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Abstract Buoyancy-driven convective heat and mass transfer in boundary layer flow of a vis-

coelastic Jeffrey fluid from a permeable isothermal sphere embedded in a porous medium is studied.

Thermal radiation flux and heat generation/absorption are also incorporated in the model. A non-

Darcy drag force model is employed to simulate the effects of linear porous media drag and second

order Forchheimer drag. The Rosseland diffusion algebraic approximation is utilized to simulate

thermal radiation effects. The non-dimensionalized boundary layer equations are solved using

implicit, finite-difference scheme. The influence of Darcy number (Da), Deborah number (De), ratio

of relaxation to retardation times ðkÞ, radiation parameter (F), Forchheimer inertial parameter ðKÞ
and heat generation/absorption parameter ðDÞ, on normalized velocity, temperature, concentration,

skin friction, heat and mass transfer rates are also studied. The present study has applications in the

storage of nuclear waste materials.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Heat and mass transfer in porous media arise in an extensive
array of applications in modern nuclear engineering, mineral
and chemical process engineering. These include transport of

nuclear waste in geomaterial repositories [1–3], petroleum pro-
duct filtration [4] and insulation systems [5]. The non-Newtonian
nature of waste products has been identified by various studies

[6]. Simulations of non-Newtonian transport in porous media
have therefore employed a diverse range of rheological models
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Nomenclature

a radius of the sphere

C concentration
Cf skin friction coefficient
cp specific heat parameter
Da Darcy parameter

De Deborah number
Dm mass (species) diffusivity
F radiation parameter

f non-dimensional steam function
Gr Grashof number
g acceleration due to gravity

K thermal diffusivity
k thermal conductivity of Jeffreys fluid
k� the mean absorption coefficient
N Buoyancy ration parameter

Nu local Nusselt number
Pr Prandtl number
qr radiative heat flux

rðxÞ radial distance from symmetrical axis to surface of
the sphere

Sc Schmidt number

Sh local Sherwood number
S extra stress tensor
T temperature of the Jeffreys fluid

T Cauchy stress tensor
u; v non-dimensional velocity components along the

x- and y-directions, respectively
V velocity vector

x stream wise coordinate

y transverse coordinate

Greek symbols
a thermal diffusivity
b the coefficient of thermal expansion

b� the coefficient of concentration expansion
k ratio of relaxation to retardation times
k1 retardation time

/ non-dimensional concentration
C inertial drag coefficient
K the local inertial drag coefficient (Forchheimer

parameter)

D heat generation (source)/heat absorption (sink)
parameter

g the dimensionless radial coordinate

l dynamic viscosity
m kinematic viscosity
h non-dimensional temperature

q density of non-Newtonian fluid
r� the Stefan–Boltzmann constant
n the dimensionless tangential coordinate
w dimensionless stream function

Subscripts
w conditions on the wall (sphere surface)
1 free stream conditions
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including Bingham plastic models [7], capillary hybrid vis-
coelastic models incorporating a viscous mode and an elonga-

tional mode [8], viscoplastic Schwedoff–Bingham fluids [9],
Maxwell fluids [10], power-law fluids [11] and pseudoplastic flu-
ids [12], Stokesian couple stress fluids [13] and Reiner–Rivlin

third grade differential liquids [14]. These studies have adopted
a variety of simulation approaches for porous media including
percolation theory [9], volume-averaging [10] and network

modelling [12]. They have generally employed the Darcy model
which is valid for viscous-dominated low Reynolds number
transport. Kadet and Polonski [9] however also considered
inertial (Forchheimer) losses for higher Reynolds numbers.

Non-Darcian flows may involve Forchheimer effects and also
Brinkman vorticity diffusion effects, channeling, tortuosity
and other phenomena. Vafai [15] presented a seminal theoreti-

cal and experimental study of the influence of variable porosity
and also inertial forces (Forchheimer drag) on thermal convec-
tion flow in porous media, with the channelling effect being

studied in detail. He elucidated the qualitative aspects of vari-
able porosity in generating the channelling effect with an
asymptotic analysis. A number of investigations have subse-
quently addressed rheological flows in non-Darcian porous

media. Anwar Bég et al. [16] used a finite element method to
simulate micropolar heat and mass transfer in Darcy–
Forchheimer porous media with cross-diffusion effects. Kairi

andMurthy [17] analyzed the influence of melting and Soret dif-
fusion onmixed convection heat andmass transfer from vertical
surface adjacent to an Ostwald–de Waele power law fluid-
saturated non-Darcy porous medium. Anwar Bég et al. [18]
used an electrical thermal network solver code (PSPICE) to

simulate the magnetohydrodynamic heat transfer in Walter-B
viscoelastic flow in Darcy–Forchheimer porous media. Prasad
et al. [19] studied the non-Darcy effects on thermal convection

boundary layer flow of a second order Reiner–Rivlin fluid in
a porous medium. Rashidi et al. [20] used a differential trans-
form numerical solver to study Forchheimer drag and buoy-

ancy effects on magneto-micropolar thermal convection in a
vertical porous medium conduit.

In many chemical engineering and nuclear process systems,
curved bodies are also encountered. These include cylinders,

cones, ellipses and spherical geometries. Several studies have
considered heat and/or mass transfer from curved bodies to
non-Newtonian fluids. An early investigation was presented

by Bhatnagar [21] who considered analytically the thermal
convection from a rotating and thermally insulated spherical
body to a viscoelastic Reiner–Ericksen fluid as a simulation

of polysiloxane polymer performance. He identified that sec-
ondary flow degenerates into two distinct zones and that ther-
mal convection dominates over dissipation effects due to the
influence of viscoelasticity. Lee and Donatelli [22] studied spe-

cies diffusion in power-law fluid flow from a sphere. Nazar
et al. [23] analyzed numerically the natural convection of
micropolar fluid from a horizontal cylindrical geometry.

Dhole et al. [24] used a finite volume computational code to
examine the influence of Reynolds number, Prandtl number
and rheological power law index (n) on the heat-transfer from
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an unconfined sphere submerged in an isothermal and incom-
pressible power law fluid, under both isothermal and isoflux
thermal boundary conditions on the sphere surface. Very

recently Prasad et al. [25] used a finite difference method to
study natural convection boundary layer flow of a Casson
non-Newtonian fluid from a permeable horizontal cylinder

with thermal and hydrodynamic slip, showing that an increase
in Casson rheological parameter acts to elevate considerably
the skin friction but depresses temperatures. Anwar Bég

et al. [26] investigated numerically thermo-diffusion and
diffuso-thermal effects on double-diffusive natural convection
from a spherical body to a micropolar rheological fluid. Akbar
et al. [27] investigated the combined effects of slip and convec-

tive boundary conditions on stagnation-point flow of CNT
suspended nanofluid over a stretching sheet.

