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Quantum groups are Hopf algebras which are deformations of universal
enveloping algebras. These Hopf algebras are usually defined in terms
of generators and relations. This paper introduces the notion of
deformed derivatives and uses the techniques of measuring coalgebras to
generate objects resembling quantum groups given a set of deformed
derivatives.

The appeal of this approach is that it couples the familiar and practical
techniques of difference operators with the highly functorial properties of
the universal measuring coalgebras. Difference operators have been used
for years in the theory of differential equations, and their application to
quantum groups has precedents [7]. The universal measuring coalgebra
allows these operators to generate a Hopf algebra just as Lie algebras
generate universal enveloping algebras. The resulting Hopf algebras
resemble the quantum groups of Drinfeld and others [2-67.

The paper is organized as follows. Deformed derivatives are introduced
in Section 1, and the corresponding single variable calculus is described.
The analogous constructions with several variables are discussed in Sec-
tion 2. Section 3 contains the necessary coalgebra theory and the central
result, which specifies conditions under which a set of deformed derivatives
generates a Hopf algebra which is a deformation of a given universal
enveloping algebra. Section 4 contains explicit examples for the analogue of
the Lie algebra of derivations on C”, the algebra of vector fields on a circle,
and more general algebras of vector fields. Conclusions and geometric
interpretations are given in Section 5.

Finally, T have many people to thank: the mathematics departments
at Tufts and MIT for their hospitality, and particularly Phil Hirschorn
Todd Quinto, Tom Roby, and Martin Hyland for essential technical
advice. ‘
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1. DEFORMED DERIVATIONS AND THEIR PROPERTIES

For any algebra B (over C) a derivation of B is a linear map y: B— B
with the property that

y(ab) =y(a)b + ay(b) = y(a) 1(b) + I(a) y(b),

where 7 is the identity, for all a, b in B. A deformed derivative is similarly
a linear map with a coproduct where I is replaced by a more general
isomorphism of B.

1.1. DEFINITION. A general deformed derivation with respect to an
algebra homomorphism K: B— B is a linear map

E:B-B
with a product rule given by
E(ab) = E(a) I(b) + K(a) E(b).

In the example which motivates this paper, B is the algebra of polyno-
mials in z with coefficients in the ring

A=C[v,v7'].
The algebra isomorphism K: A[z] — 4[z] is defined by
K@ zmy=v"*"z".
An example of deformed derivatives is given by
E: A[z] - A[Zz]
E@z™)=[m]z""!,
where [m] is defined by

m

v —1
=" 441

[m]=

v—1

It is evident that for v=1, K is the identity and E is the usual derivative
0/0z.

The Hopf algebras in this paper are all constructed by choosing a set of
deformed derivatives of function rings tensored with 4 and by considering
the algebra of endomorphisms thus generated. The properties of these
deformed derivatives resemble those of ordinary derivations with the



192 M. BATCHELOR

Gaussian integer [n] replacing the integer n throughout. The remainder of
this section contains elementary results about E. Also see Exton [3] for
further development of this idea.

1.2. PROPOSITION. Let F: A[z] — A[z] be a deformed derivative with
respect to K. Then

F=F(z)E.
Proof. Compute F(z™) inductively.
F(z) = F(z)1 = (F(z) E)(2)

F(z")=(F(z)) 2"~ '+ K(z) F(z" ")
=F(z) z" '+ oz(F(z) E(z" 1))
=F(z)(z" "+ vz[m—1]z""?)
=Fz)(1+v[m—1])z" !
=F(z)[m]z" "' = F(z) E(z"),

as desired.

If desired the deformed derivative can be expressed in limit-theoretic
terms. The algebra isomorphism K: A[z] — A[z] is the 4-linear extension
of the restriction of K to C[z]. Thus K is the map on function rings
induced by the action

(C\{0})xC->C
(v,z) > vz

The following proposition shows in what sense £ may be regarded as a
deformation of the usual complex derivative.

1.3, ProPOSITION. (i) For f analytic on C, the function Gf on
(C\{0}) x (C) defined by

K —
e

is analytic on (C\{0})x C. Moreover

(i) Gf(L, z)=f(1,2)

(ili) G: C?(C)— C*(C\{0} x C) is a deformed derivative with respect
to K.

