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Abstract

In a recent paper, a nonmonotone spectral projected gradient (SPG) method was introduced by Birgin et al. for
the minimization of differentiable functions on closed convex sets and extensive presented results showed that this
method was very efficient. In this paper, we give a more comprehensive theoretical analysis of the SPG method.
In doing so, we remove various boundedness conditions that are assumed in existing results, such as boundednes
from below of f, boundedness af; or existence of accumulation point pf}. If V £ (-) is uniformly continuous,
we establish the convergence theory of this method and prove that the SPG method forces the sequence of projecte
gradients to zero. Moreover, we show under appropriate conditions that the SPG method has some encouraging
convergence properties, such as the global convergence of the sequence of iterates generated by this method an
the finite termination, etc. Therefore, these results show that the SPG method is attractive in theory.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction
The problem of minimizing a continuously differentiable mappifig R” — R over a nonempty
closed convex sep C R,
min{f(x) : x € Q} (1)
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has received considerable attention. Over the last few decades, there have been many different methods t
solve problem (1). The simplest of these methods is the gradient projection method which was originally
proposed by Goldsteifi2] and Levitin and Polyakl7] and extended by Calamai and Md83. This
method possesses some advantages. Firstly, it is easy to implement (especially, for the optimization
problem with simple bounds), uses little storage and readily exploits any sparsity or separable structure
in V f(x) or Q. Secondly, it is able to drop and add many constraints from the active set at each iteration.
Hence, it has been developed for solving various cases of problem (1).

Given an inner product norip- ||, the projection onto a nonempty closed convextsitthe mapping
Pg : R" — Q defined by

Po(x) :=arg min{||z — x|| : z € Q}.
The gradient projection algorithm is defined by
X1 = Xk () = Po(xk — 4V f (xk)),

where/; > 0 is the stepsize and f (x) is the gradient off.

Some convergence results of the gradient projection method were obtained (see, for example,
[2,8,9,11-13,17,18,23-26Ind references therein). In the algorithms of these papers, we noticed that
the sequencgf (xx)} was monotonically decreasing. But for some functions the performance of methods
with monotone strategies is poor. The numerical results imply that the methods with proper nonmonotone
strategies are more efficient than the ones with monotone strategi¢6,(<&&5,16,20] Particularly, in
some cases, the methods with nonmonotone line search can overcome the Marat{§ effect

The spectral choice of steplength introduced by Barzilai and Borj&gis a technique for the choice of
steplength. Numerical results show that this technique is very efficient to solve large-scale unconstrained
optimization (se¢3,20-22).

Recently, combining the spectral choice of steplength with nonmonotone line search techniques, Birgin
et al.[4] established honmonotone spectral projected gradient (SPG) methods. In th@dpapenass
of numerical experiments showed that the spectral choice of the steplength represented considerable
progress in relation to constant choices and that the nonmonotone framework was useful. However, the
proof of their convergence theorems ($£p contain minor errors. The reason is that in the proof of case
2 (se€4, Theorems 2.3 and 2.4, p. 1200, p. 1202ky mistook the sequende;} for a subsequence
{xx}x, which converged to an accumulation paintSo the convergence results in the pa@ércould
not be obtained. In fact, if we add some appropriate conditions, the convergence theorem will be proved.

In this paper, the authors study the convergence properties of SPG methods. We remove various
boundedness conditions that are assumed in existing results, such as boundedness from pelow of
boundedness of; or existence of accumulation point §f;}. If V £(-) is uniformly continuous, we
establish the convergence theory of this method and prove that the SPG method forces the sequence o
projected gradients to zero. Moreover, we show under appropriate conditions that the SPG method has
some encouraging convergence properties, such as the global convergence of the sequence of iterate
generated by this method and the finite termination, which improve and generalize the corresponding
results in the papeld,19].

The paper is organized as follows. In the next section we introduce some concepts and lemmas which
are used in the remainder of the paper. In Section 3, we present the nonmonotone spectral projected
gradient algorithms. We then prove the convergence theorems in Section 4. In Section 5, we study the
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global convergence of the sequerieg} of iterates generated by this method. Finally in Section 6, the
finite convergence results under milder conditions are obtained.

