+ if and only if∇�f (x) = 0 or−∇f (x) ∈ N�(x).
A mapping∇f (·) is Lipschitz continuous on�, if there exists a constantL >0 such that for everyx,

y ∈ �,

‖∇f (x) − ∇f (y)‖�L‖x − y‖.
Projection has been extensively studied and we here briefly recall some of its properties for our dis-

cussion.

Lemma 2.1 (Calamai and Moré[8] ). Let P� be the projection onto�. Considerx ∈ �, and define
x(�) := P�(x − �∇f (x)), then

(1) 〈x(�) − x + �∇f (x), y − x(�))�0, for all y ∈ � and� >0
(2) for all � >0,

〈∇f (x), x − x(�)〉� |x(�) − x‖2
�

.

Lemma 2.2(Calamai and Moré[8] ). Let∇�f (x) be the projected gradient off at x ∈ �. Then

(1) min{〈∇f (x), v〉 : ‖v‖�1} = −‖∇�f (x)‖;
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(2) ∇�f (·) is lower semicontinuous on�, that is, if limk→∞ xk = x, then

‖∇�f (x)‖� lim inf
k→∞ ‖∇�f (xk)‖.

Lemma 2.3(Wang and Xiu[25] ). For each iterative pointxk ∈ �, xk = P�(xk−1 − �k−1∇f (xk−1)),
we have for anyx ∈ �,

〈∇f (xk), xk − x〉
‖xk − x‖ �

‖xk − xk−1‖
�k−1

+ ‖∇f (xk) − ∇f (xk−1)‖.

3. Convergence properties

In the paper[4], nonmonotone spectral projected gradient algorithms[4, Algorithms 2.1 and 2.2]
to solve the constrained minimization problem (1) were introduced. Now we state their convergence
theorems as follows.
Using the first part of the proof of the theorem in[15, p. 709], we can obtain the following lemma.

Lemma 3.1. Let l(k) be an integer such thatk − min{k, M − 1}� l(k)�k and

f (xl(k)) = max
0�j � min{k,M−1} f (xk−j ).

If {xk} is the sequence produced by Algorithm2.1 (or Algorithm2.2), then the sequence{f (xl(k))} is
monotonically nonincreasing.

Let fmax= limk→∞ f (xl(k)), N = {1,2, . . .}, we obtain the following result.

Theorem3.1. Let{xk} be the sequence generated by theAlgorithm2.1,if ∇f (x) is uniformly continuous
on an open convex set containing{xk}, thenlimk→+∞ f (xk) = −∞ or

lim
k→+∞

〈∇f (xk), xk − xk(�k)〉
�k

= 0.

Proof. Note that if limk→+∞ f (xk) = −∞, then the result is obtained. Otherwise, we obtain that
lim supk→+∞ f (xk) > − ∞. Thus Algorithm 2.1 implies thatfmax> − ∞.
SettingKi = {l(k′) + i − 1 | k′ ∈ N}, wherei = 0,1,2, . . . , M − 1. It follows from the definition of

f (xl(k′)) that

l(k′ + 1) − l(k′)� l(k′ + 1) − l(l(k′ + 1) − 1),
� l(k′ + 1) − {l(k′ + 1) − 1− min{l(k′ + 1) − 1, M − 1}},
= 1+ min{l(k′ + 1) − 1, M − 1}�M.

It is clear that
⋃M−1

i=0 − Ki = N . It suffices to show that

lim
k∈

M−1⋃
i=0

Ki,k→∞

〈∇f (xk), xk − xk(�k)〉
�k

= 0.
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Let us first show that

lim
k∈K0,k→∞

〈∇f (xk), xk − xk(�k)〉
�k

= 0.

Assume that there is an�0>0 and an infinite subsequencēK0 ⊂ K0 such that

〈∇f (xk), xk − xk(�k)〉
�k

��0 ∀k ∈ K̄0. (2)

We will prove that this assumption leads to a contradiction. First note that ifk ∈ K̄0 then there existsk′
such thatk = l(k′) − 1, i.e.,k + 1= l(k′). By Algorithm 2.1 we have

f (xl(k′))�f (xl(k)) + �〈xk(�k) − xk ∇f (xk)〉 ∀k ∈ K̄0 (3)

which, together with Lemma 2.1(2), shows that

0��〈xk − xk(�k), ∇f (xk)〉�f (xl(k)) − f (xl(k′)).