(iv) G(z")=[n]z"".
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Proof. (i) and (ii): By definition

Slvz) = f(z)
(v—-1)z °

Write vz=z+ (v— 1)z, so that Taylor’s theorem implies

Joz)=f(2)+ (f(z)+n(v, z))(v— 1)z,

where n()v, z) is analytic in both v and z, and

(Gf Nv, z) =

lim n(v, z)=0.

v—1

This establishes (i) and (ii).
(iii) Using the formula,

G(fg)(v, z) =§'(_vjzl:_£gg

_ Ja(vz) — f(vz) g(z) + f(vz) g(z) - f(2) g(z)
vz—2

= flvz)(Gg)(z) - g(2) G,(z)

=((Gf) g — (Kf)(Gg))(v, 2).

(iv) Compute directly

(Gz")(v, 2) = ————

(v—z)z [n] 2"

Note that the maps
K, G: C*(€) - C*((C\{0}) x (C)
can be extended to maps
K, G: C*((€\{0}) x (€) » C*((€\{0}) x (T))

via (Kf)(v, z)}=f(v, vz)=Kf(v,z) and Gf(v,z)=Gf (v, z) where f, in
C®(C\{0}) is given by f,(z) = f(v, 2).

By part ii of the previous proposition then, E as defined in [1.1]
coincides with the restriction of G to the subalgebra 4®C[z] in
C?((C\{0}-x(C)). The following proposition, which generates results
familiar from calculus, applies to this more general definition of the
deformed derivative.
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1.4. DEFINITION.  Define X, E: C°(C\{0} x C) —» C*(C\{0} xC) by

Kf(v, z) = f(v, vz)

Kf(v, z)— f(v, 2)

Eflv, 2)==—""7);

1.5. ProrosITION. With K, E as above,
(1) zE=(K-1)/(v—1),
(i) EK=vKE,
(iii) [E,z]1=K,
(iv) Efg=3%7_o[[1K'E""'(f) E’,
where [ 7] is defined as

[n]!=[nlln—1]---[1],

nl [(»]!
[i]‘[n~i]![i]'

Proof. (i) By inspection,

fls,02)— f(v, 2)
zEf(v,z)=z -——-———(v_ 1)z

_Kf(v,2)— f(v, 2)

- v—1

as desired.

(i1) Again compute directly.

Kf(v, vz) — Kf(v, z)
(v—1)z

f(v, v¥2)— f(v, vz)
(v—1)z ’

EKf(v, z) =

whereas
KEf(v, z) = Ef (v, vz)

fv, v’z)— f(v, vz)
(v—1Duoz '
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(iii) Compute

LE z] f(v, z) = E(zf v, z) — z(Ef )(v, 2)
_vfwez)=2fv,z) (f(v, vz) — flv, 2))

(v—1)z (v—1)z
_ (S, vz)
-e-0:(F25)
= Kf(v, z).

{iv) Prove this by induction on n The base case is part (i) of
Proposition 1.3. Compute

E"fg=E""'(Efg)
=E""'((Ef) g + (Kf )(Eg))

[(n—1 X . . ) )
_ n l :I(Kl(En\lf‘) Erg_}_KzEn—tflKFEl-#lg)

= (nj 1] [(KiEn—ij(‘)(Eig)+anileH-lEnfi—lf‘EH-lg]

-
- ':] K'E"YfE',

n—1 i fn—1

[ i ]” [,-_J
_[nb—111[n—il+v" ‘[n—1]1[i]
- [n—i]' ]!

R L e R A e
_[n—i]![i]!( v—1 )

R L L
“[n—i]![i]!‘[i]‘

2. DEFORMED DERIVATIVES IN SEVERAL DIMENSIONS

since

The techniques of the previous section have their analogues in higher
dimensions. First it is necessary to introduce a group K of acceptable
automorphisms. Then definition (1.4) can be extended to the case of several
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variables and to results obtained again which generalize those of the
calculus.

Let C"*! be denoted by coordinates (v, z,, .., z,) = (v, z). The group of
acceptable automorphisms K is defined as follows.

2.1. DEFINITION. An acceptable automorphism K is an analytic
automorphism

K€\ {(0)x T} - T

such that

(1) K(v,z)=(v, ky(v, 2) - k,(v, 2))

(i) K(1,z)=(1, z).
It is evident that the set of acceptable automorphisms form a subgroup of
the group of analytic automorphisms. Examples of such a transformation

are given by generalized reflections. If (, ): C" - C is a bilinear form, the
generalized reflection with respect to an element @ in C" is given by

K, (v, z)= (v, z— (a, z)(v—1)a).

