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ABSTRACT 

Except for the family of quasiconvex quadratic functions, no characterization of 

generulized contxx quadratic forms on convex sets in Rk exists. We characterize 

pseudo-P-convex quadratic functions (i.e., bi-pseudoconvex quadratics for which 

every stationary point is a global minimum) on solid convex sets in R” X R”‘. 

1. INTRODUCTION 

Let Rk denote the k-dimensional Euclidean space, and let 8 c Rk be an 
open, convex set. A real valued function 
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is called pseudoconvex (Tuy [30]) if 

(z2 - z,yV~(z,) a 0 implies qb(z,) > +(z,) (1.1) 

for all column vectors z,, zL E 6. Here, T denotes the transpose, and V 

denotes the gradient, i.e., 

Pseudoconvex functions possess the local-glolml property, namely, every 

local minimum of 4 in g is a global minimum. Consequently, such functions 

are used for modeling optimization problems, since virtually all nonlinear 

programming algorithms are designed to converge to a local minimum, 

and it is therefore desired that every local minimum be a global minimum. 

Mangasarian [23] has shown that pseudoconvex functions belong to the more 

general class of quasiconcex functions, whose lower level sets are convex. 

Quasiconvex functions play an important role in modeling various economic 

phenomena (see, for example, [3, 12, 281). 
A variety of optimization models involve bifunctions, that is, functions 

f<x, y) of two vector variables defined on some open convex set 4, x 8Z c 

R” X R”‘. Bifunctions which arise in modeling optimization problems arc 

typically bipsezuloconcer, i.e., f(~, y,,) and f<x,,, y> are each pseudoconvex 

for all fixed II,, and yo, hut not necessarily pseudoconvex in (x, y) when 

considered as a single variable in R”+“‘. Bifunctions arc used, for example, in 

bilinear programming, parametric optimization, and sensitivity problems 

[l, 2, 5, 221. 

Bifunctions do not usually satisfy (1.1). Such functions, however, possess 

the abovementioned local-global property if they satisfy the following natural 

analogue of (1.1): 

(x, - X1)I‘VJ(XI, y,) a 0 

(Yz - Y1)rv!,f(X,~YI) 2 0 1 imply f(xe,y2)>j(X1.yl) (1.2) 

for all (x,, yl),(s,, ye) E 8, X I??~. A function f<x, y) satisfying (1.2) is called 

pseudo-P-comer (Hackman and Passy [17]). P seudo-P-convex functions arise 

quite naturally as nondecreasing superpositions of pseudoconvex functions, 

since for every two pseudoconvex functions g : 8, + R and h : &2 + R, and 
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every nondecreasing function F : R” + R, the function f(r, y> = 

F(g(x), h(y)) is pseudo-P-convex. 

From a practical point of view, it is difficult to verify whether a function 

is pseudoconvex or pseudo-P-convex, since (1.1) and (1.2) involve an infinite 

number of linear inequalities. This problem has motivated researchers to 

investigate nonconvex quadratic functions [7, 9, 21, 25, and 271. 

From the modeling perspective (cf. [21, 29, 3211, it is important to 

determine whether a stationary point of a quadratic objective function, 

restricted to a given convex set, is a global minimum. This is related to the 

question of whether the quadratic function is convex, pseudoconvex, or 

pseudo-P-convex on the convex set in question. Most commonly, the set is 

the nonnegative orthant. Except for the family of quasiconvex quadratic 

functions, no matrix characterization of generalized corwex quadratic func- 

tions on soEid convex sets (i.e. convex sets with nonempty interior) in RX 

exists. 

The main purpose of this paper is to characterize quadratic functions (i.e. 

quadratic forms) f which are pseudo-P-convex in the sense of (I.2), on a 

solid convex subset #i X &Z of R” X R”‘. We show that such quadratic forms 

have at most tw,o negative eigenvalues. Quadratic forms with negative 

eigenvalues cannot be pseudo-P-convex on the whole space R” XR”‘; i.e., 

(1.2) does not hold on the whole space. Instead, for a given quadratic form f 

we characterize a subset 4 of R” X R”’ such that f is pseudo-P-convex on 

the open convex set 8, X &_ if and only if 6, X &s c W. In this sense 9 is 

a mcuimul domain uf pseudo-P-corwexity for f. The set 9 is defined by a 

fourth order polynominal. While 9 is never convex, we extract three pairs of 

disjoint convex cones contained in W. These pairs of convex cones are 

characterized by quadratic forms. 