Furthermore, taking limit in the above inequality ask ∈ K̄0, k → ∞, we have

lim
k∈K0,k→∞ 〈∇f (xk), xk − xk(�k)〉 = 0. (4)

From (2) and (4), we derive limk∈K̄0,k→∞ �k = 0. So, by Algorithm 2.1, for allk ∈ K̄0 sufficiently large
there exists�1��k ��2, 	k = �k/�k satisfying

f (xk(	k)) > max
0�j � min{k,M−1} f (xk−j ) + �	k〈dk, ∇f (xk)〉.

Hence,

f (xk) − f (xk(	k))� max
0�j � min{k,M−1} f (xk−j ) − f (xk(	k)),

< �〈xk − xk(	k), ∇f (xk)〉. (5)

Condition (5) shows that if

�k(�) = f (xk) − f (xk(�))

〈xk − xk(�), ∇f (xk)〉 ,
then

�k(	k) = f (xk) − f (xk(	k))

〈xk − xk(	k), ∇f (xk)〉 ,

<
�〈xk − xk(	k), ∇f (xk)〉
〈xk − xk(	k), ∇f (xk)〉 = �. (6)

On the other hand, since〈∇f (x), x − x(�)〉/� is nonincreasing on� >0 [26], Lemma 2.1(2) and (2)
imply that if k ∈ K̄0, then

〈∇f (xk), xk − xk(�k)〉2��2k
〈∇f (xk), xk − xk(�k)〉

�k

〈∇f (xk), xk − xk(	k)〉
	k

��0�
2
k	k〈∇f (xk), xk − xk(	k)〉

��0�
2
k‖xk − xk(	k)‖2.
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Hence,

〈∇f (xk), xk − xk(�k)〉�√
�0�k‖xk − xk(	k)‖. (7)

So the uniform continuity of∇f (x) and (7) show that

|�k(	k) − 1| =
∣∣∣∣f (xk) − f (xk(	k)) − 〈xk − xk(	k), ∇f (xk)〉

〈xk − xk(	k), ∇f (xk)〉
∣∣∣∣

�
o(‖xk − xk(	k)‖)√
�0�k‖xk − xk(	k)‖

�
o(‖xk − xk(	k)‖)√
�0�1‖xk − xk(	k)‖

.

This establishes that�k(	k) > � for all k ∈ K̄0 sufficiently large, which is the desired contradiction
because (6) guarantees�k(	k) < �. Hence,

lim
k∈K0,k→∞

〈∇f (xk), xk − xk(�k)〉
�k

= 0.

Under the assumption that

lim
k∈Ki−1,k→∞

〈∇f (xk), xk − xk(�k)〉
�k

= 0, (8)

we now establish

lim
k∈Ki,k→∞

〈∇f (xk), xk − xk(�k)〉
�k

= 0.

By using Lemma 2.1(2), we have

‖xk−1 − xk−1(�k−1)‖2
�2max

�
‖xk−1 − xk−1(�k−1)‖2

�2k−1

�
〈∇f (xk−1), xk−1 − xk−1(�k−1)〉

�k−1
. (9)

Sincek ∈ Ki impliesk − 1 ∈ Ki−1, condition (8) and (9) show that

lim
k∈Ki,k→∞

‖xk−1 − xk−1(�k−1)‖
�k−1

= 0, (10)

lim
k∈Ki,k→∞ ‖xk−1 − xk−1(�k−1)‖ = 0. (11)

Thus, by the uniform continuity of∇f (x) and (11), we have

lim
k∈Ki,k→∞ ‖∇f (xk−1) − ∇f (xk−1(�k−1))‖ = 0. (12)
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Moreover, Lemmas 2.1(2) and 2.3 show that

〈∇f (xk), xk − xk(�k)〉
�k

= 〈∇f (xk), xk − xk(�k)〉
‖xk − xk(�k)‖

‖xk − xk(�k)‖
�k

�
〈∇f (xk), xk − xk(�k)〉2

‖xk − xk(�k)‖2

�
(‖xk−1 − xk(�k−1)‖

�k−1
+ ‖∇f (xk−1) − ∇f (xk−1(�k−1))‖

)2

. (13)

Condition (13), together with (10) and (12), implies that

lim
k∈Ki,k→∞

〈∇f (xk), xk − xk(�k)〉
�k

= 0.