For v= —1 this transformation coincides with the usual reflection
associated with a. Note however that the set of generalized reflections does
not form a subgroup. It does, however, generate a subgroup of K.

Given a choice of acceptable automorphism K, it remains to determine
the set of deformed derivatives with respect to K. Given a complex analytic
function

AC"-C,
Definition 1.4 generalizes to the following.

2.3. DERINITION.  E ; fl(v, z) = (f(K(v, 2)) — f(v, 2))/(v—1) A(z) for f an
analytic function on C"*'\({0} x C"). Under favourable conditions on K
and A, Ex ; fis analytic and E ; is a deformed derivative with respect to E.

2.4. PROPOSITION. (i) Write K(v, z) = (v, z)+ u(v, z). If u(v, z)/A(z)}(v—1)
is analytic on C"*'\({0} x C"), then Ef is analytic on C"*'\({0} x C").

(ii) If K, 4 are as in (1) above, then
EK,ifg= (EK,zf) g+ (Kf)(EK,). g)

where (Kf )(v, z) = f(K(v, z)).
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Proof. (i) Write E=E, ;. Clearly Ef is analytic away from the zeros
of the map

h(v, z)=(v—1) A(2).
To see that Ef is analytic at the zeros of A, it is helpful to have a particular

version of Taylor’s theorem.

2.5. LeMMA. For f analytic in a neighbourhood of w, in C™, there exist
analytic functions f,(u, w) on a neighbourhood of (wg, wg) in C*" such that
f can be written

Jw)=fu)+af (u) - (w—u) + Z Sfilu, wiw;—u,)

and f(u, u)=0.
Using this lemma expand f(K(v, z)) writing K(v, z) = (v, z) + p(v, z)
S, 2)) = (0,24 (0, 2) -0, )+ 3. S0, 2), K, 2)) oo, 2).

Since p(vy, zo) =0 for all zeros (v,, z,) of h (since p/h is analytic) & can be
chosen such that for ||(v, z) — (ve, 24)i| <9, ((v, 2), K(v, z}) is in the required
neighbourhood of ((v,, z,), (vg, 2o )})-

Now rewrite Ef as

=af.u+2fl((vaz)7 K(Uv Z))#,—(D,Z)
h

=0f - (u/h) + f,((v, 2) K(v, 2)) - w/h.

Thus Ef is explicitly analytic in a neighbourhood of (v, zg).

Ef

Proof of Lemma 2.5. Suppose f is given by the power series
Fw) =2 alw—wo)~.

For u sufficiently close to w,, f(w) may equally well be expanded about u,
thus

f(W)=Zak(w—u+u—wo)k

_ k NEPAY W k—j)
—gak<z<j>(n u) (u—wp)*=7).

i<k

607/105:2-7
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Writing x = (w —u), y = (1 — w,), the power series
k Sk
g, )=y 2| ) axxikt!
lc!'<!( J

is convergent since g(x, y)=f(x+ y+w,), and hence absolutely con-
vergent on some neighbourhood of zero in C*”. Now write g as a sum of
subseries as follows. Define

g=% X <lf)a&y*!’x""",

k ji=0,1<i \J
Jizl

where j— 1, is the multi-index (j,, .., j;— 1, ..., j,,); then

Sw)=g(x, y)=g(0, y)+ _Z gi(x, y)x;

i=1

=20, )+ T &0, »)x+ Y. (&% ) 2,0, )x.

i=1 i=1

But
g(0, y)=f(y+wo)=f(u),
£:(0, y) =Z kia!c yroti= 0: fu).
k

Defining
fi(u’ W)= g,-(W—u, u_wo)“ gi(O’ “"Wo)

completes the proof.

(ii) Now let £, g be in C*(C"*'\({0} xC")), and write E=E,,.
Then

_ ng(U’ Z) —fg('-;’ Z)
Efg(v, z)= ADe=1)

= o= VK 2) 8K (e, 2) ~ f(K(w, 2)) g0, 2)

+m (f(K(v, 2)) glv, 2) - f(v, 2) g(v, 2))

= f(K(v, z)) Eg(v, z) + Ef (v, 2) g(v, 2),

as desired.
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Examples of acceptable automorphisms K for which associated deformed
derivatives E exist are provided by the generalized reflections. In such a
case, let A(z) be the inner product with a, A(z) = (z, a), so that if

K@, z)=z+4+ (v—1)(z,a)a
and

v, z) =(v—1)(z,a)a_a
(v—1)Av,z) (z,a)v—1)

which is clearly analytic.