Section 2 summarizes the necessary mathematical preliminaries. In par- 

ticular, we discuss a characterization of pseudo-P-convexity; a characteriza- 

tion due to Chabrillac and Crouzeix [7] of when the restriction of a quadratic 

form on Rk to the null space of an s X k matrix is positive semidefinite; and 

some fundamental results on the Schur complement. Section 3 develops the 

criteria for pseudo-P-convexity. In Section 4 the maximal subset of pseudo- 

P-convex quadratics is defined, and illustrative examples are provided in 

Section 5. 

2. MATHEMATICAL PRELIMINARIES 

Pseudoconvex quadratic functions which are not convex are called merely 
pseudoconoex functions. Quadratic functions are never merely pseudoconvex 
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on the whole of Rk [25]. Martos [25] was the first to characterize merely 
pseudoconvex functions on the semipositive orthant (we call a vector semi- 
positive if it is entrywise nonnegative and at least one of its components is 
positive). For a given matrix Q, Cottle and Ferland [9], Crouzeix and Ferland 
[lo], and Ferland [14] have provided matrix criteria for a quadratic form 
zTQz to be merely pseudoconvex on a solid convex set. In general, Ferland 
[14] and Schaible [27] have shown that Q can have at most one negative 
eigenvalue. Moreover, a quadratic form with exactly one negative eigenvalue 
is pseudoconvex on any solid convex set’ B if and only if 6 is contained in 
the union of the disjoint convex cones 

where o is the eigenvector associated with the negative eigenvalue of Q. In 
this sense Equation (2.1) defines the maximul domain of pseudoconvexity. 

If Q is nonsingular, then (2.1) is equivalent to 

4- = {z E Rk :z’Qz ,< 0, z + 0}, (2.2) 

and it can be shown [I41 that 

~-={zERk:d’ Qz = 0 for some d E Rk implies d TQd > 0} . (2.3) 

Diewert et al. [13] showed that a continously differentiable function 4 
defined on Rk is pseudoconvex on a convex subset t c Rk if and only if for 
all zr, z2 E G 

For quadratic pseudoconvex forms zTQz, (2.4) becomes 

(z2 - z,)'Qz, = 0 =a (~~-z~)~Q(z~-z~)>O. (2.5) 

‘This result does not necessarily hold for convex sets without interior. Consider the example 
f(x. y)= xTQ,x - yTQay where (3, is positive definite but Qz is an arbitrary matrix. Then on 

the set {(x, y): x E Rk. y = 0) the function is convex and hence pseudoconvex. 
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Since 9- in (2.3) is the maximal domain of pseudoconvexity, it follows from 

(2.5) that a quadratic form is pseudoconvex on a solid convex set t c Rk if 

and only if 

dTQz=O =, d’Qd>O for all 2 E B. (2.6) 

The question of when the restriction of a quadratic form on Rk to the null 

space of an s x k matrix is positive semidefinite has been extensively 

investigated by Hancock [18], Mann [24], Samuelson [26], Debreu [ll], 

Bellman [6], and Hestenes [20]. Crouzeix and Ferland [lo] and Schaible [27] 

dealt with the special case s = 1. Recently, Chabrillac and Crouzeix [7] 

unified all these results using Schur complement theory. Based on these 

results, it is possible to obtain (2.6) (see also Crouzeix and Ferland [lo]). 

The following result is used for the development of our criteria: 

TIIE~REM 1 (Chabrillac and Crouzeix [7]). Let K be a symmetric k X k 

matrix,m and let L be a k X s matrix of fill column rank. Then zTKz > 0 for 

all .z such that zTL = 0 if and only if the bordered matrix 

KIL 

[ 1 . . . . 
L’ : 0 

has exactly s negative eigenvalues. 

The following theorem characterizes pseudo-P-convex functions which 

are continuously differentiable and bi-pseudoconvex. 