2. Definitions and lemmas
We now review some definitions and lemmas that are used in subsequent sections.
We say that a point € Q is a stationary point of problem (1) if it satisfies condition
(Vi(x),y—x)>0 VyeQ

The set that consists of all the stationary points and the set that consists of all the global optimal solutions
of problem (1), respectively, are denoted®y andQ*. If the mappingf (-) is pseudo-convex of, then
Qf=Qt.

For a nonempty subsétof R”, its polar cone is defined as

S°={y e R"(y,x)<0 Vx e S}
The tangent cone d@? atx € Q is given by
To(x)={d € R"|3t | O, dx —> d Vk,x + tdy € Q}.
The normal cone of? atx is defined as
No(x) = Tao(x)°.
We call a mapping/q f : R" — R" the projected gradient of (-) with respect to the se? if
Vof(x) = Pry,(=Vf(x)) VxeQ

By this definition,x € Q" if and only if Vo f(x) =0 or —V f(x) € No(x).
A mappingV f(-) is Lipschitz continuous o, if there exists a constatit > O such that for every,
y e Q,
IVFf(x) = VIWI<Llx =yl
Projection has been extensively studied and we here briefly recall some of its properties for our dis-
cussion.

Lemma 2.1 (Calamai and Mor€8]). Let P, be the projection ont®. Considerx € @, and define
x(a) := Po(x — aV f(x)), then

Q) x(@) —x+aVfx),y—x()=0,forall y e Qanda>0
(2) forall «>0,

|uw—ﬂﬁ

o

(Vf(x), x —x(2) >
Lemma 2.2(Calamai and Mord8]). LetVq f(x) be the projected gradient gf atx € Q. Then

(1) min{{Vf(x), v) : lvlI<1} = —=[IVaf)ll;
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(2) Vaf () islower semicontinuous a@, that is, if limy_, - xx = x, then

Vo f )l < ”,ULEQ,f IVaf ol
Lemma 2.3(Wang and XiJ25]). For each iterative poink; € Q, x;y = Po(xg—1 — ox—1V [ (xk—1)),
we have for any € Q,

(Vf(xp), xx — x) - ok — xp—all
N
llxx — x| k-1

+ IV ) = V-l

3. Convergence properties

In the paper4], nonmonotone spectral projected gradient algoritinsAlgorithms 2.1 and 2.2]
to solve the constrained minimization problem (1) were introduced. Now we state their convergence
theorems as follows.

Using the first part of the proof of the theorenirb, p. 709] we can obtain the following lemma.

Lemma 3.1. Leti(k) be an integer such that— min{k, M — 1}</(k) <k and

Xik) = max Xk—j)-
S (i) oo o max S Oek—j)

If {x;} is the sequence produced by Algoriti2xi (or Algorithm 2.2), then the sequendgf (x;))} is
monotonically nonincreasing

Let fmax=liMi— oo (1)), N =1{1,2, ...}, we obtain the following result.
Theorem 3.1. Let{x} be the sequence generated by the Algorighin /' V £ (x) is uniformly continuous
on an open convex set containifig }, thenlimy_, 4 f(xx) = —oc or
(V f(xk), xk — xx(Zk))

lim =0.
k—+o00 Ak
Proof. Note that if liny_ 1~ f(xx) = —o0, then the result is obtained. Otherwise, we obtain that

lim sup,_, , o f(xx) > — oo. Thus Algorithm 2.1 implies thafmax> — oo.
SettingK; = {{(k') +i — 1|k € N}, wherei =0,1,2,..., M — 1. It follows from the definition of
f(xl(k/)) that
I+ 1) —I(K)y<I(K'+1) —I(I(K' + 1) — 1),
UK +1) —{(k'+1) —1—min{l(k' +1) — 1, M — 1}},
=14+min{l(k'+1) -1, M- 1}<M.

Itis clear thal J™ ' — k; = N. It suffices to show that

(Vf ), xx — xx ()
Ak

lim =0.

M-1
ke J Kik—oo
i=0
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Let us first show that

im (V f(xr)s xk — xx(Ax))
keKog,k— o0 /lk

=0.