Thermal radiation effects also arise in nuclear engineering

applications including reactors, propulsion systems, etc.
When coupled with thermal convection flows, these transport
phenomena problems are highly nonlinear. At a high tempera-

ture the presence of thermal radiation changes the distribution
of temperature in the boundary layer, which in turn affects the
heat transfer at the wall. A variety of radiative heat transfer

models have been utilized by thermal engineers for transport
modelling in porous media. Rudraiah and Sasikumar [28] used
the Milne–Eddington approximation and a Galerkin algorithm
to simulate the stability of flow with conduction, convection

and radiation heat transfer in a gray fluid-saturated sparsely
packed non-Darcy porous medium. They observed that the
nature of the bounding surfaces and thermal radiation flux

have a strong influence on the critical Rayleigh and wave num-
bers. Talukdar et al. [29] employed the Chandrasekhar discrete
transfer method (DTM) to simulate radiative-convective flow

in a porous medium channel. Yih [30] used the Rosseland dif-
fusion flux approximation to analyze computationally mixed
convective-radiative flow from a wedge geometry embedded

in a non-Darcian porous medium. Takhar et al. [31] used the
Cogley–Vincenti–Giles differential flux model to study
radiative-convective boundary layer flow in a Darcy–
Forchheimer porous regime with a numerical code.

In the current article we investigate numerically the steady-
state, boundary layer radiative-convective flow of a Jeffrey’s
viscoelastic fluid from a sphere immersed in a saturated non-

Darcy porous medium. The transformed nonlinear boundary
value problem is solved with the Keller-box finite difference
method. A parametric study of the effect of the emerging ther-

mophysical parameters i.e. Darcy number (Da), Deborah num-
ber (De), ratio of relaxation to retardation times ðkÞ, radiation
parameter (F), Forchheimer inertial parameter ðKÞ and heat
generation/absorption parameter ðDÞ, on normalized velocity,

temperature, concentration, local skin friction, surface heat
transfer rate (local Nusselt number) and surface mass transfer
rate (local Sherwood number) is conducted. The present prob-

lem has to the authors’ knowledge not appeared thus far in the
scientific literature and is relevant to nuclear waste simulations
and also polymeric processing.

2. Non-Newtonian constitutive Jeffreys fluid model

In the present study a subclass of non-Newtonian viscoelastic

fluids known as the Jeffreys fluid [32–36] is employed owing to
its simplicity. This fluid model is capable of describing the
characteristics of relaxation and retardation times which arise
in complex polymeric flows and also in liquids employed in

geological nuclear waste repositories [37]. Furthermore the
Jeffrey type model utilizes time derivatives rather than
convected derivatives, which greatly facilitates numerical

simulations. The Cauchy stress tensor, T, of a Jeffrey’s
non-Newtonian fluid [38] takes the form as follows:

T ¼ �pIþ S; S ¼ l
1þ k

ð _cþ k1€cÞ ð1Þ

where S is the extra stress tensor, a dot above a quantity
denotes the material time derivative, p is pressure, I is the iden-
tity tensor, l is dynamic viscosity, k is the ratio of relaxation to

retardation times, k1 is the retardation time and _c is the shear
rate. The Jeffreys model provides an elegant formulation for
simulating retardation and relaxation effects arising in non-

Newtonian flows. The shear rate and gradient of shear rate
are further defined in terms of velocity vector, V, as follows:

_c ¼ rVþ ðrVÞT ð2Þ

€c ¼ d

dt
ð _cÞ ð3Þ

The introduction of the appropriate terms into the flow model

is considered next. The resulting boundary value problem is
found to be well-posed and permits an excellent mechanism
for the assessment of rheological characteristics on the flow

behaviour.

3. Mathematical flow model

Steady, double-diffusive, laminar flow of an optically-thick
Jeffreys fluid from a permeable sphere embedded in an isotro-
pic, homogenous, fully-saturated porous medium in the pres-

ence of a heat source/sink and appreciable thermal radiation
heat transfer, is considered, as illustrated in Fig. 1. Thermal
dispersion, viscous heating and stratification effects are

neglected as are cross-diffusion effects. A non-Darcy drag
force model is employed to simulate porous media bulk impe-
dance and also inertial effects, following Anwar Bég et al. [18].
The x-coordinate is measured along the surface of the isother-

mal sphere from the lowest point and the y-coordinate is mea-
sured normal to the surface, with a denoting the radius of the
isothermal sphere. rðxÞ ¼ a sin x=að Þ is the radial distance from
the symmetrical axis to the surface of the sphere. The gravita-
tional acceleration g, acts downward. We also assume that the
Boussineq approximation holds i.e. that density variation is

only experienced in the buoyancy term in the momentum
equation.

Both isothermal sphere and the Jeffreys fluid are main-
tained initially at the same temperature and concentration.

Instantaneously they are raised to a temperature Tw > T1
and concentration Cw > C1, where the latter (ambient) tem-
perature and concentration of the fluid are sustained constant.

Introducing the boundary layer approximations, the equations
for mass, momentum, energy and species diffusion, can be writ-
ten as follows:

@ ruð Þ
@x
þ @ rvð Þ

@y
¼ 0 ð4Þ



Figure 1 Physical regime and coordinate system.
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u
@u

@x
þv

@u

@y
¼ m
1þk

@2u

@y2
þk1 u

@3u

@x@y2
� @u
@x

@2u

@y2
þ@u
@y

@2u

@x@y
þv

@3u

@y3
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gb T�T1ð Þsin x=að Þþgb� C�C1ð Þsin x=að Þ

� m
K
u�Cu2 ð5Þ

u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
� 1

qcp

@qr
@y
þ Q0

qcp
T� T1ð Þ ð6Þ

u
@C

@x
þ v

@C

@y
¼ Dm

@2C

@y2
ð7Þ

where u and v are the velocity components in the x- and

y-directions respectively, m ¼ l=q – the kinematic viscosity of
the Jeffreys fluid and the other parameters is mentioned in
the nomenclature. The Jeffreys viscoelastic fluid model intro-

duces several mixed derivatives into the momentum boundary
layer Eq. (5) and in particular two third order derivatives,

u @3u
@x@y2

and v @
3u
@y3

. The momentum equation therefore attains an

order higher than the classical Navier–Stokes (Newtonian) vis-
cous flow model. The non-Newtonian effects feature in the
shear terms only of Eq. (5). Negating relaxation and retarda-

tion effects i.e. k! 0 and k1 ! 0 reduces the equation to
the conventional Newtonian model. The second term on the
right hand side of Eq. (5) represents the thermal buoyancy force

and couples the velocity field with the temperature field Eq.
(6). The third term on right hand side of Eq. (5) represents
the species buoyancy effect (mass transfer) and couples Eq.