THEOREM 2. Let f : R” X R”’ + R be a continuously da@xentiuble func- 

tion. Then f is pseudo-P-convex on the convex set #I X 62 if and only if 

(x2 - X,)Tvxf(%Y,) = 0 

* (Yz - YATV!,f(%Y1) = 0 i 

ftxl>YI)= min f(x, + o4x2 - xI),Y~ + P(Y2 - Y,>> (2.7) 
O<rU.P41 

holds for all (x,, yI),(x,, ye) E 8I X 82. 

Proof. It is immediate from the definition (1.2) that every pseudo- 

P-convex function satisfies (2.7) (h ere the assumption of continuous differen- 
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tiability is not required.) As for the converse, pick (-2: ,, yl), (x2, y2) E 8, X t2 

such that (x, - ~,>“V,f(.r,, y,) > 0 and (yz - yI)TV!,jX~,, y,) > 0. Note that 

if x1 = x2, then by identifying z with y and 6, with f(x,, .), (2.7) becomes 

(2.4) and it follows that for a given x,, f(x,, .> is pseudoconvex. Similarly, if 

ZJ, = I_J~, (2.4) shows that f(*, y,) is pseudoconvex. Thus, f is a bi-pseudocon- 

vex function. 

We must show that f(x,, yz) B f(x,, y,>. Define 

Note that h is continuously differentiable, hi-pseudoconvex function that 

satisfies (2.7). The proof will follow if we can argue that h(1, 1) > h(O,O). 

Consider the set 

~=((ff,P)E.[O,l]X~O,l]:Vh(a,P),,Oand h(a,p)>h(O,O)}. 

Clearly, (0,O) E ~2 and so _L2 is nonempty. Maximize the sum (Y + p over LX’. 

Since h is continuously differentiable and the unit square is compact, a 

maximal element (a*,/3*) exists. If Vh(a*,P*> = 0, then (2.7) guarantees 

that h(1, 1) > h(O,O). Suppose, however, that both partial derivatives of h at 
(a*,p*) are positive. Since (a*, p*> is a maximal element, (a*, p*> = (1,1X 

Consequently, h(l, 1) > h(O, 0). Without loss of generality, suppose finally 

that 

-&h(d,P*) =o and ;h( (Y”,B”) > 0. 

Since h(. , p*) is pseudoconvex, 

h(a*,P*) = o:p,clh(a,P*). 
. , 

(2.8) 

Suppose (Y* < 1. Since h is continuously differentiable, (2.8) implies that 

there exists E > 0 for which both partial derivatives of h at (a* + F, /3*> are 

nonnegative, once again contradicting the maximality of (a*, p*). Therefore 

cy* = 1. Now, since ?z(l,p) is pseudoconvex, it follows immediately that 

h(l, 1) > h(l,p*) > h(O,O), as required. n 

We conclude this section with a brief review of the Schur complement 

theory (see Chabrillac and Crouzeix [7] and Haynsworth [19]), which we 

shall use in the sequel. Given a real symmetric k X k matrix K, the ine&ia 
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of K, denoted as usual by In(K) is the triple (T(K), v(K), S(K)) consisting of 
a number of positive, negative, and zero eigenvalues of K, SO that r(K)+ 
v(K)+ 6(K) = k. Given the partition 

K= 
K, K3 

i 1 K; K, 

of K, where K 1, K,, and K, are n X n, m X m, and n X m, respectively, the 
Schur complement of K, in K is K/K, = K, - KcK;lK,, assuming that K, 
is nonsingular. Similarly, the Schur complement of K,in K is K/K, E K, - 
K,K,‘KT. In either case, 

detK=detKidetK/Ki, i = 1,2. (2.9) 

Finally, the inertia of K may be determined from the inertias of Ki and the 
Schur complement K / Ki by the equation 

In(K)= In(Ki)+In(K/Ki), i = 1,2. (2.10) 

3. MATRIX CRITERIA FOR PSEUDO- P-CONVEXITY 

Consider the following quadratic form: 

f(u) = iUTQu = +[ XT, y’] [$; ;j[;]. u=[;]. (3.1) 

Throughout this paper we assume, unless otherwise stated, that Q,, Qa, and 
Q are symmetric and nonsingdar. Consider the matrices 

V=[Q, j Q,] and W=[Ql i Qz]. 