Assume that there is ag > 0 and an infinite subsequenf&® C K such that

(V) xpe — xi(Ak))
Ak

We will prove that this assumption leads to a contradiction. First note that ik then there exist&’
such thak =I(k") — 1, i.e.,k + 1 =[(k"). By Algorithm 2.1 we have

FGrany) < f Gagy) + 7(xGa) —xx Vf(xp)) Yk € Ko (3)
which, together with Lemma 2.1(2), shows that
0<y(xx — xx (), V) < fxwy) — f ).
Furthermore, taking limit in the above inequalitylas Ko, k — oo, we have
lim  (V f(x), xk — xx(Jx)) = 0. 4)

keKo,k— o0

>¢ Vk e ]?0. (2)

From (2) and (4), we derive lim g, ,_, o, 4 = 0. So, by Algorithm 2.1, for alk € Ko sufficiently large
there exists1 < p; <02, ¥, = A/ py Satisfying

() > 0 i< mna{égM_l} J @) + W ldie, 'V f (xx)).-

Hence,
S ) — (W) < max S k—j) = f (e (W),

0<j < minfk,M—1}
<p{xx = xk (), V f(xp). (5)
Condition (5) shows that if
S ) — f (e (D)
(k= xx (D), V f (xx))

pr(4) =

then
o () = S ) = f O (P))
T = ). V()
P — Xk (W), V()
< =9. (6)
(xk = xk (W), V f (xk))
On the other hand, sincg/ f(x), x — x(«))/« is nonincreasing on > 0 [26], Lemma 2.1(2) and (2)
imply that if k € Ko, then

(V (), Xk — Xk (2)) 2= 22 (V.S O), Z’; — xk(A)) (V f (xk), );kk— X1 (Yp))

> e0p2y (V f (), Xk — Xk (W)
> eop? ||k — xx () 1%
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Hence,

(V) xi — xi () = eoprlxx — xx ()|l (7)
So the uniform continuity oV f(x) and (7) show that

f ) = fOWr)) — e — xe (W), V f (xp))
(xk — xk (W), V f (xx))
_ ol = xWlD
= Veopr e — x|l
< o(llxx — xk W) .
Veoollxe — xk W)l

This establishes that, () >y for all k € Ko sufficiently large, which is the desired contradiction
because (6) guarantegs(y;) < 7. Hence,

im (V f(xr), xk — xx(Ax))
keKg,k— o0 Al

ok (i) — 1] =

=0.

Under the assumption that

(Vf (), xie — xi(4p))

lim =0, 8)
keK;_1,k—o0 Ak
we now establish
. \% , — 2
im (Vf(xp) Jfk X (Ax)) _o
keK; k— o0 Ak

By using Lemma 2.1(2), we have

i1 — e a G2 _ o1 — xe-1 i) 12
Otrax /11%,1
A% 1), Xk—1 — Xg—1(Ak—
<< J (xx-1) =1 = X 1(k-1) )
Ak—1

Sincek € K; impliesk — 1 € K;_1, condition (8) and (9) show that

lxk—1 — xk—1(—D Il

lim 0, (10)
keK;,k—o0 Ak—1

lim 1 —xp—1(A—D ] =0. 11
L llxk—1 — xk—1(Ar—D |l (11)

Thus, by the uniform continuity o¥ f (x) and (11), we have

lim IV f(x-1) = Vf(xe-1(k-0) [ =0. (12)

keK; k— o0
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Moreover, Lemmas 2.1(2) and 2.3 show that
(Vfxr), xk — xe(Z))  (V FOw)s xke — xi () llxe — xe(Za) |l

Ik T = Ol Ik
_ (V). xk = 3 ()
lxk — xx (212
- < lxk—1 — xx (k—1) ||

Ak—1

2
+ IV f(xk-1) — Vf(xkl(ikl))ﬂ) : (13)

Condition (13), together with (10) and (12), implies that

im (V f(xr), xx — xx(Ax))
keK; k— o0 /lk

=0.

Thus, we obtain

im (Vf(xr)s xk — xx(Ax))
k— 00 /1](

=0.
This completes the proof of the theorenti]
By using Lemma 2.1(2) and Theorem 3.1, we have the following corollary.