(5) to the species diffusion Eq. (7). The fourth and fifth terms
on the right hand side of Eq. (5) denote the Darcian linear drag
and Forchheimer second-order drag, respectively. The bound-
ary conditions are prescribed at the sphere surface and the

edge of the boundary layer regime, respectively as follows:

At y ¼ 0; u ¼ 0; v ¼ �Vw; T ¼ Tw; C ¼ Cw

As y!1; u! 0; v! 0; T! T1; C! C1
ð8Þ

where T1 – the free stream temperature, C1 – the free stream
concentration, Vw – the uniform blowing/suction velocity rep-

resenting lateral mass flux (transpiration) at the sphere surface.
In Eq. (6) the penultimate term on the right hand side is the
thermal radiation flux contribution based on the Rosseland
approximation [39,40]. This formulation allows the
transformation of the governing integro-differential equation
for radiative energy balance into a Fourier-type diffusion
equation analogous to that describing heat conduction or

electrostatic potential (Coulomb’s law) which is valid for
optically-thick media in which radiation only propagates a lim-
ited distance prior to experiencing scattering or absorption. It

can be shown that the local intensity is caused by radiation
emanating from nearby locations in the vicinity of which the
emission and scattering are comparable to the location under

consideration. For zones where conditions are appreciably dif-
ferent, the radiation has been shown to be greatly attenuated
prior to arriving at the location being analyzed. The energy

transfer depends only on the conditions in the area near the
position under consideration. In applying the Rosseland
assumption, it is assumed that refractive index of the medium
is constant, intensity within the porous medium is nearly iso-

tropic and uniform and wavelength regions exist where the
optical thickness is greater than 5. Further details are available
in Anwar Bég et al. [40]. The final term on the right hand side

of Eq. (6) is the heat source/sink contribution. The Rosseland
diffusion flux model is an algebraic approximation and defined
as follows:

qr ¼
4r�

3k�
@T4

@y
ð9Þ

where k� – mean absorption coefficient and r� –
Stefan–Boltzmann constant. It is customary [39] to express

T4 as a linear function of temperature. Expanding T4 using
Taylor series and neglecting higher order terms leads to the

following:

T4 ffi 4T3
1T� 3T4

1 ð10Þ

Substituting (10) into (9), eventually leads to the following ver-

sion of the heat conservation Eq. (6):

u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
þ 16r�T3

1
3k�qcp

@2T

@y2
þ Q0

qcp
T� T1ð Þ ð11Þ

The stream function w is defined by ru ¼ @ rwð Þ
@y

and rv ¼ � @ rwð Þ
@x

,

and therefore, the continuity equation is automatically satis-
fied. In order to render the governing equations and the
boundary conditions in dimensionless form, the following
non-dimensional quantities are introduced.
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n ¼ x

a
; g ¼ y

a

ffiffiffiffiffiffi
Gr

4
p

; f n; gð Þ ¼ w

mn
ffiffiffiffiffiffi
Gr4
p ;

h n; gð Þ ¼ T� T1
Tw � T1

; / n; gð Þ ¼ C� C1
Cw � C1

ð12Þ

In view of the transformation defined in Eq. (12), the bound-
ary layer Eqs. (4)–(7) are reduced to the following seventh

order system of coupled, nonlinear, dimensionless partial dif-
ferential equations for momentum, energy and concentration
for the regime:

1

1þk
f 000 þ ff 00 1þncotnð Þþ De

1þk
f 002� ffiv 1þncotnð Þ
� �

�ð1þKnÞ f 0ð Þ2þ sinn
n
ðhþN/Þ� 1

Da
f 0

¼ n f 0
@f 0

@n
� f 00

@f

@n
� De

1þk
f 0
@f 000

@n
� f 000

@f 0

@n
þ f 00

@f 00

@n
� fiv

@f

@n

� �� �

ð13Þ

h 00

P
r 1þ 4

3F

� �
þ fh 0 1þ n cotnð Þ þDh¼ n f 0

@h
@n
� h 0

@f

@n

� �
ð14Þ

/ 00

Sc
þ f/ 0 1þ n cot nð Þ ¼ n f 0

@/
@n
� / 0

@f

@n

� �
ð15Þ

The transformed dimensionless boundary conditions are as
follows:

At g ¼ 0; f ¼ fw; f 0 ¼ 0; h ¼ 1; / ¼ 1

As g!1; f 0 ! 0; f 00 ! 0; h! 0; /! 0
ð16Þ

In the above equations, the primes denote the differentiation
with respect to g, the dimensionless radial coordinate, n is

the dimensionless tangential coordinate, De ¼ k1m
ffiffiffiffiffiffi
Gr
p

a2
– the

Deborah number characterizing the fluidity of the material
(viscoelasticity), K ¼ Ca – the Local inertia coefficient

(Forchheimer parameter), N ¼ b� Cw � C1ð Þ
b Tw � T1ð Þ – the concentra-

tion to thermal buoyancy ratio parameter,

Gr ¼ gb Tw � T1ð Þa3
m2

– the Grashof number, Da ¼ K
ffiffiffiffi
Gr
p

a2
– the

Darcy parameter, Pr ¼ qmcp
k

– the Prandtl number, F ¼ Kk�

4r�T3
1

– the radiation parameter, D ¼ Q0a
2

qmcp
ffiffiffiffiffiffi
Gr
p – the dimensionless

heat generation/absorption coefficient, b� Cw � C1ð Þ – the

Schmidt number, fw ¼ �
Vwa

m
ffiffiffiffiffiffi
Gr4
p – the blowing/suction parame-

ter. The engineering design quantities of physical interest

include the skin-friction coefficient (normalized surface shear
stress function), Nusselt number (dimensionless surface heat
transfer rate) and Sherwood number (dimensionless surface

mass transfer rate) which are given by the following:

1

2
CfGr

�3=4 ¼ nf 00 n; 0ð Þ ð17Þ

Nuffiffiffiffiffiffi
Gr4
p ¼ �h 0 n; 0ð Þ ð18Þ

Shffiffiffiffiffiffi
Gr4
p ¼ �/ 0ðn; 0Þ ð19Þ
The location, n � 0, corresponds to the vicinity of the lower

stagnation point on the sphere. Since sin n
n ! 0=0 i.e. 1. For this

scenario, the model defined by Eqs. (13)–(15) contracts to an

ordinary differential boundary value problem:

1

1þk
f 000 þ ff 00 � De

1þk
ff ivþ De

1þk
f 002� f 02þðhþNuÞ� 1

Da
f 0 ¼0 ð20Þ

1

Pr
1þ 4

3F

� �
h00 þ fh0 þ Dh ¼ 0 ð21Þ

/00

Sc
þ f/0 ¼ 0 ð22Þ

The boundary conditions (16) remain unchanged. Inspection
of Eq. (20) reveals that Forchheimer effects vanish at the lower
stagnation point whereas the Darcian drag force remains.
Furthermore non-Newtonian effects are retained in the momen-

tum Eq. (20) via the terms featuring k and De. Even this sim-
plified version of the flow model is strongly non-linear. The
general model is solved using a powerful and unconditionally

stable finite difference technique introduced by Keller [41].
The Keller-box method has a second order accuracy with arbi-
trary spacing and attractive extrapolation features.
4. Numerical solution with keller box implicit method

TheKeller-box implicit differencemethod is utilized to solve the

nonlinear boundary value problem defined by Eqs. (13)–(15)
with boundary conditions (16). Although other powerful
numerical methods have been developed for fluid mechanics

including differential transform quadrature [20] and network
simulation [40], for parabolic problems (of which boundary
layer flows are an excellent example), Keller’s box technique
[41] remains of the most applied. Recent diverse implementa-

tions of the box scheme include simulations of subsonic thrus-
ters flows [42], aircraft wing aerodynamics [43], stationary
convective-diffusion flows [44], magnetohydrodynamics [45],

wavy surface convection flows [46], nanofluids [47], drainage
sheet flows [48] and rotating flows [49]. Further applications
include magneto-convection [50], double-diffusive convection

[51] and fuel cell modelling [52]. The Keller-box discretization
is fully coupled at each step which reflects the physics of para-
bolic systems – which are also fully coupled. Discrete calculus
associated with the Keller-box scheme has also been shown to

be fundamentally different from all other mimetic (physics cap-
turing) numerical methods, as elaborated by Keller [41]. The
Keller box scheme comprises four stages:

(1) Decomposition of the N th order partial differential
equation system to N first order equations.