Note that VU = Vxj(u> and WU = ?,J(u). 
By Theorem 2, f(u) in (3.1) is pseudo-P-convex on some solid convex 

domain 6r X dZ C R” X R”’ if and only if 

(X2 - xlpu, = 0 

(Yz - YJTW% = 0 I 
- ((x, - x,)~>(v, - Y,>')Q(~, - XI),(YZ - ~1)) 80 (3.2) 
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for all U, =(x,,y,), u2 =(x,,y,)~ 8, X $?a. For a point u in the interior of 
8, x ~5~ instead of (3.2) we can write 

dTV,f(u) = d;vu = 0 

d;V,,f(u)= d;Wu=O =j i 
[ df- d;]Q ;I a0 

[I 
(3.3) 

2 

for all Cd,, d,) E R” X R”‘. 
It will be shown in Theorem 3 that (3.3) holds even for boundary points 

of &,x42,, except possibly for points where the partial gradients 
V,f<u>,V,,fCu> vanish. 

If we ‘identify 

s = 2, and k=n+m, 

then Theorem 1 implies that the matrix 

has exactly two negative eigenvalues; hence Q has at most two negative 
eigenvalues, and this is a necessary condition for the pseudo-P-convexity of 
f. If Q has no negative eigenvalues, then clearly f is convex on the whole of 
R” X R”’ and no further discussion is required. 

We now turn to the case when Q has one negative eigenvalue. The case 
when Q has two negative eigenvalues will be examined later. 

Hereafter, the expression f is pseudo-P-convex at a point u =(x, y) E 

8, X +I?~ means that (3.3) holds. Pseudoconvexity implies pseudo-P-convex- 
ity; thus f is pseudo-P-convex at each u E 9- (2.6). Since Q has a negative 
eigenvalue, f is not pseudo-P-convex at the origin. Therefore, we have to 
consider only the set 

z2+={U=(X,y):UTQu>0). (3.4) 

The following well-known interlacing lemma is critical to the proof of the 
next theorem. 
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LEMMA 1 [15, p. 2691. Let A be an n X n symmetric matrix, let A, denote 

its leading r X r principle submatrix, and let Ai( 1~ i < r, denote the 

value of the ith largest eigenvalue of the matrix A,.. Then 

Q &(A,) Q MA,,,) Q h,(A,) Q A,(A,+l). 

THEOREM 3. The quadratic function f is pseudo-P-convex at u E 9+ tf 

and only rf V, f(u) # 0, V,,f(u) # 0, and 

UTQu{U’W’(Q/QJ1wu}-(uTWTy)e 

= UTQu{UTV’(Q/Qp)-lvu}-(uTVTx)e < 0. (3.5) 

REMARK 1. Neither of the partial gradients V, f(u) and V,, f( u) vanishes 

at points where the inequalities (3.5) are strict. 

Proof. We first argue that a necessary condition for the pseudo-P-con- 
vexity of f at a point u E 9+ is that V,f(u> z 0 and V,f(u>+ 0. Indeed, 
when V, f(u) or V,,f(u> vanishes, the condition (3.3) is equivalent to (2.6); 
hence u E 9-, contradicting the assumption that u E 9+. Consequently, the 
statement of the theorem is trivially true in this case. We now assume that 
either V, f(u) + 0 and V,f(u) # 0. By Theorem 1, the function f is pseudo- 
P-convex at u E 9+ if and only if the bordered matrix 

1 

Q, Qs i V,f(u) 0 

Q; Qz : 0 
B(u)= 

VlJf(u) 
. . . . . . . . . . . ..I.............. 

V,‘f(u) 0 : 0 0 

0 V,‘(u) ; 0 0 
I 

has exactly two negative eigenvalues. Add the last row and column of B(u) to 
its (n + m + I)st row and column to obtain the matrix 

9, Qs f 
r \ 

Q,' Q2 1 vf(u) ’ : v& 
. . . . . . .~. . . . . .:. . . . . . 1 
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Of course, v( D(u)) = v(B(u)). We shall think of D(u) as a matrix obtained 
from 

in two steps, as follows: 

01 : 
02 i Wu) 

1 
oTfiuj  I. , o. 

Using (2.9), 

1 -j D(u). 

detC(u)=(detQ)[O-V7f(u)Q-‘Vf(u)] = -(detQ)u’Qu, 

which is positive, since by assumption det Q < 0 and u“Qn > 0 
Lemma I it follows that the first step, Q + C(u), adds one negative 
value, i.e., 

v(C(u)) = 2 and 6(C(u)) = 0. 