Thus, we obtain

lim
k→∞

〈∇f (xk), xk − xk(�k)〉
�k

= 0.

This completes the proof of the theorem.�

By using Lemma 2.1(2) and Theorem 3.1, we have the following corollary.

Corollary 3.1. Let{xk}be the sequencegeneratedby theAlgorithm2.1,if ∇f (x) is uniformly continuous
on an open convex set containing{xk} andfmax> − ∞, then

lim
k→+∞

‖xk − xk(�k)‖
�k

= 0.

Corollary 3.2. Let{xk}be the sequencegeneratedby theAlgorithm2.1,if ∇f (x) is uniformly continuous
on an open convex set containing{xk} andfmax> − ∞, then

lim
k→+∞ ‖∇�f (xk)‖ = 0.

Proof. By using the definition ofT�(xk) and Lemma 2.3, we have for anyd ∈ T�(xk) and‖d‖�1,

−〈∇f (xk), d〉� xk − xk−1

�k−1
+ ‖∇f (xk) − ∇f (xk−1)‖. (14)

Lemma 2.2(1), (14) implies that

‖∇�f (xk)‖ = max{−〈∇f (xk), d〉|d ∈ T�(xk), ‖d‖�1}
�

xk − xk−1

�k−1
+ ‖∇f (xk) − ∇f (xk−1)‖.

Therefore, by Lemma 3.1, the uniform continuity of∇f (·) and the fact that�k is bounded, we have

lim
k→+∞ ‖∇�f (xk)‖ = 0.
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Corollary 3.3. Let{xk} be the sequence generated by the Algorithm2.1,∇f (x) is uniformly continuous
on an open convex set containing{xk}, if x+ is a cluster point of{xk}, thenx+ ∈ �+.

Proof. By using Lemmas 2.4 and 2.2(2), we can prove∇�f (x+) = 0, that is,x+ ∈ �+. �

Remark. Corollary 3.3 is the correct expression of Theorem 2.3 of the paper[4].

Theorem 3.2. Let{xk} be the sequence generated by theAlgorithm2.2,if ∇f (x) is uniformly continuous
on an open convex set containing{xk}, thenlimk→+∞ f (xk) = −∞ or

lim
k→+∞〈∇f (xk), dk〉 = 0.

Proof. If lim k→+∞ f (xk) = −∞, then the result is obtained. Otherwise, we obtain that
lim supk→+∞ f (xk) >−∞. ThusAlgorithm 2.2 implies thatfmax>−∞. SettingKi ={l(k′)+i−1|k′ ∈
N}, wherei = 0,1,2, . . . , M − 1. The proof proceeds as in Theorem 3.1. Thus it suffices to show that

lim
k∈

M−1⋃
i=0

Ki,k→∞
〈∇f (xk), dk〉 = 0.

Let us first show that

lim
k→K0,k→+∞ 〈∇f (xk), dk〉 = 0.

Suppose, on the contrary, that there is an�0>0 and an infinite subsequencēK0 ⊂ K0 such that

〈∇f (xk), dk〉 < − �0 ∀k ∈ K̄0. (15)

First note that ifk ∈ K̄0 then there existsk′ such thatk = l(k′) − 1, i.e.k + 1= l(k′) and by Algorithm
2.2 we have

f (xl(k′))�f (xl(k)) + ��k〈∇f (xk), dk〉 ∀k ∈ K0. (16)

By (15) and (16), we have that

0< ��k�0� − ��k〈∇f (xk), dk〉�f (xl(k)) − f (xl(k′)).

Taking limit in the above inequality ask ∈ K̄0, k → +∞, Lemma 2.1 andfmax> − ∞ show that

lim
k∈K̄0,k→∞

�k = 0, lim
k∈K̄0,k→∞

��k

‖dk‖2
�max

� lim
k∈K̄0,k→∞

��k〈∇f (xk), dk〉 = 0.