Corollary 3.1. Let{x;} be the sequence generated by the Algorighinif V f (x) is uniformly continuous
on an open convex set containifig } and fmax> — oo, then

. xr — xr (Mg
i I = xGol _
k—+o00 Ak

0.

Corollary 3.2. Let{x;} bethe sequence generated by the Algorighinif V £ (x) is uniformly continuous
on an open convex set containifig} and fmax> — oo, then

lim |[[Vof @)l =0.
k——+00
Proof. By using the definition ofo(x;) and Lemma 2.3, we have for adye To(x;) and||d| <1,
S V) =V e (14)
k—1
Lemma 2.2(1), (14) implies that

IVaf il = max{—(V f(x), d)d € Ta(xi), ld]| <1}

Xk — Xk—1
<T + IV =V f (-l

(V). dy < 2

Therefore, by Lemma 3.1, the uniform continuitydf (-) and the fact that; is bounded, we have

lim Vo f ()l =0.
k——+00
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Corollary 3.3. Let{x;} be the sequence generated by the AlgorighinV £ (x) is uniformly continuous
on an open convex set containipg }, if x™ is a cluster point ofx;}, thenx™ € Q.

Proof. By using Lemmas 2.4 and 2.2(2), we can pré%ef (x*) =0, thatisx* € Q*. O
Remark. Corollary 3.3 is the correct expression of Theorem 2.3 of the pdper

Theorem 3.2. Let{x;} be the sequence generated by the Algorighgif V f (x) is uniformly continuous
on an open convex set containifig }, thenlimy_, .« f(x;) = —oo or

lim (V (), di) = 0.
k— 400

Proof. If limy_ o f(xx) = —oo, then the result is obtained. Otherwise, we obtain that
lim sup,_, |, f(xx) >—o00. ThusAlgorithm 2.2 implies thafmax > — oco. SettingK; ={I/ (k") +i — 1|k" €
N}, wherei =0,1,2,..., M — 1. The proof proceeds as in Theorem 3.1. Thus it suffices to show that

,,_im (V f(xx), di) = 0.

ke U Kl',k—>00
i=0

Let us first show that

li \v =0.
k—>KoI,rkn—>+oo< f(xx),dr) =0

Suppose, on the contrary, that there is@s 0 and an infinite subsequen&® C Ko such that
(Vf(xx). di) < —e0 Vk € Ko. (15)

First note that ik € Ko then there exist&’ such that = /(k’) — 1, i.e.k + 1 =[(k") and by Algorithm
2.2 we have

JGawn) < f (i) + 94V f(xe), die) - Yk € Ko. (16)
By (15) and (16), we have that

0<ypireo< — PV f (), die) < f (i) — f (i)
Taking limit in the above inequality dse Ko, k — 400, Lemma 2.1 ant¢fmax > — oo show that

. . dy | .
Iim A =0, 1im VA% il < lim 4V f(xx), di) =0.
keKo,k— o0 keKo,k— o0 Omax keKo,k— o0
Hence,
lim |l dd] = 0. (17)
keKg,k— o0

By Algorithm 2.2 and/; — O(k € Ko, k — o00), for all k € Ko sufficiently large there exists
01< px <02, Y = Jk/ py Satistying

S Ok 4 Ydi) > L S k) = W {V f (x1), di).
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Therefore, we obtain

f ) — f G+ pdi) < 0c e mna{é’M_l} fxk—j) — fxx + Yrdp),

< = WiV f (X)), die).
By using mean value theorem,
(Vfr) =V fx + Ocedi), dic) < (L= p)(V f (xx), di), (18)
wherefy € (0, 1). By Lemma 2.1(2), the assumption shows that

lld |l €0
>/ lld |l 19
A/ %k OImax ( )

Thus, by (18) and (19), we have

_ IV f(xx) =V f(xk + Ochredi) |l I |l
—(V f(x1), d) ’

<V a0 IV f(xk) =V f O+ Ocppdio) || (20)

—(Vf(x0), di) > /e0

1=

Taking limit in (20) ask € Ko, k — oo, the uniformly continuous oV f(x) and condition (17) show
thaty>1. An obvious contradiction now occurs. Hence,

lim v ,di) =0.
keKo,k—>+oo< S ), di)

For the reminder of the proof, the argument used in the proof of Theorem 3.1 yield
lim  (Vf(xx), di) =0.