(2) Finite Difference Discretization.
(3) Quasilinearization of Non-Linear Keller Algebraic

Equations.

(4) Block-tridiagonal Elimination solution of the Linearized
Keller Algebraic Equations.

Stage 1: Decomposition of Nth order partial differential

equation system to N first order equations

Eqs. (13)–(15) subject to the boundary conditions (16) are
first cast as a multiple system of first order differential equa-

tions. New dependent variables are introduced:
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u x; yð Þ ¼ f 0; v x; yð Þ ¼ f 00; q x; yð Þ ¼ f 000; s x; yð Þ ¼ h;

h 0 ¼ t and g x; yð Þ ¼ / with g 0 ¼ p ð23Þ

These denote the variables for velocity, temperature and con-

centration respectively. Now Eqs. (13)–(15) are solved as a
set of eight simultaneous differential equations:

f 0 ¼ u ð24Þ

u 0 ¼ v ð25Þ

v 0 ¼ q ð26Þ

g 0 ¼ p ð27Þ

s 0 ¼ t ð28Þ

1

1þ k
v 0 þ fv 1þ n cot nð Þ þ De

1þ k
v2 � fq 0 1þ n cot nð Þ
� �

� 1þ Knð Þu2 þ sin n
n

sþNgð Þ � 1

Da
u

¼ n u
@u

@n
� v

@f

@n
� De

1þ k
u
@q

@n
� q

@u

@n
þ v

@v

@n
� q 0

@f

@n

� �� �

ð29Þ

t 0

Pr
1þ 4

3F

� �
þ ft 1þ n cot nð Þ þ Ds ¼ n u

@s

@n
� t

@f

@n

� �
ð30Þ

p 0

Sc
þ fp 1þ n cot nð Þ ¼ n u

@g

@n
� p

@f

@n

� �
ð31Þ

where primes denote differentiation with respect to the vari-
able, g. In terms of the dependent variables, the boundary con-
ditions assume the form:

At g ¼ 0; u ¼ 0; v ¼ fw; s ¼ 1; g ¼ 1

As g! 0; u! 0; v! 0; s! 0; g! 0
ð32Þ

Stage 2: Finite Difference Discretization

A two dimensional computational grid is imposed on the

n� g plane as depicted in Fig. 2. The stepping process is
defined by the following:

g0 ¼ 0; gi ¼ gi�1 þ hj; j ¼ 1; 2; . . . ; J; gJ � g1 ð33Þ

n0 ¼ 0; nn ¼ nn�1 þ kn; n ¼ 1; 2; . . . ;N ð34Þ

where kn is the Dn – spacing and hj is the Dg – spacing. If gnj
denotes the value of any variable at gj; n

n
� �

, then the variables
Figure 2 Grid meshing and K
and derivatives of Eqs. (24)–(31) at gj�1=2; n
n�1=2

� �
are replaced

by the following:

g
n�1=2
j�1=2 ¼

1

4
gnj þ gnj�1 þ gn�1

j þ gn�1
j�1

� �
ð35Þ

@g

@g

� �n�1=2

j�1=2
¼ 1

2hj
gnj � gnj�1 þ gn�1

j � gn�1
j�1

� �
ð36Þ

@g

@n

� �n�1=2

j�1=2
¼ 1

2kn
gnj � gnj�1 þ gn�1

j � gn�1
j�1

� �
ð37Þ

The resulting finite – difference approximation of Eqs. (24)–(31)

for the mid-point gj�1=2; n
n

� �
, are as follows:

h�1j fnj � fnj�1

� �
¼ unj�1=2 ð38Þ

h�1j unj � unj�1

� �
¼ vnj�1=2 ð39Þ

h�1j vnj � vnj�1

� �
¼ qnj�1=2 ð40Þ

h�1j gnj � gnj�1

� �
¼ pnj�1=2 ð41Þ

h�1j snj � snj�1

� �
¼ tnj�1=2 ð42Þ

vj � vj�1
� �

1þ k
þ
hj 1þ aþ n cot nð Þ fj þ fj�1

� �
vj þ vj�1
� �

4

þ De

1þ k
ð1þ aÞhj

4
vj þ vj�1
� �2

�
De 1þ aþ n cot nð Þ fj þ fj�1

� �
qj � qj�1
� �

2 1þ kð Þ

� 1

Da

hj
2

uj þ uj�1
� �

þ B
hj
2

sj þ sj�1 þN gj þ gj�1
� �� �

� hj 1þ aþ Knð Þ
4

uj þ uj�1
� �2 � ahj

2
fn�1j�1=2 vj þ vj�1

� �

þ ahj
2

vn�1j�1=2 fj þ fj�1
� �

þ ahjDe

1þ k
un�1
j�1=2 qj þ qj�1

� �

� ahjDe

1þ k
qn�1
j�1=2 uj þ uj�1

� �
þ aDe

1þ k
fn�1j�1=2 qj � qj�1

� �

� aDe

1þ k
q 0ð Þn�1j�1=2 fj þ fj�1

� �
¼ R1½ �n�1j�=12 ð43Þ
eller-box computational cell.
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1

Pr
tj � tj�1
� �

þ 1þ aþ n cot nð Þhj
4

fj þ fj�1
� �

tj þ tj�1
� �

þ Dhj
2

sj � sj�1
� �

� ahj
4

uj þ uj�1
� �

sj þ sj�1
� �

þ ahj
2

sn�1j�1=2 uj þ uj�1
� �

� ahj
2

un�1
j�1=2 sj þ sj�1

� �

� ahj
2

fn�1j�1=2 tj þ tj�1
� �

þ ahj
2

tn�1j�1=2 fj þ fj�1
� �

¼ R2½ �n�1j�1=2 ð44Þ

1

Sc
pj � pj�1
� �

þ 1þ aþ n cot nð Þhj
4

fj þ fj�1
� �

pj þ pj�1
� �

� ahj
4

uj þ uj�1
� �

gj þ gj�1
� �

þ ahj
2

gn�1
j�1=2 uj þ uj�1

� �

� ahj
2

un�1
j�1=2 gj þ gj�1

� �
� ahj

2
fn�1j�1=2 pj þ pj�1

� �

þ ahj
2

pn�1
j�1=2 fj þ fj�1

� �
¼ R3½ �n�1j�1=2 ð45Þ

where we have used the abbreviations

a ¼ nn�1=2

kn
; B ¼

sin nn�1=2
� �
nn�1=2 ð46Þ

R1½ � n�1j�1=2 ¼�hj

1
1þk v 0ð Þ n�1j�1=2þ 1�aþncotnð Þf n�1j�1=2v

n�1
j�1=2þ De

1þk 1�að Þ v n�1
j�1

� �2

� 1
Da
u n�1
j�1=2� De

1þk 1�aþncotnð Þf n�1j�1=2 q 0ð Þ n�1j�1=2þB sn�1j�1=2þNgn�1
j�1=2

� �

� 1�aþKnð Þ un�1
j�1=2

� �2

2
666664

3
777775

ð47Þ

R2½ �n�1j�1=2¼�hj
1

Pr
1þ 4

3F

� �
t 0ð Þn�1j�1=2þ 1�aþncotnð Þfn�1j�1=2t

n�1
j�1=2

	