Hence,

lim
k∈K̄0,k→∞

‖�kdk‖ = 0. (17)

By Algorithm 2.2 and�k → 0(k ∈ K̄0, k → ∞), for all k ∈ K̄0 sufficiently large there exists
�1��k ��2, 	k = �k/�k satisfying

f (xk + 	kdk) > max
0�j � min{k,M−1} f (xk−j ) − �	k〈∇f (xk), dk〉.
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Therefore, we obtain

f (xk) − f (xk + 	kdk)� max
0�j � min{k,M−1} f (xk−j ) − f (xk + 	kdk),

< − �	k〈∇f (xk), dk〉.
By using mean value theorem,

〈∇f (xk) − ∇f (xk + 
k	kdk), dk〉 < (1− �)〈∇f (xk), dk〉, (18)

where
k ∈ (0,1). By Lemma 2.1(2), the assumption shows that

−〈∇f (xk), dk〉�√
�0

‖dk‖√
�k

�
√

�0
�max

‖dk‖. (19)

Thus, by (18) and (19), we have

(1− �) <
‖∇f (xk) − ∇f (xk + 
k	kdk)‖‖dk‖

−〈∇f (xk), dk〉 ,

�
√

�max

�0
‖∇f (xk) − ∇f (xk + 
k	kdk)‖. (20)

Taking limit in (20) ask ∈ K0, k → ∞, the uniformly continuous of∇f (x) and condition (17) show
that��1. An obvious contradiction now occurs. Hence,

lim
k∈K0,k→+∞〈∇f (xk), dk〉 = 0.

For the reminder of the proof, the argument used in the proof of Theorem 3.1 yield

lim
k∈Ki,k→+∞〈∇f (xk), dk〉 = 0.

Thus, we obtain

lim
k→∞〈∇f (xk), dk〉 = 0. �

Very similar to the proof of corollaries of Theorem 3.1, from Theorem 3.2 we obtain the following
corollaries:

Corollary 3.4. Let{xk} be the sequence generated by theAlgorithm2.2,if ∇f (x) is uniformly continuous
on an open convex set containing{xk} andfmax> − ∞, then

lim
k→+∞ ‖xk − xk(�k)‖ = 0.

Corollary 3.5. Let{xk} be the sequence generated by theAlgorithm2.2,if ∇f (x) is uniformly continuous
on an open convex set containing{xk} andfmax> − ∞, then

lim
k→+∞ ‖∇�f (xk)‖ = 0.

Corollary 3.6. Let{xk} be the sequence generated by the Algorithm2.2,∇f (x) is uniformly continuous
on an open convex set containing{xk}, if x+ is a cluster point of{xk}, thenx+ ∈ �+.
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4. Global convergence

An algorithm is called globally convergent, if there existsx̄ ∈ �+ such that the sequence{xk} produced
by the algorithm satisfies limk→+∞ xk = x̄.
Under general conditions, various existing algorithms do not possess global convergence. Gonzaga

[14] gave a counter example, in which iff is convex and strictly convex at all nonoptimal points, the
steepest descentmethodwith exact stepsize rule for solving unconstrained problemgenerates four distinct
accumulationpoints.However, it is available toexplorewhat are conditions for convergenceof themethod.
Especially, when we estimate convergence rate of an algorithm, possessing global convergence is one of
the preconditions.More recently, the authors[25] studied the global convergence of the gradient projected
method with Armijo stepsize rule. In this paper, we prove that iff is generalized convex and∇f (·) is
Lipschitz continuous on�, then the sequence{xk} produced by the nonmonotone spectral projected
gradient method converges to a solution of problem (1). To prove this result, we first give two important
lemmas.