Lemma 1 together with (3.7) establishes that 

2<v(D(u))+6(D(u))<3. 

Consequently, u( D( u)) = 2 if and only if 

(3.6) 

From 
eigen- 

(3.7) 

det D(u) = (det Q) uTW’(Q/Q1)-‘W~ - 

(3 J3) 

Here we have used (2.9) to calculate det D(u) from det C(u). 
Interchanging the roles of x and y in Theorem 2, f is pseudo-P-convex 

at uE_?Z+ if and only if the bordered matrix 

92 Q; f 0 Vxf(u) 

E(u) = 

i 

. . . . . . . .9’. .:. ‘. . . . . ! . Q3 : V,,_fb) 

0 v,/m> : 0 0 

V,“f(U) 0 : 0 0 
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has exactly two negative eigenvalues. And, by similar reasoning to the above, 

this is eqiivalent to 

det E(u) = (det Q) u~V~(Q/Q~)-~VU - 2 0. 

(3.9) 

The result now follows from (3.8) and (3.91, since det E(u) = det D(u) and 

det Q < 0. n 

Note that (3.8) holds when U’QU > 0 and uTWT(Q/Qi)-‘Wu ~0. 

Similarly, (3.9) hold s when u“Qu > 0 and ul‘V’(Q/Q,)-‘Vu < 0. Note 

further that if V,f(u>= 0 then u“@ = urW’(Q/Qi>-‘Wu, and similarly, 

if V,,~(U> = 0 then urQu = u?‘V’(Q/Qn)-‘VU. 

Motivated by these observations, we have the following corollary: 

COROLLARY 1. The quadratic function f is pseudo-P-convex at u rfut least 
one of the following inequalities holds: 

(i) U’QU ,< 0, u # 0; 

(ii) u’V~(Q/Q~)-~VU Q 0, 9, f(u) # 0; 
(iii) u“W’(Q/Q,)-‘Wu < 0, V,,~(U)+ 0. 

When Q is nonsingular and has exactly two negative eigenvalues, then 

we have the following: 

REMAKK 2. If Q has two negative eigenvalues and either one of the 
partial gradients 0, f(u), V!,f(u) vunishes, then the condition (3.3) cannot 
hold. 

This is a direct consequence of Theorem 1. It follows therefore, that in 

this case pseudo-P-convexity does not hold at points where a partial gradient 

vanishes. 

TIIEOKEM 4. Suppose Q is nonsingular and has exactly two negative 
eigenvulues. The quadratic form f is pseudo-P-convex at u if and only if the 
following hold: 

(i) V, f(u) # 0, V,,f(u) + 0, 
(ii) z~~Qu[u~W~~Q/Q~)-‘WU]_(UTWT~)~ 

= u’Q~[~‘V~(Q/Q,)-‘VU]-(U~V~X)~ > 0, 
(iii> ~rQu < 0. 
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Proof. By Remark 2, f is pseudo-P-convex at u only if V, f(u) + 0 and 
V!,f(u> f- 0. In this case det Q > 0 and C(u) (3.6) has two negative eigenval- 
ues. Thus, 

det C(u) = (det Q)[O- Vrf(u)Q-‘Vf(u)] = -det(Q)urQu > 0; 

hence uTQu < 0. Since V, f(u) f 0 and V,,f<u> f 0, the matrix D(u) has also 
two negative eigenvalues. The rest of the‘proof is identical to the steps taken 
in Theorem 3. n 

As an immediate result we have the following corollary: 

COROLLARY 2. Suppose Q is nonsingular and has exactly two negative 

eigenvalues. If f is pseudo-P-convex at u, then each of the three inequalities 

(il U’QU < 0, 
(ii) aTWT(Q/Q1)-‘Wu > 0, 
(iii) uTVT(Q/Q2)-‘VU < 0 

hola!s. 

Proof. From Theorem 4 it follows that uTQu < 0. Conditions (ii) and 
(iii) can be obtained if in (3.6) Vf(u> is replaced with V, f(u) or with V!,f(u). 

n 

Compare this result with Corollary 1. 