keK; k—+o0

Thus, we obtain
lim (V f(xx),dy)=0. O
k— 00

Very similar to the proof of corollaries of Theorem 3.1, from Theorem 3.2 we obtain the following
corollaries:

Corollary 3.4. Let{x;} bethe sequence generated by the Algorigh?nif V £ (x) is uniformly continuous
on an open convex set containifig} and fmax> — oo, then

lim lxx — xx (o) || = 0.
k——+00
Corollary 3.5. Let{x;} be the sequence generated by the Algorigh®nif V £ (x) is uniformly continuous
on an open convex set containifig } and fmax> — oo, then
lim |[Vof (x| =0.
k——+00

Corollary 3.6. Let{x;} be the sequence generated by the AlgorighaV f (x) is uniformly continuous
on an open convex set containipg }, if x™ is a cluster point ofx;}, thenx™ € Q.
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4. Global convergence

An algorithm is called globally convergent, if there exists Q* such that the sequenge,} produced
by the algorithm satisfies lipn, ;- xx = X.

Under general conditions, various existing algorithms do not possess global convergence. Gonzaga
[14] gave a counter example, in which ffis convex and strictly convex at all nonoptimal points, the
steepest descent method with exact stepsize rule for solving unconstrained problem generates four distinct
accumulation points. However, it is available to explore what are conditions for convergence of the method.
Especially, when we estimate convergence rate of an algorithm, possessing global convergence is one of
the preconditions. More recently, the authi@s] studied the global convergence of the gradient projected
method with Armijo stepsize rule. In this paper, we prove that if generalized convex ardf (.) is
Lipschitz continuous o2, then the sequencg;} produced by the nonmonotone spectral projected
gradient method converges to a solution of problem (1). To prove this result, we first give two important
lemmas.

Lemma 4.1. Let {x;} be an infinite sequence generated by the Algorithin If V f(x) is Lipschitz
continuous o2 andamax<1/2L, then we have for alt € N and anyx € Q,

o1 — 12 < Mk — 112 + 2omad f (%) — f Car1)} + 22 (V f (g, X — xp).

Proof. By using Lemma 2.1ynax<1/2L and mean value theorem, we have fokadl N and anyx € Q,

k41 — 017 = llxk — x 1% + 200001 — X0, Xk — ) + g — x 12
= Ik — X112 + 2041 — Xis Xp1 — *) — 1 — xxll?
<k = X012 4 224V f (xi), % — K1) — ks — xell?
<l — xN1% + 2omax(V f (xx), Xk — xx1) + 22V f () ¥ — xg) — [Ixxr1 — xe 12
<l — X112 + 2omad £ () — f ()} + 2V (00) x — xp)
+ 2omaxl| V £ () = VFEDxk — xerall — k1 — xi 12

e — x11% + 2omaxt £ () — £ (rr)} + Ok — Dl — xp1)1?
+ 224 (V f (xk), x — xx)

<k = 11 + 2omaxd £ (k) — f )} + 20 (V f (x), x — xz),
whereé, = xx + Ok (xgr1 — x1), 0 € (0, 1). The proof is completed. O

Lemma 4.2. Let {x;} be an infinite sequence generated by the Algorithéh If V f(x) is Lipschitz
continuous o2 andamax<1/2L, then we have for alt € N and anyx € Q,

s — x 12 < Mk — x112 + 2omax £ (k) — £ Grg1)} + 2004 (V. f (xX), X — X¢).

The proof of this Lemma is similar to that of Lemma 4.1, so we omit the details.



C. Wang et al. / Journal of Computational and Applied Mathematics 182 (2005) 51-66 61

Theorem 4.1. Let f be pseudo-convex @n V f (x) is Lipschitz continuous o2 and{x;} be an infinite
sequence generated by Algoritt2ni (or Algorithm?2.2).1f amax<1/2L, then we have

(1) @* £ ¢ ifand only iflimg_ ;0 xx = x* Wherex* € Q*.
(2) Otherwiselim infy_ ~ f(xx) =inf{f(x)|x € Q}.