Lemma 4.1. Let {xk} be an infinite sequence generated by the Algorithm2.1. If ∇f (x) is Lipschitz
continuous on� and�max�1/2L, then we have for allk ∈ N and anyx ∈ �,

‖xk+1 − x‖2�‖xk − x‖2 + 2�max{f (xk) − f (xk+1)} + 2�k〈∇f (xk), x − xk〉.
Proof. By using Lemma 2.1,�max�1/2L andmean value theorem, we have for allk ∈ N and anyx ∈ �,

‖xk+1 − x‖2 = ‖xk − x‖2 + 2〈xk+1 − xk, xk − x〉 + ‖xk+1 − xk‖2
= ‖xk − x‖2 + 2〈xk+1 − xk, xk+1 − x〉 − ‖xk+1 − xk‖2
�‖xk − x‖2 + 2�k〈∇f (xk), x − xk+1〉 − ‖xk+1 − xk‖2
�‖xk − x‖2 + 2�max〈∇f (xk), xk − xk+1〉 + 2�k〈∇f (xk), x − xk〉 − ‖xk+1 − xk‖2
�‖xk − x‖2 + 2�max{f (xk) − f (xk+1)} + 2�k〈∇f (xk), x − xk〉

+ 2�max‖∇f (xk) − ∇f (�k)‖‖xk − xk+1‖ − ‖xk+1 − xk‖2
�‖xk − x‖2 + 2�max{f (xk) − f (xk+1)} + (
k − 1)‖xk − xk+1‖2

+ 2�k〈∇f (xk), x − xk〉
�‖xk − x‖2 + 2�max{f (xk) − f (xk+1)} + 2�k〈∇f (xk), x − xk〉,

where�k = xk + 
k(xk+1 − xk), 
k ∈ (0,1). The proof is completed.�

Lemma 4.2. Let {xk} be an infinite sequence generated by the Algorithm2.2. If ∇f (x) is Lipschitz
continuous on� and�max�1/2L, then we have for allk ∈ N and anyx ∈ �,

‖xk+1 − x‖2�‖xk − x‖2 + 2�max{f (xk) − f (xk+1)} + 2�k�k〈∇f (xk), x − xk〉.
The proof of this Lemma is similar to that of Lemma 4.1, so we omit the details.
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Theorem 4.1. Letf be pseudo-convex on�,∇f (x) is Lipschitz continuous on� and{xk} be an infinite
sequence generated by Algorithm2.1 (or Algorithm2.2).If �max�1/2L, then we have

(1) �∗ �= ∅ if and only if limk→+∞ xk = x∗ wherex∗ ∈ �∗.
(2) Otherwise, lim inf k→∞ f (xk) = inf {f (x)|x ∈ �}.
Proof. (1) Assume that�∗ �= ∅, then for anyx ∈ �∗, we have

f (x) < f (xk) ∀k ∈ N. (21)

Using the pseudo-convexity off (x), we derive

〈∇f (xk), x − xk〉 <0 ∀k ∈ N

which, together with Lemma 4.1 (or Lemma 4.2), deduces that

{‖xk − x‖2 + 2�maxf (xk)} ↓ (22)

Conditions (21) and (22) imply that{xk} is bounded. So, there exists at least one limit pointx∗ of {xk}
andK ⊆ N such that

lim
k∈K,k→+∞ xk = x∗.

From the pseudo-convexity off and Corollary 3.3 (Corollary 3.6), we havex∗ ∈ �∗. Takingx = x∗ in
(22), we have

{‖xk − x∗‖2 + 2�maxf (xk)} ↓ .

So,

lim
k→+∞{‖xk − x∗‖2 + 2�maxf (xk)} = lim

k∈K,k→+∞{‖xk − x∗‖2 + 2�maxf (xk)}
= 2�maxf (x∗). (23)

Since the continuity off , the boundedness of{xk} shows that{f (xk)} is bounded. Now there exists a
subsequence{f (xk)}K̄ of the sequence{f (xk)} satisfying

lim
k∈K̄,k→+∞

f (xk) = l.

x̄ is a cluster point of{xk}K̄ . Again, by Corollary 3.3 (Corollary 3.6), we havex̄ ∈ �∗. By the continuity
of f , we have

l = lim
k∈K̄,k→∞

f (xk) = f (x̄) = f (x∗).

Hence,

lim
k→∞ f (xk) = f (x∗).