þDsn�1j�1=2þaun�1
j�1=2s

n�1
j�1=2

i
ð48Þ

R3½ � n�1j�1=2¼�hj
1

Sc
p 0ð Þn�1j�1=2þ 1�aþncotnð Þf n�1j�1=2p

n�1
j�1=2þaun�1

j�1=2g
n�1
j�1=2

	 


ð49Þ

The boundary conditions are as follows:

f n0 ¼ un0 ¼ 0; sn0 ¼ 1; gn0 ¼ 1; unJ ¼ 0; vnJ ¼ 0;

snJ ¼ 0; gn0 ¼ 0 ð50Þ

Stage 3: Quasilinearization of Non-Linear Keller Algebraic

Equations

If we assume f n�1j ; un�1
j ; vn�1j ; qn�1

j ; gn�1
j ; pn�1

j ; sn�1j ; tn�1j

to be known for 0 6 j 6 J, this leads to a system of 8Jþ 8 equa-

tions for the solution of 8Jþ 8 unknowns
f nj ; u

n
j ; v

n
j ; qnj ; gnj ; p

n
j ; s

n
j ; tnj , j ¼ 0; 1; 2; . . . ; J. This non-linear

system of algebraic equations is linearized by means of
Newton’s method, as described by Takhar et al. [31].

Stage 4: Block-tridiagonal Elimination Solution of Linear

Keller Algebraic Equations

The linearized system is solved by the block-elimination

method, since it possess a block-tridiagonal structure. The
bock-tridiagonal structure generated consists of block matrices.
The complete linearized system is formulated as a block matrix

system, where each element in the coefficient matrix is a matrix
itself, and this system is solved using the efficient Keller-box
method. The numerical results are strongly influenced by the
number of mesh points in both directions. After some trials
in the g – direction (radial coordinate) a larger number of mesh

points are selected whereas in the n – direction (tangential
coordinate) significantly less mesh points are utilized. gmax

has been set at 10 and this defines an adequately large value

at which the prescribed boundary conditions are satisfied.
nmax is set at 3.0 for this flow domain. Mesh independence is
achieved in the present computations. The numerical algo-

rithm is executed in MATLAB on a PC. The method demon-
strates excellent stability, convergence and consistency, as
elaborated by Keller [41].

5. Numerical results and interpretation

Comprehensive solutions have been obtained and are presented

in Tables 1–3 and Figs. 3(a)–11(c). The numerical problem
comprises two independent variables (n; g), three dependent
fluid dynamic variables (f; h;/) and eleven thermo-physical
and body force control parameters, namely, De, k, Da, K, Pr,

F, D, Sc, N, fw. The following default parameter values i.e.,
De= 0.1, k = 0.2, Da = 0.1, K = 0.1, Pr = 0.71, F= 0.5,
D = 0.1, Sc= 0.6, N = 0.5, fw = 0.5 are prescribed (unless

otherwise stated). Furthermore the influence of stream wise
(transverse) coordinate on heat and mass transfer characteris-
tics is investigated. A low Deborah number (De = 0.1) is pre-

scribed to simulate weakly elastic effects in the fluid.
In Table 1, we present the influence of Deborah number,

De, on skin friction, heat transfer rate and mass transfer rate,
along with a variation in mass flux parameter ðfwÞ, Schmidt

number (Sc) and transverse coordinate (n). With increasing
Deborah number skin friction is markedly reduced owing to
the increase in elasticity effects. This also serves to reduce

boundary layer thickness as the flow is decelerated. Similarly
heat transfer rates are also diminished with increasing
Deborah numbers. A significant reduction in wall mass trans-

fer rates (local Sherwood number function) also accompanies a
rise in Deborah number. Momentum, thermal and species dif-
fusion are therefore all inhibited with increasing elastic effects.

An increase in wall suction ðfw > 0Þ also decreases skin friction
whereas it accentuates the heat transfer rate and mass transfer
rate at the sphere surface. Increasing Schmidt number which
implies a decrease in mass diffusivity of the species is observed

to suppress skin friction and heat transfer rates whereas it
enhances the mass transfer rates. For Sc< 1 species diffusion
rate exceeds the momentum diffusion rate and vice versa for

Sc > 1. For Sc= 1 both diffusion rates are the same and
the momentum and concentration boundary layer thicknesses
equal in the regime. We further note that in Table 1 since Pr is

less than unity, thermal diffusivity will exceed momentum dif-
fusivity. With increasing n values there is also a decrease in
heat transfer rate whereas the skin friction is consistently
boosted. The boundary layer flow is therefore accelerated with

progressive migration from the lower stagnation point. Mass
transfer rate is found to decrease significantly with increasing
transverse coordinate.

Table 2 provides results for the influence of the ratio of
relaxation to retardation times (k), Schmidt number (Sc) and
Darcy number (Da) on skin friction, heat and mass transfer

rates. Skin friction is strongly boosted as are heat transfer
and mass transfer rates as the relaxation time is increased (or



Table 1 Values of Cf, Nu and Sh for different De, Sc and n k ¼ 0:2;Da ¼ 0:1;Pr ¼ 0:71;N ¼ 0:5;F ¼ 0:5;K ¼ 0:1;D ¼ 0:1ð Þ:
De fw Sc n ¼ 00 n ¼ 300 n ¼ 600

Cf Nu Sh Cf Nu Sh Cf Nu Sh

0.1 0.5 0.6 0 0.2421 0.7078 0.2124 0.2308 0.6748 0.3812 0.2001 0.5826

0.5 0 0.2388 0.6987 0.1535 0.2280 0.6669 0.2828 0.1986 0.5779

1.0 0 0.2365 0.6926 0.1248 0.2260 0.6614 0.2334 0.1975 0.5742

1.5 0 0.2348 0.6884 0.1090 0.2246 0.6577 0.2055 0.1966 0.5716

2.0 0 0.2335 0.6853 0.0999 0.2235 0.6548 0.1891 0.1959 0.5695

2.5 0 0.2325 0.6827 0.0907 0.2226 0.6525 0.1726 0.1953 0.5678

3.0 0 0.2316 0.6805 0.0846 0.2218 0.6505 0.1617 0.1948 0.5663

0.1 0.2 0.6 0 0.1424 0.3381 0.2317 0.1362 0.3236 0.4062 0.1200 0.2844

0.2 0 0.1648 0.4213 0.2279 0.1576 0.4026 0.4007 0.1383 0.3517

0.3 0 0.1889 0.5115 0.2336 0.1805 0.4882 0.3947 0.1577 0.4245

0.4 0 0.2147 0.6074 0.2190 0.2049 0.5793 0.3882 0.1784 0.5018

0.8 0 0.3326 1.0281 0.1981 0.3164 0.9787 0.3851 0.2715 0.8392

1.0 0 0.3987 1.2515 0.1868 0.3788 1.1906 0.3416 0.3234 1.0178

0.1 0.5 0.25 0 0.2479 0.3489 0.2220 0.2360 0.3344 0.3928 0.2038 0.2948

0.75 0 0.2407 0.8603 0.2112 0.2295 0.8198 0.3766 0.1991 0.7067

1.0 0 0.2390 1.1115 0.2068 0.2279 1.0589 0.3698 0.1977 0.9112

2.0 0 0.2360 2.1027 0.1936 0.2250 2.0011 0.3486 0.1951 1.7133

3.0 0 0.2349 3.0907 0.1848 0.2239 2.9392 0.3337 0.1941 2.5081

5.0 0 0.2341 5.0716 0.1739 0.2231 4.8189 0.3144 0.1933 4.0964

Table 2 Values of Cf, Nu and Sh for different k;Sc and Da De ¼ 0:1; n ¼ 1:0;Pr ¼ 0:71;N ¼ 0:5;F ¼ 0:5; fw ¼ 0:5;K ¼ 0:1;ð
D ¼ 0:1Þ:
k Sc Da ¼ 0:1 Da ¼ 1:0 Da ¼ 2:0