4. DOMAINS OF PSEUDO- P-CONVEXITY 
OF QUADRATIC FUNCTIONS 

We now suppose that a quadratic form f is given, and we wish to find 
whether f is pseudo-P-convex on a given solid convex domain e, x T?~. A 
similar question for pseudoconvex functions is addressed by Cottle and 
Ferland in [9]. 

Let 9 be the set of all points at which f is pseudo-P-convex. In view of 
the following corollary we call 9 the maximal domain of pseudo-P-convexity 
off. If v(Q) = 1, th en 9 is defined via Equation (2.3) and Theorem 3. If 
v(Q) = 2, then 9 is defined via Theorem 4. Denote by 3 the closure of 9; 
it follows from Theorems 3 and 4 that 

(4.1) 
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COROLLARY 3. Let 9 be the maximal domain of pseudo-P-convexity. 

(i) Zf~~X~2:2--C, thenf is pseudo-P-convex on 6, X ~5’~. 
(ii) Iff is pseudo-P- convex on 4, X &2 then int(&, X ~5’~) L 9, where int 

denotes the interior of a set. 

Proof. These results follow from Equation (2.2) and Theorems 2, 3, 

and 4. n 

Note that when &, x ~5~ is open, f is pseudo-P-convex if and only if 

4, x ~5~ c 9. In general, if int[ 8r X TT?~] c 4, to determine whether f is 

pseudo-P-convex on 8r X ~5~ one must check separately the boundary points, 

i.e., the points in &r X zf2 n 3 which do not belong to 4, using the relation 

(3.2). 

Recall that 4 is characterized by a fourth order polynomial. However, if 

v(Q) = 1 and Qr and Qz are positive definite, we can extract three pairs of 

disjoint convex cones contained in 4 which are characterized by a quadratic 

form. 

Let u denote a normalized eigenvector associated with the single nega- 

tive eigenvalue of Q. Since Qr and Q2 have only positive eigenvalues, it 

follows from (2.10) that the Schur complements Q/Q, and Q/Q2 each 

have exactly one negative eigenvalue. Let vr and va denote the eigenvectors 

associated with the single negative eigenvalues of Q/Q1 and Q/ Qa, 

respectively. Define 

Fr< = {y E R”‘: yr(Q/Qr)-‘y ,< 0 and yrur < 0}, 

Fr’ = {y E R”‘: yr(Q/Qr)-‘y < 0 and yrv, > 0}, 

X1< = {X E R”:I~(Q/Q~)-‘x G 0 and xTuZ < O), 

Fs’ = {X E R”: xT(Q/Q2)-lx < 0 and rTv2 > 01. 

The sets 9’j’, Yr’, YZ’, and FZ’ are convex cones with nonempty 

interior [16, p. 2701. By Corollary 1, f is pseudo-P-convex on any solid 

convex set 4, X g2 if this set lies in the union of the following three cones, 

each a union of two disjoint convex sets: 
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From the modeling perspective (cf. [21, 29, 321) it is important to 
determine whether a Kuhn-Tucker stationary point of a quadratic objective 
function defined on the nonnegative orthant is a global minimum. This 
question is related to the question of whether the quadratic function is 
convex, pseudoconvex, or pseudo-P-convex on the nonnegative orthant. The 
next paragraph deals with this question. The following definition is required. 

DEFINITION 1 [4]. An n X n symmetric matrix A is conegutiue (coposi- 
tiae) if ~‘AP < 0 (pr& > 0) for all p > 0. 

A test for conegativity is provided in [8]. Clearly, a matrix A is conegative 
if all its entries are nonpositive. A test for conegativity on the intersection of 
the nonnegative orthant with any polyhedral cone is given in [31]. 

COIIOLLAKY 4. Let Q be u nonsingular symmetric matrix with a single 

negutice eigenvalue. Then the quadratic form uTQu is pseudo-F-convex on the 

semipositive orthant if any of the following three conditions holds: 

(a) Q is conegative. 

(b) The matrix WT(Q/QI)-‘W is conegative, und Q is ulso conegative 

but only on the cone {u =(x,y):v,,Tf(u)=[xT,yTIW?‘=O}.{u =(x,y)> 01. 

(c) The mutrir V“(Q/Qa)-‘V is conegatice, and Q is also conegative but 

only on the cone {u =(x, y):V,?f(u)=[rT, yTIVT=O)n(u =(x, y)>O). 