From (23), we obtain that

lim
k→∞ xk = x∗.
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We now prove (2). It suffices to prove (2) for the case where�∗ = ∅. In this case we have from (1),

lim
k→∞ ‖xk‖ = +∞. (24)

Assume that lim infk→∞ f (xk) > inf {f (x)|x ∈ �}. Then there exists a pointx̄ ∈ � such that

f (x̄) < f (xk) ∀k ∈ N.

Similar to the previous proof, we derive that{xk} is bounded, which is a contradiction to (24). Therefore,
(2) holds. This completes the proof.�

Theorem 4.2. Letf be quasi-convex on�, ∇f (x) is Lipschitz continuous on� and{xk} be an infinite
sequence generated by Algorithm2.1 (or Algorithm2.2).If �max�1/2L, then we have

(1) �+ �= ∅ if and only if limk→+∞ xk = x+ wherex+ ∈ �+.
(2) Otherwise, lim inf k→∞ f (xk) = inf {f (x)|x ∈ �}.
Proof. The proof of this theorem is similar to that of Theorem 4.1, so we omit the details.�

Remark. All of the results in this section assume that�max�1/2L and∇f (x) is Lipschitz continuous
on�. These are restrictive, which may be relative to the nonmonotone line search. However, if we set
M =1 inAlgorithms 2.1 and 2.2, i.e. with monotone line search, the same results can be obtained without
the assumptions of Lipschitz continuous of∇f (x) and�max�1/2L. The proof of Lemmas 4.1 and 4.2
are similar to that of Lemma 3 in[25], so we omit the details.

5. Finite termination of algorithm

An algorithm is called finite convergent, if the sequence{xk} produced by the algorithm satisfies that
there existsk0 such thatxk ∈ �+ for all k�k0. The finite termination of algorithm was originally studied
by Burke and Ferris[7]. In Ref. [7], they introduced weak sharp condition on� and�∗, i.e., for every
x∗ ∈ �∗,

−∇f (x∗) ∈ int
⋂
x∈�

[T�(x) ∩ N�∗(x)]◦. (WS)

If condition (WS) holds, they obtained a condition for the sequence{xk} generated by algorithms to
converge finitely to an optimal solution of a problem of minimizing a differentiable convex function.
Later, Marcotte and Zhu[19] gave a condition for the method of solving pseudo-monotone variational
inequalities to terminate finitely, if condition (WS) holds.
In this section, for the general optimization problem (1) without convexity (convexity or pseudo-

convexity) assumption which was required in Refs.[7,19], we prove under condition (WS) that if the
sequence{xk} generated by the algorithm is bounded, then the Algorithm 2.1 (Algorithm 2.2) terminate
finitely.

Theorem 5.1. Suppose�+ is a nonempty closed convex set in problem(1)and condition(WS)on� and
�+ holds. Let{xk} is bounded, then Algorithm2.1 (Algorithm2.2) terminate finitely.
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Proof. We only prove the result for Algorithm 2.1 (The proof for algorithm 2.2 is similar to that of
Algorithm 2.1). Suppose, on the contrary, that there exists an infinite subsequence{xk}k∈K(K ⊆ N) such
that for allk ∈ K, xk /∈ �+, that is,

‖xk − P�+(xk)‖ >0 ∀k ∈ K. (25)

Since{xk} is bounded, Corollary 3.3 implies that

lim
k∈K,k→∞ xk = x+, (26)

wherex+ ∈ �+. By condition (WS) on� and�+, we have

−∇f (x+) ∈ int
⋂
x∈�

[T�(x) ∩ N�+(x)]◦. (27)

Using (27), there exists� >0 such that for anyx ∈ �+,

−∇f (x+) + �B ∈ [T�(x) ∩ N�+(x)]◦, (28)

whereB is an unit sphere onRn. By the definition of polar cone and (28), we derive that for anyx ∈ �+
and anyd ∈ T�(x) ∩ N�+(x),

〈
−∇f (x+) + �

d

‖d‖ , d

〉
�0,

i.e.

�‖d‖�〈∇f (x+), d〉. (29)

Settingzk = P�+(xk) anddk = xk − zk, condition (25) implies thatdk �= 0 anddk is a feasible direction
on� at zk. So,

dk ∈ T�(zk).

By using projection properties, we have that for ally ∈ �+,

〈dk, y − zk〉�0.