Unless otherwise specified all deformed derivatives are of the form
Sf(v, z) E, where E is the deformed derivative corresponding to a generalized
reflection. The following proposition extends the usual identities from
calculus.

2.5. PROPOSITION. Let (, ) be a bilinear form on C" under which the basis
elements e, ..., e, are orthonormal, so that z=7Y z.e, satisfies (z,e;)=z;.
Define

K z)=(@wz+@w—1)ze;)
K '(v,z)=(v,z+ (v ' =1)ze)

i

Ei(v, z) -1,
K7 'f—1
F‘;(U, Z)=zi ((l_)l_lf—;———l—)>,

where K, f(v, z) = f(K,(v, 2)) and similarly K 'f(v, z)). Then the following
hold.

(i) F, is a deformed derivative with respect to K=', and KK='=
KK is the identity.
(ii) For any f, g in CC"*"\{0}xC"), fE,, gF; are deformed
derivatives with respect to K;, K7 ' respectively.
(i) K.K=KK.
(iv)
Ezho.zh=[1]2 .. 2071 2k

F‘jzlll... In — —1]2 . ll'*'1 ..zl"_

(v) Kiz;=v%z,K, K 'z;=v %z, K '
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(vi) [E, E;]1=0, [F, F;]=0.
(vii) z,E;=(K,—1)/(v—1).
(viii) For e= +1,

€ — e e
E,K*=v %K°E,

£ __ 4, — O e
FK:=v %KF,

(ix) [E;z;1=6;K
(x) [(z,E,z,E]]=v" 8,K,z,E,—v* ,K.z,E;.
(xi) [E, F1=(K/'=K)/(@w "' ~1).
Proofs. (i) 1t is not hard to verify that F, is of the form required by

the hypothesis of the last proposition and is thus a deformed derivative
with respect to K, '. Direct calculation verifies that K; 'K; is the identity.

(ii) This can be verified directly.

(iii) This is a consequence of the orthogonality of e, and is
demonstrated by direct calculation.

(iv) By direct calculation

— 40 i, In
vozy-erzZp—z cZ
I;.le...zl" =z, 1 10
:( 1 n) i (U 1)

'
=z, v -1 zll...zlﬂ
‘L o-1 ! "

_[—-1]2 .. I'+l ..zl"'

The other identity is similar.

(v) Since K; and K; ' are algebra maps, these identities are easily
verified.

(vi) Write
G fv,2)=K; f(v,z) — f(v, 2}

1

h,-(U, Z)=(U——1—)Z-‘

Now compute, for i # j,

Ejszi(h'G'f)
=(E,h) G, f+(Kh)EG,f
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But K;h,=v"%h,, so that E;h;=0,(1—v~") h;h;=0. Thus
E.E f=hh,GG,f
=hjhi(Kinf_Kif“Kjf+f)-

Since KK, = K;K, (iii), it is now clear that the commutator will vanish.
The analogous identity [F;, F;]1=0 is established in the same way.

(vii) This is immediate from the definition.
(viii) Compare
EK:f=h(KK;f-K;f)
=hK(K.f-f),
KSE f=KhK;(K,f—f)
The result follows since Kjh, =v~%°h;. Similarly, write
Fif=—vh(K'f—f).
Then
FK:= —oh,K; (K7 f = f)
KiF,= — o' R KUK f - f).
(ix) Compute directly
(E,zl=Ezf—2,Ef
=06, +vY,E,f—2,E, f
=68, +0,(v-1)z,E; f
=6,f+0,;(K,;—1)f
by vii. Thus [E,, z;]1=0,K; as desired.
(x) Compute
z,Eiz,E f=2,0,E f+zkz,EEf
=9, z,E,f+v¥z,z,EE,f.

irZi
The commutator then becomes
[z.E;,z,E]f=8,z,E f+v%z,z, E,E f—8,z,E f
—v%z,z,EE f—z;z, EE f+zz, EE f
=0,(z,E, f+(v—1)z,z, E;E  f)
—0(z,E;f+(v—1)z,2,EE;[)
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using the fact that E, E,= E,E . Using identity vii, this simplifies to
[2.E;, 2, E]1f=0,(z,E, [ +z/(K;— 1) E. [)
—0u(z,E; f+2(K;:— 1) E; f)
=0, vK,z2,E, [ — 6,0"z,E; f

as desired.
(xi) Compute directly suppressing the subscript i,

_ z, K~ 1f
EFf‘E< l)q

E(z;K'f~z.f)

(v—l)

~ T K KT )

FEf=F( Kf_f)

(v—1)z;

1 1 f— K 1f Kf —
“Z"(v—l)(v‘—l)( f)

=(—U-:il)-2(uf—v1<—l—1<f+f).