Cf Nu Sh Cf Nu Sh Cf Nu Sh

0.0 0.6 0.3452 0.1996 0.5809 0.8607 0.2896 0.7388 0.9677 0.3058 0.7638

1.0 0.5015 0.2014 0.5866 1.3836 0.3011 0.7706 1.5739 0.3187 0.7998

3.0 0.7230 0.2027 0.5909 2.2060 0.3098 0.7971 2.5345 0.3284 0.8300

5.0 0.8932 0.2033 0.5929 2.8840 0.3138 0.8099 3.3294 0.3328 0.8445

8.0 1.1017 0.2038 0.5946 3.7538 0.3170 0.8208 4.3510 0.3364 0.8569

10.0 1.2217 0.2040 0.5954 4.2692 0.3184 0.8255 4.9569 0.3379 0.8622

15.0 1.4805 0.2043 0.5966 5.4097 0.3206 0.8331 6.2984 0.3404 0.8709

0.2 0.25 0.3928 0.2038 0.2948 1.0392 0.3044 0.4036 1.1736 0.3213 0.4217

0.75 0.3766 0.1991 0.7067 0.9583 0.2906 0.8811 1.0814 0.3074 0.9090

1.0 0.3698 0.1977 0.9112 0.9352 0.2882 1.0946 1.0566 0.3051 1.1248

2.0 0.3486 0.1951 1.7133 0.8806 0.2840 1.9039 0.9995 0.3012 1.9380

3.0 0.3337 0.1941 2.5081 0.8512 0.2824 2.6915 0.9694 0.2998 2.7263

5.0 0.3144 0.1933 4.0964 0.8192 0.2812 4.2589 0.9371 0.2986 4.2922
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the retardation time decreased). The polymer flows faster
resulting in accelerated boundary layer flow, and heat and spe-

cies are diffused more efficiently to the sphere surface.
Increasing Schmidt number depresses the skin friction and
heat transfer rate whereas it increases the mass transfer rate.

The decrease in species diffusivity contributes to a reduction
in mass transfer at the sphere surface. A similar influence of
Schmidt number on momentum and species diffusion fields

was also observed by Anwar Bég and Makinde [4]. With
increasing Darcy number, skin friction, heat and mass transfer

rates are all increased. The, Darcy number, Da ¼ K
ffiffiffiffi
Gr
p

a2
is a bulk

porous media parameter and directly proportional to the per-

meability of the porous medium. It appears in the linear

Darcian drag force term, � 1
Da
f 0 in the momentum Eq. (13).

The Darcian drag is inversely proportional to Da. As Da is
increased the medium becomes more permeable and there is
a decrease in the presence of solid fibers. This decreases the
Darcian drag and serves to accelerate the flow in the boundary

layer leading to a rise in skin friction. The fluid is able to flow
more easily through the porous medium as described by Sochi
[7]. This will also aid in enhancing heat transfer and mass

transfer from the porous material to the sphere surface (it will
decrease temperatures and concentrations in the medium, as
described later). In table 2 the computations are given for a

location some distance from the lower stagnation point i.e.
at n = 1.

Table 3 presents the influence of the ratio of relaxation to
retardation times (k), Prandtl number (Pr) and transverse

coordinate (n) on skin friction, heat and mass transfer rates.
It is again observed that with a rise in the value of k, skin fric-
tion, heat and mass transfer rates are all elevated. Hayat et al.

[5] also observed the beneficial contribution of increased



Table 3 Values of Cf, Nu and Sh for different k;Pr and n De ¼ 0:1; n ¼ 1:0;Pr ¼ 0:71;N ¼ 0:5; F ¼ 0:5; fw ¼ 0:5; K ¼ 0:1;ð
D ¼ 0:1Þ.
k Pr n ¼ 00 n ¼ 300 n ¼ 600

Cf Nu Sh Cf Nu Sh Cf Nu Sh

0.0 0.6 0 0.2413 0.7055 0.1938 0.2301 0.6726 0.3452 0.1996 0.5809

1.0 0 0.2441 0.7138 0.2823 0.2326 0.6802 0.5015 0.2014 0.5866

3.0 0 0.2462 0.7205 0.4080 0.2345 0.6862 0.7230 0.2027 0.5909

5.0 0 0.2472 0.7237 0.5046 0.2354 0.6891 0.8932 0.2033 0.5929

8.0 0 0.2481 0.7264 0.6229 0.2361 0.6916 1.1017 0.2038 0.5946

10.0 0 0.2484 0.7276 0.6909 0.2364 0.6926 1.2217 0.2040 0.5954

15.0 0 0.2490 0.7296 0.8378 0.2370 0.6944 1.4805 0.2043 0.5966

0.2 0.5 0 0.2013 0.7114 0.2162 0.1935 0.6779 0.3838 0.1724 0.5846

1.0 0 0.3046 0.7028 0.2111 0.2886 0.6703 0.3771 0.2445 0.5796

2.0 0 0.5505 0.6870 0.1999 0.5190 0.6558 0.3612 0.4310 0.5688

3.0 0 0.8134 0.6751 0.1893 0.7679 0.6446 0.3453 0.6391 0.5596

5.0 0 1.3464 0.6604 0.1715 1.2739 0.6304 0.3175 1.0671 0.5469

7.0 0 1.8815 0.6521 0.1575 1.7817 0.6223 0.2948 1.4966 0.5392

10.0 0 2.6874 0.6453 0.1413 2.5462 0.6156 0.2678 2.1418 0.5323

Figure 3(a) Influence of De on velocity profiles.

Figure 3(b) Influence of De on temperature profiles.
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Figure 3(c) Influence of De on concentration profiles.

Figure 4(a) Influence of k on velocity profiles.

Figure 4(b) Influence of k on temperature profiles.
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Figure 4(c) Influence of k on concentration profiles.

Figure 5(a) Influence of K on velocity profiles.

Figure 5(b) Influence of K on temperature profiles.
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Figure 5(c) Influence of K on concentration profiles.

Figure 6(a) Influence of Da on velocity profiles.

Figure 6(b) Influence of Da on temperature profiles.
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Figure 6(c) Influence of Da on concentration profiles.

Figure 7(a) Influence of F on velocity profiles.

Figure 7(b) Influence of F on temperature profiles.
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Figure 7(c) Influence of F on concentration profiles.

Figure 8(a) Influence of D on velocity profiles.

Figure 8(b) Influence of D on temperature profiles.
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Figure 8(c) Influence of D on concentration profiles.