Thus, by the convexity of�+, we derivedk ∈ N�+(zk). Hence,

dk = xk − zk ∈ T�(zk) ∩ N�+(zk).

Condition (29) implies that for allk ∈ K,

��
〈∇f (x+), xk − xk〉

‖xk − zk‖ . (30)
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By (30) and Lemma 2.3, we obtain that for allk ∈ K,

��
〈∇f (x+), xk − zk〉

‖xk − zk‖
= 〈∇f (xk), xk − zk〉

‖xk − zk‖ + 〈∇f (x+) − ∇f (xk), xk − zk〉
‖xk − zk‖

�
‖xk − xk−1‖

�k−1
+ ‖∇f (xk) − ∇f (xk−1)‖ + ‖∇f (xk) − ∇f (x+)‖. (31)

Moreover, from (26), the continuity of∇f (·) shows that

lim
k∈K,k→∞ ‖∇f (xk) − ∇f (x+)‖ = 0. (32)

Again, by Corollary 3.1 and the boundedness of�k, we have

lim
k→∞

‖xk − xk−1‖
�k−1

= 0, (33)

lim
k∈K,k→∞ ‖∇f (xk) − ∇f (xk−1)‖ = 0. (34)

Therefore, taking limit in (31) ask ∈ K, k → ∞, (32)–(34) imply that��0. This is a contradiction. �

Corollary 5.1. Suppose�+ is a nonempty closed convex set in problem(1) and condition(WS) on�
and�+ holds. Letf (·) is pseudo-convex(or quasi-convex). If ∇f (·) is Lipschitz continuous on� and
�max= 1/2L, then Algorithms2.1and2.2 terminate finitely.

Proof. By using Theorems 4.1 or 4.2, we have that the sequence{xk} generated byAlgorithms 2.1 or 2.2
is convergent. Thus by Theorem 5.1 we obtain the desired result.�

If f (·) is convex, then the condition for the finite convergence of Algorithm 2.1 (or Algorithm 2.2) is
obviously weaker than that of Theorem 5.1.

Theorem 5.2. Suppose�∗ is nonempty in problem(1) and condition(WS)on� and�∗ holds. Letf (·)
be convex on� and{xk} be an infinite sequence generated by Algorithms2.1or 2.2.If ∇f (·) is uniformly
continuous on an open convex set containing{xk}, then the algorithm terminate finitely.

Proof. We only prove the result for Algorithm 2.1. Since condition (WS) holds, using Corollary 2.7 in
Ref. [7], we can show that there exists� >0 for anyx∗ ∈ �∗ andx ∈ �, such that

f (x) − f (x∗)��dist(x, �∗), (35)

where dist(x, �∗) = ‖x − P�∗(x)‖. Suppose, on the contrary, that there exists an infinite subsequence
{xk}k∈K(K ⊆ N) satisfying (25). From (25), (35) and Lemma 2.3, the convexity off (·) shows that
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for all k ∈ K,

��
f (xk) − f (P�∗(xk))

‖xk − P�∗(xk)‖
�

〈∇f (xk), xk − P�∗(xk)〉
‖xk − P�∗(xk)‖

�
‖xk − xk−1‖

�k−1
+ ‖∇f (xk) − ∇f (xk−1)‖. (36)

Taking limit in (36) ask ∈ K, k → ∞, Corollary 3.1, the boundedness of{�k} and the uniform continuity
of ∇f (·) imply that��0, giving a contradiction. �

6. Final remarks

Whenwe completed the paper and reported it at International Conference onNumerical LinearAlgebra
and Optimization (7–10 October, 2003, Guilin, China), Raydan told us that the proof of Theorems 2.3
and 2.4 in the paper[4] containing minor errors had been corrected in the paper[5]. In fact, it is easy to
see that the main results in[5] are still special cases in our paper.

References

[1] J. Barzilai, J.M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal. 8 (1988) 141–148.
[2] D.P. Bertsekas, Projected Newton method for optimization problems with simple constrains, SIAM J. Control Optim. 20

(1982) 221–246.
[3] E.G. Birgin, J.M. Martínez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim. 43

(2001) 117–128.
[4] E.G. Birgin, J.M. Martínez, M. Raydan, Nonmonotone spectral projected gradient methods on convex set, SIAM J. Optim.