The commutator is then

[E,F]f=— s(—oKf — K~ 'f+vK 'f+ Kf)

_r
(v—-1)

v —
=G KK

(==1)

3. MEASURING COALGEBRAS

Measuring coalgebras supply the means of generating Hopf algebras
from a set of deformed derivatives. The idea is that given algebras B,, B,
there exists a coalgebra P and a linear map P — Hom(B, B,) such that
multiplication in B, and B, is compatible with the comultiplication in P.
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The coalgebra P is highly functorial, and, in the case B, =B,, P has a
natural bialgebra structure. All the Hopf algebras discussed in this paper
will be subalgebras of such bialgebras.

3.1. DEFINITIONS. Let B,, B, be algebras over A=C[v,v '] Let C be
a coalgebra (over 4) and suppose ¥: C — Hom(B,, B,) is a linear map
such that

(i) ylc)ab)=3 ., (Ycqfa))c (b))
(i) le)1)=e(c),
where dc=3 ., ¢, ®c;, and ¢ is the counit in C.

Thus comultiplication in C determines a “product rule” for elements in
¢C. Such a pair (C, ) is called a measuring coalgebra (with respect to
B, B,). A measuring coalgebra (P, n) is a universal measuring coalgebra if,
for any other measuring coalgebra (C, i) there exists a unique coalgebra
map p: C - P which makes the following diagram commute.

—=— Hom(B,, B,)
/

The following theorem summarizes results about measuring coalgebras.

p

O —™

3.2. THEOREM. (1) The universal measuring coalgebra P= P(B,, B,)
exists and is unique.

(1) P(B, B) is a bialgebra.
Proof. (i) This was proved in Sweedler [7] in the case in which A4 is
a field. The validity holds over general rings on categorical grounds.

Define a map f(C,, ¥)— (C,, ¥,) of measuring coalgebras to be a
coalgebra map f: C, — C, for which the diagram

C,—~— Hom ,(B,, B,)

commutes. Let .#(B,, B,) be the category of measuring coalgebras. The
following lemma holds.
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3.3. LemMa. (i) Coproducts exist in #(B,, B,).
(i1} Coequalizers exist in M(B,, B,).

Given this lemma, the universal measuring coalgebra can be expressed in
terms of the following coequalizer. Let {C,, ¢;},_, be a set of measuring
coalgebras, with one coalgebra from each isomorphism class of finite-
dimensional measuring coalgebras, and let {f,,:(C,, ¥,)—(C,,¥,)} be
the set of morphisms between the C,. The universal measuring coalgebra
will be the coequalizer of the diagram

H (€)== H(Chy) P,
{fur} T

where i is given by the inclusion (C,, ¥ ,) =11, (C,, ;) and j is given by

the maps

(Coo W)~ (Cs ) = [ (Cos 1),

The universal properties of P can be readily verified. Since any coalgebra
is the sum of its finite-dimensional subcoalgebras any measuring coalgebra
(C;, ¥ ;) includes in the coproduct [, (C,, ;) and thus maps to P. The
uniqueness of that map is guaranteed by the coequalizer property. I am
indebted to Thomas Schmitt, who pointed out the need for restricting A to
the set of isomorphism classes of finite-dimensional coalgebras.

Proof of Lemma 3.3. (i) Given any set {(C,,¥;)},., form the
coproduct [ I, C, as 4-modules. Then check that the maps

4=latle(lc)o(lic)
e=[]e:[]C.— 4
y=]]v.,: 1] C.— Hom(B,, B,)

give ] I, C, the structure of a measuring coalgebra.
(ii) Consider a pair of maps of measuring coalgebras

(Coo ¥ =3 (Cau¥),

and define

J={flc)—glc):ceC}.
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Let C;= C,/J. Initially C, is only an 4 module, but it is not hard to verify
that J is a coideal, since

A(f(c)— g(c)) =Zf(c(1))®f(c(2))_ g(cq))® g("m)

(c}

+Z — flew)) ® gleg)) + fley)) ® gle))

(c)

=Y fle))®(flea) — glewy))

(c)
+Z (f(c(n)— g(C(l)))® g(c(z))~

(c)
Moreover, the map ¥,: C, - Hom(B,, B,) is zero on J since
Yo(f(e)— gl(e)) =y, flc) —y, g(c) =y (c) — ¥ ().