Proof. (1) Assume tha@* £ ¢, then for anyx € Q*, we have

f) < fxx) VkeN. (21)
Using the pseudo-convexity gf(x), we derive

(Vf(xe),x —xg) <0 VkeN
which, together with Lemma 4.1 (or Lemma 4.2), deduces that

(e = x112 + 2omaxf () 4 (22)

Conditions (21) and (22) imply thdk,} is bounded. So, there exists at least one limit poinof {x;}
andK < N such that

lim Xk =x*.
keK,k—+o00

From the pseudo-convexity gf and Corollary 3.3 (Corollary 3.6), we hawé € Q*. Takingx = x* in
(22), we have

{lxx — x*[1? 4 2omaxf (x0)} 4 -
So,

im {lx — x 12+ 2maxf )} = lim {llxg — x* |12 + 2omaxf (x0)}
k——+o00 keK ., k——+o0
= 20(maxf(x*)- (23)

Since the continuity off, the boundedness ¢f;} shows that f (x;)} is bounded. Now there exists a
subsequencef (xi)} ¢ of the sequencef (xi)} satisfying

_Iim fxp)=1.
keK k——+o0

x is a cluster point ofx} . Again, by Corollary 3.3 (Corollary 3.6), we ha¥ec Q*. By the continuity
of f, we have

I= lim  fGo)=f@E)=f&").

keK k— o0

Hence,
lim f () = fx5).
k— o0
From (23), we obtain that

lim Xp = x*.
k— 00
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We now prove (2). It suffices to prove (2) for the case whegfe= @. In this case we have from (1),
Jim x| = +o0. (24)
Assume that lim inf_ - f(xz) > inf{f(x)|x € Q}. Then there exists a poifite Q such that
&)< flxx) VkeN.

Similar to the previous proof, we derive tHai } is bounded, which is a contradiction to (24). Therefore,
(2) holds. This completes the proofd

Theorem 4.2. Let f be quasi-convex 09, V f(x) is Lipschitz continuous o2 and {x;} be an infinite
sequence generated by Algoritt2ni (or Algorithm2.2).If omax<1/2L, then we have

(1) @ £ @ if and only iflimg_, 1 oo Xy = x™ wherex™ € Q7.
(2) Otherwiselim infi_. o f(xx) =INf{f(x)|x € Q}.

Proof. The proof of this theorem is similar to that of Theorem 4.1, so we omit the detdils.

Remark. All of the results in this section assume thahx<1/2L andV f(x) is Lipschitz continuous

on Q. These are restrictive, which may be relative to the nonmonotone line search. However, if we set
M =1inAlgorithms 2.1 and 2.2, i.e. with monotone line search, the same results can be obtained without
the assumptions of Lipschitz continuous\of (x) andamax<1/2L. The proof of Lemmas 4.1 and 4.2

are similar to that of Lemma 3 if25], so we omit the details.

5. Finite termination of algorithm

An algorithm is called finite convergent, if the sequeficg produced by the algorithm satisfies that
there existgg such thate, € Q* for all k > ko. The finite termination of algorithm was originally studied
by Burke and Ferri§7]. In Ref.[7], they introduced weak sharp condition @randQ*, i.e., for every
x* e Q*,

—Vf*) eint()[Ta(x) N N (0. (WS)

xeQ

If condition (WS) holds, they obtained a condition for the sequengg generated by algorithms to
converge finitely to an optimal solution of a problem of minimizing a differentiable convex function.
Later, Marcotte and Zh{L9] gave a condition for the method of solving pseudo-monotone variational
inequalities to terminate finitely, if condition (WS) holds.

In this section, for the general optimization problem (1) without convexity (convexity or pseudo-
convexity) assumption which was required in R¢#%19], we prove under condition (WS) that if the
sequencéx,} generated by the algorithm is bounded, then the Algorithm 2.1 (Algorithm 2.2) terminate
finitely.