10 (2000) 1196–1211.
[5] E.G. Birgin, J.M. Martínez, M. Raydan, Inexact spectral projected gradient methods on convex sets, IMA J. Numer. Anal.

23 (2003) 539–559.
[6] J.F. Bonnans, E.R. Panier, A.L. Tits, J.L. Zhou, Avoiding the Maratos effect by means of a nonmonotone linear search II

inequality constrained problems-feasible iterates, SIAM J. Numer. Anal. 29 (1992) 1187–1202.
[7] J.V. Burke, M.C. Ferris, Weak sharp minima in mathematical programming, SIAM J. Control. Optim. 31 (1993)

1340–1359.
[8] P.H. Calamai, J.J. Moré, Projected gradient methods for linearly constrained problems, Math. Programming 39 (1987)

93–116.
[9] Y.C. Cheng, On the gradient-projection method for solving the nonsymmetric linear complementarity problem, J. Optim.

Theory Appl. 43 (1984) 527–541.
[10] N.Y. Deng,Y. Xiao, F.J. Zhou, A nonmonotonic trust region algorithm, J. Optim. Theory Appl. 76 (1993) 259–285.
[11] J.C. Dunn, On the convergence of projected gradient processes to singular attractors, J. Optim. Theory Appl. 55 (1987)

203–215.
[12] A.A. Goldstein, Convex programming in Hilbert space, Bull. Amer. Soc. 70 (1964) 709–710.
[13] A.A. Goldstein, On gradient projection, in: Proceedings of the 12th Annual Allerton Conference on Circuits and Systems,

Allerton Park, IL, 1974, pp. 38–40.
[14] C.C. Gonzaga, Two facts on the convergence of the Cauchy algorithm, J. Optim. Theory Appl. 107 (2000) 591–600.
[15] L. Grippo, F. Lampariello, S. Lucidi, A nonmonotone line search technique for Newton’s method, SIAM J. Numer. Anal.

23 (1986) 707–716.



66 C.Wang et al. / Journal of Computational and Applied Mathematics 182 (2005) 51–66

[16] L. Grippo, F. Lampariello, S. Lucidi, A truncated Newton method with nonmonotone line search for unconstrainted
optimization, J. Optim. Theory Appl. 60 (1989) 401–419.

[17] E.S. Leviton, B.T. Polyak, Constrained minimization problems, USSR. Comput. Math. Math. Phys. 6 (1966) 1–50.
[18] Z.Q. Luo, P. Tseng, On the linear convergence of descent methods for convex essentially smooth minimization, SIAM J.

Control Optim. 30 (1992) 408–425.
[19] P. Marcotte, D. Zhu, Weak sharp solutions of variational inequalities, SIAM J. Optim. 9 (1998) 179–189.
[20] E.R. Panier,A.L. Tits,Avoiding theMaratos effect by means of a nonmonotone line search I. Constrained problems, SIAM

J. Numer. Anal. 28 (1991) 1183–1196.
[21] M. Raydan, On the Barailai and Borwein choice of steplength for the gradient method, IMA J. Numer. Anal. 13 (1993)

321–326.
[22] M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM J.

Optim. 7 (1997) 26–33.
[23] A. Schwartz, E. Polak, Family of projected descent methods for optimization problems with simple bounds, J. Optim.

Theory Appl. 92 (1997) 1–31.
[24] C.Y. Wang, B. Qu, Convergence of the gradient projection method with a new stepsize rule, OR Trans. 6 (1) (2002)

36–44.
[25] C.Y.Wang, N.H. Xiu, Convergence of the gradient projection method for generalized convex minimization, Comp. Optim.

Appl. 16 (2000) 111–120.
[26] N.H. Xiu, C.Y.Wang, J.Z. Zhang, Convergence properties of projection and contraction methods for variational inequality

problems, Appl. Math. Optim. 43 (2001) 147–168.


	Convergence properties of nonmonotone spectral projected gradient methods62626262
	Introduction
	Definitions and lemmas
	Convergence properties
	Global convergence
	Finite termination of algorithm
	Final remarks
	References