Thus (C,, ¥,) is a measuring coalgebra. That (C,, ¥,) has the property
required of coequalizers holds since C, is evidently a coequalizer in the
category of A-modules.

(iii) Composition provides a map
P(B, B)® P(B, B)-%> Hom(B, B)

which is clearly A-linear. That /i measures can be verified directly, so that
there is a unique coalgebra map

u: P(B, B)® P(B, B)— P(B, B).

Since u is a coalgebra map, P(B, B) is a bialgebra.

Examples of bialgebras can thus be constructed by finding subcoalgebras
C of P and considering the algebra they generate. The following theorem
gives conditions under which the resulting bialgebra is a Hopf algebra.

3.4. THEOREM. Let (C, ) be a measuring coalgebra for B.

(i) The algebra H generated by C is a bialgebra.
(ii) Suppose s is a map of A-modules

s:C—H

such that

Z s(ewy) ey = Z cap(cy)=elc).



206 M. BATCHELOR
Then s extends to an antipode
s: H—-H,

making H into a Hopf algebra.

Proof. (1) Since the muitiplication u is a coalgebra map, for ¢, ¢,
in C

A(c,¢c5)=(de; (dey)eC-CRC-C.

Hence AHcH® H.

(i) Suppose s: C— H has the properties stated. The program is to
extend s to H via the following steps.

1. Endow the tensor algebra TC with the structure of a bialgebra
such that the map p: TC — H is a bialgebra map.

2. Extend s to an algebra anti-automorphism.
s: TC—H

and observe that the kernel J of s is an ideal and a coideal on which &,
vanishes.

3. Show that J is the kernel of the map p: TC — H. Thus
s: TC/J=H—-H
is the antipode for H.
To put a coalgebra structure on 7C observe that
C-oCRCsTCRTC
is an A linear map, which extends uniquely to an algebra homomorphism
TC-»TCRTC.

Since H is generated as an algebra by C there are unique algebra
homomorphisms

p.TC—H,
TC->H®H.



QUANTUM GROUP-LIKE OBJECTS 207

By uniqueness of the last map, the following square must commute
TC—> TCRTC
H]—— H®H

so that the map TC — H is a map of bialgebras.

Now let H°® be H with the opposite multiplication. The universal
property of tensor algebras guarantees that s extends to an algebra
homomorphism

s: TC — H®P,

But this is exactly an anti-automorphism s: TYC — H. Moreover, s has the
antipodal property for all w in TC,

z s(w), Wiy = g(w),

(w)

where w,, indicates the image of w,, in H. This holds since, for ¢, ¢’ in C,

Y sleeiec o= Y, seqy) sleqy) eayeia
cc’ () (")

=Z S(CEL)) e(c) 522)
=¢(c) e(c’)=¢e(cc’).

Clearly ker s =J is an ideal. Less obviously it is a coideal: explicitly,
ASW:Z S(W(2>)®S(W(1)) *)

so that if sw=0, 3 s(w,))®s(w,)=0, or Awe TC®J+JR TC. To see
this, define maps

K, P, Ne Hom ,(TC, H® H)
Kw)=Y w,,®@ Wy, =4w
(w)

P(w)= z S(W(z))®5(w(1))

(w)
N(w) = dsw.

The identity (*) is the statement that P(w)= N(w). The program (due to
Sweedler, p. 74, Proposition 4.0.1.(4)) is to show that K*x P=N* K=1
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where * is the convolution in Hom(TC, H® H), and 1 = ue is the unit for

the algebra Hom(TC, H® H). Then N¥ K* P=P=N as desired. To
establish this

Kx P(w)= Z K(w,) P(wz)
{w)

=Y (W1, ® W))W @ sws)
=2 Wy S(Wa)) ® Wiay 5wy,
:Z VT"(US(W(s)) g(ﬁ’(Z))

=Z W, s(wz)
=g(w)

as desired, and

N K(w)= Z (4s(w 1)) (AW 3))
(w)

= z A(S(W(l)) W2))
= dg(w) =&(w)1 in HR®H.