Proof. The proof follows immediately from Corollary 1 by observing 
that whenever the partial gradients vanish, conditions (b) and (c) in Corollary 
4 imply u?‘Qu < 0, i.e., condition (i) in Corollary 1 holds. n 

For a vector z the expression z & 0 denotes that some components of z 
are positive. The partial gradients of the quadratic form do not vanish on the 
semipositive orthant when the following holds. 

C0H0LLARY 5. lf Q,;‘Qcx & 0 (Q;‘Q3y & 0) on the semipositive orthant 

und $ WT(Q/Q1)-‘W (VT(Q/Q2)-1V) is conegative, then Q is pseudo- 

P-convex on the semipositive orthunt. 

Proof. The proof is a direct consequence of Corollary 4. The partial 
gradients of f(u), V,ff(u) = [XT, yr]WT = xTQ3 + yTQe and VA?f(u)= 

[x’, y’:jV“ = x’Q, + y Q3, “ T do not vanish on the semipositive orthant if 

Q,‘Q{x & 0 or Q;‘Q,,y < 0, respectively. n 
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ON THE SEMIPOSITIVE ORTHANT 

The examples in this section illustrate the above results. More specifi- 

tally, we characterize (n + 1) X (n + 1) matrices of the form 

91 (I 
Q=qT > 

[ 1 a 

with one or two negative eigenvalues, whose associated quadratic form 

j-(n) = +[ x’Qrx +21’qy + cyy2] (5.1) 

is pseudo-P-convex on the semipositive orthant of R” X R. Here, Q, is an 

n X n matrix and y is an n-vector. 

We begin by examining the case when Q has exactly one negative 

eigenvalue. Let 9- be defined s a5 in (2.2), and let u E 9-. Then f is 

pseudoconvex and therefore pseudo-P-convex. When u E 9+ = {u : uTQtl > 

O} we know from Theorem 3 that f is pseudo-P-convex at u if and only if 

y?f(u) = [.x“,y] y; # 0, 
[ I 

When (5.2) holds, (5.4) simplifies to 

1 y” 

LY - yTQ;'q 
---0. 

u’Qu 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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We should consider four cases: 

(a) the biconvex case, i.e., Qi is positive definite and CY > 0; 
(b) the convex-pseudoconvex case, i.e., Qi is positive definite and (Y < 0; 
(c) the pseudoconvex-convex case, i.e., the matrix Q, defines a merely 

pseudoconvex quadratic and CY > 0; and 
(d) the bi-pseudoconvex case, i.e., the matrix Q, defines a merely 

pseudoconvex quadratic and (Y < 0. 

We examine each case separately. 

(a) The Biconvex Case 

Since Q has exactly one negative eigenvalue, we know from Schur 
complement theory that 

a - q*Q& < 0. (5.61 

It is immediate from (5.5) and (5.6) that f is pseudo-P-convex on the 
semipositive orthant except at points where VJ(u) or V,f(u> vanishes. 

When VJ(u) = 0, then 

x = - Q;l9y; (5.71 

consequently, 

(5.8) 

which is negative by (5.6). Thus when V, f(u) = 0, we have u E 4-, and f is 
pseudoconvex and hence pseudo-P-convex. 

When VJ(u> = 0, then 

y=-x*q/ff. (5.9) 

Here we have to consider two possibilities: 

(i) If 9 > 0, then f is pseudo-P-convex on the semipositive orthant. An 
example of a biconvex quadratic with q >, 0 is given by the matrix” 

1 013 
Q= 0. 113. 

[ 1 . . . . . 
3 3.1 

‘If f is pseudo-P-convex on the semipositive orthant, then it is pseudo-P-convex on the 

nonnegative orthant if and only if the relation (1.2) holds at the origin. Here this condition is 
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(ii) If 4 & 0, th en it follows by substituting (5.9) in (5.1) that f is 
pseudo-P-convex on the semipositive orthant if 

X,<O on the cone (X :x > 0, xTq < 0). (5.10) 

A test for (5.10) is given in [31]. Note that when q < 0, (5.10) simplifies to 
the conegativity of Qr - qqT/a. Since Qr - qqT/a is the Schur comple- 
ment of Q, it is a nonsingular matrix with a single negative eigenvalue. By a 
simple inductive argument using Lemma 1, it can be shown that a nonsingu- 
lar matrix with a single negative eigenvalue is conegative if and only if all its 
elements are nonpositive. An example of a biconvex quadratic with q < 0 is 
given by the matrix 

(b) The Convex-Pseudoconvex Case 
The mere pseudoconvexity of f(x*, y) for a fixed x* assures that the 

partial gradient with respect to y, V,f(u), does not vanish [25]. As shown in 
case (a), it is still true that when V,f(u> vanishes, u E 9-. Thus, in the 
present case, f is pseudo-P-convex on the semipositive orthant. 