Figure 9(a) Influence of De on local skin friction number.

Figure 9(b) Influence of De on Nusselt number.
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Figure 9(c) Influence of De on Sherwood number.

Figure 10(a) Influence of k on local skin friction number.

Figure 10(b) Influence of k on Nusselt number.
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relaxation in Jeffrey viscoelastic fluids to heat diffusion,
although they did not consider mass diffusion. The fact that

a rise in k physically implies a fall in retardation time in the
fluid and also assists in momentum development. An increase
in Prandtl number (Pr) strongly accelerates the flow i.e. boosts

the skin friction, whereas it decreases the surface heat and



Figure 10(c) Influence of k on Sherwood number.

Figure 11(a) Influence of F on local skin friction number.

Figure 11(b) Influence of F on Nusselt number.
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Figure 11(c) Influence of F on Sherwood number.
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mass transfer rates. Pr symbolizes the relative rate of momen-
tum diffusion to thermal diffusion in the non-Newtonian fluid.
For Pr < 1, heat diffuses faster than momentum and vice

versa for Pr > 1. Higher Pr values also imply a lower thermal
conductivity of the non-Newtonian fluid. Increasing Pr there-
fore leads to heating of the fluid saturated porous regime and a

drop in heat transfer rate to the sphere surface (more thermal
energy is retained in the porous medium). With increasing val-
ues in n, there is a strong acceleration in the flow and elevation

in skin friction at the sphere surface. Mass transfer rate and
heat transfer rate are however reduced with increasing tangen-
tial coordinate. Both heat and mass transfer rates attain a
maximum at the lower stagnation point (n � 0).

Fig. 3(a)–3(c), illustrates the influence of Deborah number,

De, on velocity f 0ð Þ, temperature (h) and concentration ð/Þ.
Dimensionless velocity component (Fig. 3(a)) at the wall is
strongly reduced with an increase in De. There will be a corre-
sponding decrease in the momentum (velocity) boundary layer
thickness. The influence of De is evidently more pronounced

closer to the sphere surface (g = 0). Smooth decays of the
velocity profiles are observed into the free stream demonstrat-
ing excellent convergence of the numerical solution.De features

in a number of high order derivatives in the momentum bound-

ary layer equation, (13) viz. De
1þk ff

ivð1þ n cot nÞ; De
1þk f

002 and also

n � De
1þk f 0 @f

000

@n � f 000 @f
0

@n þ f 00 @f
00

@n � f iv @f
@n

h i� �
. This parameter there-

fore exerts a strong influence on the shearing characteristics
of the polymer flow. For non-Newtonian fluids (e.g. polymers),
higher De values correspond to the polymer becoming highly

oriented in one direction and stretched and this is known to
occur when the polymer takes longer to relax in comparison
with the rate at which the flow is deforming it. Stretching of

such fluids causes a lapse in their return to the unstressed state.
For very high Deborah numbers, the fluid movement is too fast
for elastic forces to relax and the material then behaves as a

purely elastic solid. As such high Deborah numbers are inap-
propriate for viscoelastic flows. For small Deborah numbers,
the time scale of fluid movement is much greater than the relax-
ation time of elastic forces in the polymer and the polymer then

behaves as a simple viscous fluid. Fig. 3(b) indicates that an
increase in De significantly enhances temperature in the flow
field. Temperature profiles consistently decay monotonically
from a maximum at the sphere surface to the free stream. All
profiles converge at large value of radial coordinate, again

showing that convergence has been achieved in the numerical
computations. Fig. 3(c) shows a slight increase in concentration
is achieved with increasing De values i.e. greater elasticity

effects benefit species diffusion.
Fig. 4(a)–4(c) illustrates the effect of the parameter ratio of

relaxation to retardation times (k) on velocity f 0ð Þ, temperature

ðhÞ and concentration ð/Þ distributions through the boundary
layer regime. Velocity is significantly enhanced with increasing
k, in particular close to the sphere surface. Conversely temper-

ature and concentration are markedly reduced with increasing
k. The parameter, k, also arises in many terms in the momen-

tum Eq. (13) for example 1
1þk f

000; � De
1þk ff

iv; De
1þk f

002, etc. It is

therefore expected to exert a tangible influence on the flow
characteristics. Increasing relaxation times (decreasing retarda-
tion times) assists in momentum development in the boundary
layer whereas they oppose thermal and mass diffusion.

Velocity boundary layer thickness will be increased for higher
values of k. Whereas thermal and concentration boundary
layer thicknesses will be reduced.

Fig. 5(a)–5(c) presents typical profiles for velocity f 0ð Þ, tem-
perature ðhÞ and concentration ð/Þ for various values of

Forchheimer inertial parameter K. This parameter is associ-
ated with the second order Forchheimer resistance term,

�nK f 0ð Þ2 in the momentum Eq. (13). Forchheimer drag is

directly proportional to the parameter, K. An increase in K
markedly decelerates the flow as illustrated in Fig. 5(a), for
some considerable distance into the in the boundary layer,

transverse to the sphere surface. Inertial quadratic drag has a
stronger effect closer to the wall. Kaviany [53] has indicated
that Forchheimer effects are associated with higher velocities
in porous media transport. Forchheimer drag however is sec-

ond order and the increase in this ‘‘form’’ drag effectively
swamps the momentum development, thereby decelerating
the flow, in particular near the sphere surface. The term

‘‘non-Darcian’’ does not allude to a different regime of flow,
but to the amplified effects of Forchheimer drag at higher
velocities, as elaborated also in Anwar Bég et al. [18] and

Prasad et al. [45]. With a dramatic increase in K there is also



Table 4 Values of heat transfer rate (Nu) for various values of n with N ¼ 0; K ¼ 0; Da!1; fw ¼ 0; F!1; De ¼ 0;

k ¼ 0; Sc ¼ 0:6; Pr ¼ 0:71 between the present results with the solutions reported by Huang and Chen [50].

Pr n Huang and Chen [50] Present results

0.7 00 1.2276 1.2280

300 1.2031 1.2032

600 1.1296 1.1302

900 1.0071 1.0074

7.0 00 0.5165 0.5158

300 0.5065 0.5063

600 0.4768 0.4764

900 0.4276 0.4271
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a slight elevation in temperatures (Fig. 5(b)) in the regime. The
deceleration in the flow generates a decrease in momentum

boundary layer thickness which aids in energy diffusion and
a thickening in the thermal boundary layer. The influence on
the concentration (species diffusion) field (Fig. 5(c)) is similar

to that of the temperature field. However with the same incre-
ment in Forchheimer parameter, greater disparity in concen-
tration profiles is caused. Concentration (/) is markedly

increased, in particular at some distance from the sphere sur-
face, with an increase in Forchheimer parameter, K. As with
temperature response, the concentration profiles exhibit a
monotonic decay from the sphere surface to the edge of the

boundary layer regime.