This establishes that J is an ideal and a coideal, so that s: TC/J — H is
injective. Moreover,

erc/=0
since for w in J
EreW = EyUybreW
=en Y, W)W

= Z Enw(l)gﬂs(w(z))

=EyS (Z erc (W) W(2)>

=gus(w)=0.
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It remains to show that the kernel K of the projection p: TC — H is
exactly K. Observe that pxs=s=* p is the unit in Hom(TC, H). Thus
s* pxs=y, so that for win J

Awe)@TCRTC+TCRKRTC+TCRTCR®J.
But, since J is a coideal
AweJ@TCRTC+TCRJIQXTC+TCRTCRJ.
Thus
AweJQ@TCRTC+TCRUNK)RTC+TCRTCRJ
so that applying e® 1 ®¢ to 4%w,
w=e®1®@ed’weJnK

since &J=0. Thus J< K.
Similarly, using the identity p * s x p= p, K< J. This establishes

5: TC/J=TC/K=H— H

as an antipode.
The classic example is the construction of a Hopf algebra from a set of
vector fields.

3.5. THEOREM. Let S be a vector space of derivations of a C-algebra B.
Then S@® C1 can be given the structure of a coalgebra such that the map

Y: S®C1 - Homg(B, B),

which includes S and sends 1 to the identity measures. Moreover, the
bialgebra H generated by S@® C1 in P(B, B) is isomorphic to the universal
enveloping algebra of the Lie algebra of derivations generated by S.

Proof. Define a coalgebra structure on S@® C1 by setting

A1=1®1, AX=X@1+1X%
el=1, eX=0

for X in S. Evidently { measures, and S@® C1 generates a bialgebra H.
Let L be the subspace of H generated by the commutators of elements

of S. Observe that for X, Y in S, [X, Y] is again a primitive element

of H, and thus maps to a derivation of B. By the universal property of
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enveloping algebras there is a unique algebra homomorphism 6 which
makes the diagram

L—— U(L)

5

commute. Since § maps onto the generating set S@ C1 of H, 8 must be sur-
jective. Since U(L), H are bialgebras, and 8 restricted to LA Cl = U(L) is
a coalgebra map, 8 is a bialgebra map. In particular, 6 is a coalgebra map.
Using Corollary 11.02.2 of Sweedler (p. 218), since ker 0L =0, 0 itself
must be injective.

Thus the measuring coalgebra provides a method of recovering the
universal enveloping algebras. But their great virtue in this application is
that they apply to generating subcoalgebras which may be more general
than sets of derivations. In particular, sets of deformed derivatives can
equally be used to generated Hopf algebras. These are the Hopf algebras
which are reminiscent of quantum groups. The last theorem of this section
describes the sense in which the algebras generated by deformed derivatives
are deformations of universal enveloping algebras.

Consider 4A=C[v,v ']. This is an augmented algebra with augmenta-
tion

LA-C  Av)=1,

where ker 4 is the ideal J generated by (v —1). Any 4 module C can be
projected onto a C-module

A C-C=ClIC.
Thus we have maps
Hom ,(B, B) » Hom(B, B)
C-C.
for any A4 coalgebra C which makes the diagram

C —— Hom (B, B)

|

C—— Hom(B, B)
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commute. Moreover, C is a C coalgebra and the map 7 measures. By the
universal property there is a unique map from C to the universal measuring
coalgebra for (B, B).

3.6. THEOREM. Let B be an algebra over A=C[v,v~'] with B= B/JB.
Let C be a measuring coalgebra for (B, B) and suppose that the image of C
in Hom(B, B) maps to S®C1, where S is a set of derivations of B, as in
Theorem 3.5. Let H be the bialgebra generated by C.

(1) There is a map of bialgebras over C,
. H— U(L).

(ii) If the map C— S® C1 is surjective (injective), so is 1.

Proof. (i) Let K denote the subalgebra of P(B, B) generated by C.
Evidently X is a subalgebra of U(L).

Multiplication H® H — H determines a multiplication H® H — H. By
uniqueness of the universal measuring map, the diagram

A®H

el

must commute.
Moreover, the square

H® H—— H

|

AH®H —— H

also commutes. Then since C generates H, C generates A, and H = K. This
map 7 is then the map

7. H—- Kc P(B, B).

Since C — S@®Cl, the image of t is contained in U(L).