Theorem 5.1. Suppos&™ is a nonempty closed convex set in probl@jyand conditionWS)on Q and
Q7 holds. Let{x;} is boundedthen Algorithm2.1 (Algorithm 2.2) terminate finitely
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Proof. We only prove the result for Algorithm 2.1 (The proof for algorithm 2.2 is similar to that of
Algorithm 2.1). Suppose, on the contrary, that there exists an infinite subsedughcg (K < N) such
that for allk € K, x; ¢ QT, that is,

Xk — Po+(xx)|| >0 Vk € K. (25)
Since{x;} is bounded, Corollary 3.3 implies that

lim  x;=xT, 26
keK k— o0 k ( )

wherext € Q. By condition (WS) om2 andQ*, we have

—V T eint () [To(x) N No (x)1°. (27)

xeQ

Using (27), there exists> 0 such that for any € Q*,
~Vf(xT)+aB € [To(x) N No+(x)1°, (28)

whereB is an unit sphere oR". By the definition of polar cone and (28), we derive that for any Q*
and anyd € To(x) N No+(x),

d
-V + _9d><09
< AR PT

Al dII <V f(x ), d). (29)

Settingzx = P+ (xx) anddy = xx — zx, condition (25) implies thad # 0 anddj is a feasible direction
onQ atzg. So,

di € To(zk)-

By using projection properties, we have that foryalt Qt,
(di, y — 2z} <0.

Thus, by the convexity o™, we derived; € No+(zx). Hence,
dr = xk — 2k € To(zr) N N+ (2k).

Condition (29) implies that for alt € K,

(Vf(xh), xe — xk)
llxx — zkll

(30)
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By (30) and Lemma 2.3, we obtain that for alE K,

o (VO™ xe — zi)

lxx — zxll
_ (Vfu), xk —zk) (V&) = V), xk — zx)
Xk — zk|l llxx — zkll

Bl 49 p ) - V) |+ IV ) — Y F G (31)

Moreover, from (26), the continuity o¥ f(-) shows that

ke[{lijcn—)oo IV f () = VDI =0. (32)

Again, by Corollary 3.1 and the boundedness,gfwe have

im llxxe — xp—all _o, (33)
k—00 Ak—1
keK“j(n_)oo IV f(xk) =V fxx-1| =0. (34)

Therefore, taking limitin (31) ak € K, k — o0, (32)—(34) imply that:<0. This is a contradiction. OJ

Corollary 5.1. Suppose2™ is a nonempty closed convex set in probi@nand condition(WS) on Q
and Q™ holds. Letf(-) is pseudo-convefor quasi-convex If V £(-) is Lipschitz continuous of2 and
omax = 1/2L, then Algorithms2.1and2.2 terminate finitely

Proof. By using Theorems 4.1 or 4.2, we have that the sequen¢@enerated by Algorithms 2.1 or 2.2
is convergent. Thus by Theorem 5.1 we obtain the desired result.

If f(-)is convex, then the condition for the finite convergence of Algorithm 2.1 (or Algorithm 2.2) is
obviously weaker than that of Theorem 5.1.

Theorem 5.2. Suppos&* is nonempty in problerfil) and condition(WS) on 2 and Q* holds. Letf (-)
be convex o® and{x;} be an infinite sequence generated by Algoritl2mor 2.2.1f V £(-) is uniformly
continuous on an open convex set contairing, then the algorithm terminate finitely

Proof. We only prove the result for Algorithm 2.1. Since condition (WS) holds, using Corollary 2.7 in
Ref.[7], we can show that there exists- O for anyx* € Q* andx € Q, such that

f(x) — f(x") >odist(x, QF), (35)

where distx, Q%) = ||x — Pgo+(x)]||. Suppose, on the contrary, that there exists an infinite subsequence
{xx e (K € N) satisfying (25). From (25), (35) and Lemma 2.3, the convexityf6f shows that
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forallk € K,
S (xx) — f (P (xk))
A

Xk — Po (xi) |l
o (Vf(xx), xp — Pox(xx))

llxk — Poxep l

=Sl 9 ) - vl >

Taking limitin (36) ask € K,k — oo, Corollary 3.1, the boundedness{éf} and the uniform continuity
of V f(-) imply that« <0, giving a contradiction. O

6. Final remarks

When we completed the paper and reported it at International Conference on Numerical Linear Algebra
and Optimization (7—10 October, 2003, Guilin, China), Raydan told us that the proof of Theorems 2.3
and 2.4 in the papd#d] containing minor errors had been corrected in the pggjein fact, it is easy to
see that the main results[i] are still special cases in our paper.
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