An example of a convex-pseudoconvex quadratic is given by 

(c) The Pseudoconvex-Convex Case 

the matrix 

For each fixed nonnegative y*, f(r, y*) is merely pseudoconvex; there- 
fore Qr Q 0, q Q 0, and qTQ;‘q < 0 [25]. Assume that the partial gradients 

V,~(U), V&J) d o not vanish, and u E 9-. With these assumptions (5.5) 

equivalent to the copositivity of Q. The following example satisfies this condition and is 
therefore pseudo-P-convex on the nonnegative orthant, including the origin. 
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uT@ - ay” + yTQ;‘yy2 < 0. 

It follows that 

xTQ1r +2xTqy + cry” - ‘yy’+ q’Q,‘yy” < 0, 

or equivalently 

[- I[ XT ,YT Q1 y x<o I[ 1 qT qTQ;'q Y ’ 
(5.11) 

[The elements of the matrix in (5.11) are nonpositive; thus it is conegative 
and the inequality holds.] Therefore, the function f(y) is pseudo-P-convex on 
the semipositive orthant, except possibly at points where V,,jXu) or V,~(U> 
vanish. Mere pseudoconvexity of f(x, y*) for any fixed ‘y* assures that 
V,~(U> does not vanish on this orthant [25]. It can also be shown that if 
V,,f(u) vanishes, then u E 9-. Thus, in the present case, f is pseudo-P-con- 
vex on the semipositive orthant. 

An example of a pseudoconvex-convex quadratic is given by the matrix 

(d) The Bi-Pseudoconvex Case 

Mere bi-pseudoconvexity of f(x, y*) and f(x*, y> on the corresponding 
semipositive orthants assures that all the entries of Qi and q are nonpositive, 
and cx < 0. Hence, f satisfies Martos’s criteria in [25], so f is merely 
pseudoconvex and therefore pseudo-P-convex on the semipositive orthant. 

We now turn to consider the case when Q has two negative eigenvalues. 
First, assume that f is pseudoconvex-convex. Then by Martos’s criteria in 
[25] it follows that q < 0, and since cy > 0, V,J(x*, y> = qTz* + cuy vanishes 
on the positive orthant. By Remark 2, such a quadratic function is never 
pseudo-P-convex, so the possibility that f is pseudoconvex-convex is ex- 
cluded. 

It remains to consider the case when f is bi-pseudoconvex. Again, by 
Remark 2 bi-pseudoconvexity assures that the partial gradients do not vanish 
on the semipositive orthant. Here, all the elements of Q, and y are 
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nonpositive and qTQ;‘y < 0 [25]. In this case, by Corollary 2, urQu < 0 and 

(5.5) must hold. Equation (5.5) can be written as 

xTQ,r +224rxy + yTQ;‘qy2 < 0, 

or equivalently 

The above matrix is conegative and the inequality holds on the semipositive 

orthant. Hence the bi-pseudoconvex function f is pseudo-P-convex on the 

semipositive orthant. 

An example of a bi-pseudoconvex quadratic is given by the matrix 

We conclude the paper by considering a 4 X 4 quadratic 

defined on the positive orthant of R” X R”, where 

The Schur complement 

(0/0d = WQJ’ = [ _y -k] 

is conegative. Since the entires of V = [Qr i Qcl are nonnegative, the matrix 

VT(Q/Qz)-‘V is also conegative. Moreover, only V,f(u,> vanishes on the 

boundary of the semipositive orthant, i.e., at the points of the form ur = 

(x,, y,) = (O,O, nr, 0). It can easily be checked that such points satisfy (3.2) for 

all U, in the nonnegative orthant. Thus, by Corollary 5 and footnote 2, f is 

pseudo-P-convex on the nonnegative orthant. 
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