173-Plat
Disease Phenotyping with Sub-Resolution Precision by Single Molecule Tracking in Live Animals
1CgphiMC UMR CNRS 5534, University Claude Bernard Lyon 1, Villeurbanne, France, 2Biological Sciences, University of Southern California, Los Angeles, CA, USA, 3Biocenter, University of Wurzburg, Wurzburg, Germany.

Single molecule (SM) fluorescence microscopy provides non-invasive means to localize biomolecules and characterize their diffusion in cells with a sub-resolution precision. Extending SM imaging techniques to live animals is an exciting, yet challenging endeavor that can potentially reveal how pathological processes affect the nanoscale mobility and the function of biomolecules in their native three-dimensional tissue environment. Here we used Complementation Activated Light Microscopy (CALM) to target, image and track individual voltage-dependent Ca2+ channels (VDCC) with a precision of 30 nm on muscle cells and within neuromuscular synapses of normal and dystrophin-mutant Caenorhabditis elegans worm models of Duchenne muscular dystrophy. Through diffusion and spatial pattern analyses, we show that dystrophin is a load-bearing apparatus and a tension transducer that modulates the confinement of VDCC within sarcosomal membrane nanodomains in response to varying muscle tonus. SM imaging by CALM opens new avenues to explore the basic principles of homeostatic controls and the molecular basis of diseases at the nanometer scale in intact living animals.

174-Plat
Super Resolution Fluorescence Microscopy by Cathodoluminescence-Activated Excitation
Connor G. Bischak, Craig L. Hetherington, Jake T. Precht, Claire E. Stachelrod, Zhe Wang, Darrell G. Schlam, Naomi S. Ginsberg.
1Chemistry, University of California Berkeley, Berkeley, CA, USA, 2Materials Science, Cornell University, Ithaca, NY, USA.

The nanoscale dynamical processes of organization, complexing, and aggregation of biomolecules lie at the foundation of many critical processes in metabolism, signaling, and disease. Our understanding of these processes, particularly those occurring in crowded environments, remains limited thus far by our inability to probe small aqueous volumes optically. To generate a nanoscale optical probe for visualizing nanoscale biological dynamics, we have developed and demonstrated a new approach that combines the advantages of electron and fluorescence microscopies, namely the nanoscale focusing and fast scanning capabilities of electron microscopy and the chemical specificity and non-invasiveness of fluorescence microscopy. Our new super-resolution optical imaging platform consists of a high-brightness, rapidly scannable, 20-nm optical spot in cathodoluminescent (CL) thin film generated by a low energy, tightly focused electron beam from a scanning electron microscope (SEM). Because the CL film is only 10-20 nm thick, optical excitations activated by the electron beam in the CL film can be non-radiatively transferred to adjacent fluorescently labeled molecules in an encapsulated sample volume via Förster resonance energy transfer (FRET). By correlating the position of the electron beam with fluorescence from the sample, we can generate images with nanoscale resolution, high optical contrast, and fast acquisition rates. Using this approach, we have successfully imaged plasmonic metal nanoparticles with 46 nm-resolution and demonstrated high-resolution CL-activated FRET with luminescent polymer blends. By encapsulating a aqueous biological sample adjacent to the film, we anticipate imaging processes, such as DNA repair, protein aggregation, and diffusion of protein complexes on lipid membranes. We aim to achieve a spectrally-specific scanning optical microscopy with at least 20 nm lateral resolution and 10 nm axial resolution with a fast acquisition rate.

177-Plat
Surface Characterization and Membrane Interaction of Double-Knot Toxin, an Activator of TRPV1 Channels
Chanyoung Bae, Andres Jara-Osegurea, Dmitriy V. Krepsky, Jaeh Ryu, Jae Il Kim, Kenton J. Swartz.
1NIH, Bethesda, MD, USA, 2GIST, Gwangju, Korea, Republic of.

Double-knot toxin (DkTx) is a novel tarantula toxin that activates TRPV1 channels by binding to the extracellular pore domain of the channel, and is composed of two lobes named knot1(K1) and knot2(K2). Previous studies have shown that both lobes can be synthesized separately and activate the channel with different affinities. Recently, near atomic resolution structures of TRPV1 in distinct states (apo, capsaicin bound and DkTx/RTx bound) were reported using electron cryo-microscopy. These structures show that TRPV1 adopts a structure that is similar to Kv channels, and that the pore domain undergoes distributed conformational change upon activation in response to binding of DkTx and RTx. Although these structures show where DkTx binds, they do not have sufficient resolution to reveal the structural basis of the toxin-channel interaction. Here we solved the solution NMR structure of DkTx and dock that structure into the DkTx/RTx bound electron density maps using the Xplor-NIH program. Our results show that the toxin binds to a perimeter of the pore domain at the interface between the pore helix and S6 of neighboring subunit of the channel, and demonstrate that the toxin-channel interface is dominated by hydrophobic interactions. Interestingly, when bound to the channel, several residues on the toxin extend over the edge of the pore domain where they would be expected in interact with the surrounding membrane. To explore this possibility we tested whether DkTx can interact with membranes using a tryptophan fluorescence assay (each lobe contains a single conserved tryptophan). Indeed, each lobe of DkTx interacts with membranes, and the interaction is energetically more favorable in the native toxin.

2022-Plat
3D Supersolution Microscopy by Supercritical Angle Detection
Joran Deschamps, Markus Mund, Jonas Ries.
1, Dong Xing2, Qian Peter Su1, Yun Zhu1, Jiamie Zhang1, Xinyu Kong1, Boxin Xue1, Sheng Wang1, Hao Sun1, Yile Tao1, Yueh Sun1.
1Biodynamic Optical Imaging Center, Peking University, Beijing, China, 2Department of Chemistry and Chemical Biology, Harvard University, Boston, TX, USA, 3School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana Champaign, IL, USA.

Imaging localization and dynamics of individual interacting protein pairs is essential but often difficult due to the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining Bimolecular Fluorescence Complementation (BiFC) and Photocatalyzed Localization Microscopy (PALM) for super-resolution imaging and single molecule tracking of specific protein-protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB-EF-Tu pairs as a subpopulation of total EF-Tu. The single molecule tracking of MreB, EF-Tu, and MreB-EF-Tu pairs reveals intriguing localization-dependent heterogeneous dynamics and provides valuable insights to understanding the roles of MreB-EF-Tu interactions.