Fig. 6(a)–6(c) depicts the velocity f 0ð Þ, temperature ðhÞ and
concentration ð/Þ distributions for various values of Darcy
parameter, Da. Velocity is clearly enhanced considerably with
increasing Darcy number as shown in Fig. 6(a), since greater

permeability of the regime corresponds to a decrease in
Darcian drag force. The velocity peaks close to the sphere sur-
face are also found to be displaced further from the wall with
increasing Darcy number. A very strong decrease in tempera-

ture ðhÞ and concentration ð/Þ, as shown in Figs. 6(b) and 6(c)
respectively, occurs with increasing Da values. The progressive
reduction in solid fibers in the porous medium with large Da

values serves to decrease thermal conduction heat transfer in
the regime. This inhibits the diffusion of thermal energy from
the sphere surface to the regime and cools the boundary layer

also decreasing thermal boundary layer thickness.
Concentration boundary layer thickness will also be decreased
with a rise in Darcy number.

Fig. 7(a)–7(c) presents typical profiles for velocity f 0ð Þ, tem-
perature ðhÞ and concentration ð/Þ for various values of the
conduction-radiation parameter, F. Increasing F strongly

decelerates the flow i.e. decreases velocity. This parameter fea-

tures in the term, 1
Pr

1þ 4
3F

� �
h 00 in the energy conservation Eq.

(14). F ¼ Kk�

4r�T3
1
represents the relative contribution of thermal

conduction to thermal radiation heat transfer. For F= 1 both
modes of heat transfer have the same contribution. For

F> 1 thermal conduction dominates over thermal radiation
flux. For F < 1 thermal radiation contributes more than ther-
mal conduction. The first two of these three cases are consid-

ered here. The decreasing contribution of thermal radiation
with an increase in F values depletes the thermal diffusivity
of the fluid regime and reduces thermal energy in the boundary
layer. Temperatures are therefore also decreased, as observed

in Fig. 7(b). Both momentum and thermal boundary layer
thicknesses are reduced with a decreasing contribution from
thermal radiation i.e. with increasing thermal conduction con-

tribution (large F values). Conversely there is a slight enhance-
ment in concentration values with increasing F values, as
shown in Fig. 7(c).

Fig. 8(a)–8(c) presents typical profiles for velocity f 0ð Þ, tem-
perature ðhÞ and concentration ð/Þ for various values of heat
generation or absorption parameter, D. Increasing heat gener-

ation (D > 0) significantly accelerates the flow and also
increases temperature magnitudes but reduces concentration
values. The present of a progressively stronger heat source is

therefore beneficial to the regime. Conversely with a heat sink
present, (D < 0) the flow is retarded (momentum boundary
layer thickness is lowered), thermal boundary layer thickness

is reduced whereas the concentration boundary layer thickness
increases.

Fig. 9(a)–9(c) shows the influence of Deborah number, De

on dimensionless skin friction coefficient nf 00 n; 0ð Þð Þ, heat

transfer rate h 0 n; 0ð Þð Þ and mass transfer rate / 0 n; 0ð Þð Þ at the
sphere surface. It is observed that the dimensionless skin fric-
tion is decreased with the increase in the Deborah number,
De i.e. the boundary layer flow is decelerated with greater elas-
ticity effects in the non-Newtonian fluid. Likewise on the other

hand the heat transfer rate is also substantially decreased with
increasing De values. There is also a progressive decay in heat
transfer rate (local Nusselt number) with increasing tangential

coordinate i.e. n-value. A decrease in heat transfer rate at the
wall will imply less heat is convected from the fluid regime to
the sphere, thereby heating the boundary layer. The mass

transfer rate (local Sherwood number) is also found to be sup-
pressed with increasing values of De and furthermore plum-
mets with further distance from the lower stagnation point

(i.e. higher n values).
Fig. 10(a)–10(c) illustrates the response to the parameter

ratio of relaxation and retardation times, k, on the dimension-

less skin friction coefficient nf 00 n; 0ð Þð Þ, heat transfer rate

h 0 n; 0ð Þð Þ and mass transfer rate / 0 n; 0ð Þð Þ at the sphere sur-

face. The skin friction at the sphere surface is accentuated with
increasing k. Also there is a strong elevation in shear stress
(skin friction coefficient) with increasing value of the tangential
coordinate, n. The flow is therefore strongly accelerated along

the curved sphere surface away from the lower stagnation
point. Heat (local Nusselt number) and mass transfer (local
Sherwood number) rates are increased with increasing, k.,
although not as profoundly as the skin friction. With increasing
values of the tangential coordinate, n, however both local
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Nusselt number and local Sherwood number are depressed. As
elaborated earlier these characteristics are only maximized at
the lower stagnation point.

Fig. 11(a)–11(c) presents the influence of the radiation
parameter, F, on the dimensionless skin friction coefficient

nf 00 n; 0ð Þð Þ, heat transfer rate h 0 n; 0ð Þð Þ and mass transfer rate

/ 0 n; 0ð Þð Þ at the sphere surface. The skin friction at the sphere
surface is found to be decreasing with increasing F i.e. with

decreasing thermal radiative flux magnitudes (stronger thermal
conduction effect). Local Nusselt number (surface heat trans-
fer rate) is conversely observed to be strongly increased with

increasing F values. Stronger thermal radiation therefore accel-
erates the flow but reduces heat transfer to the sphere surface.
Local Sherwood number (mass transfer rate) is considerably

reduced with increasing F values. The greater contribution of
thermal conduction heat transfer (and lower radiative contri-
bution) inhibits species diffusion to the sphere surface. Skin
friction is also enhanced with greater distance along the curved

surface i.e. with increasing n values whereas both local Nusselt
and Sherwood numbers are decreased. Overall the strong effect
of thermal radiation in porous media transport of viscoelastic

fluids is clearly observed.
6. Conclusions

Numerical solutions have been presented for the buoyancy-
driven heat and mass transfer in radiative Jeffreys flow exter-
nal to an isothermal sphere, in a porous medium with heat

source/sink effects. The Keller-box implicit second order
accurate finite difference numerical scheme has been utilized
to efficiently solve the transformed, dimensionless velocity,

thermal and concentration boundary layer equations, subject
to realistic boundary conditions. The results so obtained are
in good correlation with those obtained by Huang and
Chen [55] as shown in Table 4. The computations have

shown that:

(1) Increasing the Deborah number (De) reduces the veloc-

ity, skin friction, local Nusselt number and local
Sherwood number whereas it enhances temperature
and concentration boundary layer thicknesses.

(2) Increasing the parameter ratio of relaxation and retarda-
tion times (k), increases velocity, skin friction coefficient,
local Nusselt number and local Sherwood number

whereas it decreases the temperature and concentration
for all values of radial coordinate.

(3) Increasing Forchheimer parameter, K, decelerates the
flow whereas it elevates both temperature and concen-

tration magnitudes.
(4) Increasing the conduction-radiation parameter, F,

depresses velocity, skin friction, local Sherwood number

and temperature (due to a reduction in radiative heat
transfer flux contribution compared with enhanced ther-
mal conduction contribution) but enhances concentra-

tion and local Nusselt number.
(5) Increasing heat generation, (D > 0), accelerates the flow

and temperature throughout the boundary layer regime
but depresses the concentration, with the opposite effect

computed for increasing heat absorption (D < 0).
The present study has considered the Jeffreys viscoelastic
model and demonstrated the excellent stability and conver-
gence characteristics of the Keller – Box numerical scheme.

Future studies will investigate transport phenomena in porous
media using alternative non-Newtonian models e.g. Maxwell
fluids [54] and will be communicated imminently.
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