(ii) Evidently, if C — S@® Cl1 is surjective, tH = U(L). If C includes as
a subcoalgebra of S@® C1, the image of C will be of the form S'@®Cl,
where S’ is a subspace of S. Let L’ be the Lie subalgebra of L generated
by L'. Then by 3.5 = U(L') and the inclusion L’ — L induces an inclusion
U(L') — U(L).
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4. EXAMPLES

4,1. The Algebra of Deformed Derivatives of C*(C")

In this case let B be the algebra C(C"*'\({0} x C")). This is evidently
a module over 4=C[v, v~'], under the action

fg(v, FATRE Zn) :f(U) g(U, 215 vy zn)

for fin C[v,v"'], g in B.
Let K be the group of acceptable automorphisms as defined in 2.1, and
for K in K, let E, be the set of deformed derivatives with respect to K. Set

E= (-BKEK EK

Note that E, and hence E, are 4-modules.
The A-module E @ AK has an obvious A-coalgebra structure

AK=K® K e(K)=1
AE=E® 1+ KR E, gE)y=0for EInEg

Moreover, the obvious map
p:E® AK — Hom ,(B, B)
measures, and by Theorem 3.6, E® 4K generates a bialgebra H. The map

sSsE®@AK - H
sSK=K""!, sE= —K'E

provides a suitable antipode, so that H becomes a Hopf algebra.

The image of E® AK in Hom(B, B) can be determined by setting v =1
throughout. By definition, alle elements K reduce to the identity. Any
element of E reduces to a derivation of B = C®(C"). Moreover, since any
element of Der B can be written as a sum

_ %)
U=. f,-a?

1

i

the element

<
Il
=
=
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where £, (v, Zyy e Z,)=fi(2y,s .y 2,) 18 an element of E which reduces to # in
Der B.

Thus H is a deformation of U(Der C®(C")).

A sub-Hopf algebra U of H which generalizes U(gl(n)) is given by
setting

K,= {Ki’ 1}

and letting E’ be the 4 module generated by {z,E;} where K;, E; are as
defined in 2.5. The subcoalgebra E'® 4K’ of E@® AK generates a Hopf
algebra which is a deformation of gi(n).

4.2. Vector Fields on a Circle and si(2)

In this case let B=C[v,v™',z,z7']. Let K be the set of acceptable
automorphisms K/ determined by

K/z"=p"z",

Note that the deformed derivative E: A[z] — A[z] described in the
example following Definition 1.1 extends to a deformed derivative

E:A[z,z '] - Al[z,z7 '), Ez"=[m] z" !
for all m in Z. Let E be the set of deformed derivatives
E={z"*'E}.
Note that as elements of Hom (B, B),

K-1
v—1

zE=

(Proposition 1.5(i)). The comultiplication
A"V E=2"YEQ 1+ K@z !
AK'=K'® K’
and augmentation
ezt IE=0, eKi=1

provide E® AK with a coalgebra structure for which E@® AK becomes a
measuring coalgebra under the obvious map E® AK - Hom ,(B, B).

607/105/2-8
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Again let H denote the bialgebra generated by the image of E® 4K in the
measuring coalgebra. The map

sSSE@AK—H
s(zm+1E)= _K—l(zm+lE)
S(K')=K™"

generates an antipode, giving H the structure of a Hopf algebra.

Once again it is not hard to compute the image of E® 4K in
Hom(B, B). Again all acceptable automorphisms reduce to the identity,
and the deformed derivatives reduce to the ordinary derivations z™ * '(8/0z)
of B=C[z,z7']. Thus H is a deformation of U(V) where V is the Lie
algebra of vector fields on the circle.

The Hopf algebra H contains the sub-Hopf algebra H' generated by the
A-module spanned by {E, zE, z°E, K'}. This is evidently a subcoalgebra of
E @® AK, which reduces to the Lie algebra of s/(2) acting on C[z, z72] via
9/0z, 2(6/0z), and z*(8/0z). Thus H' is a deformation of U(sl(2)).

4.3. Lie Algebras of Analytic Vector Fields

By exponentiating a vector field X it is possible to construct a deformed
derivative corresponding to X. In this way the algebra of deformed
derivatives corresponding to a set of fector fields on R” can be constructed.

In this case consider A =C[v, v~'] to be functions of a real variable,
and let B be analytic functions on a neighborhood D x U of (1,0) in
R"*'\{0} x R". Clearly B is an 4 module. Suppose that

S= {X‘,..., Xn}

is a set of vector fields such that each X, exponentiates to a one-parameter
family of transformations

exp(v—1)X,=K,(v): R" > R".
The maps K,(v) can be regarded as algebra homomorphisms
K;:B—-B
It is not hard to verify that

K (0, Xy e X)) = S0, X ey X)
B (r—1)

E:B—- B E, f(v, Xy, ., X,)

is a deformed derivative with respect to K.
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Now use these elements to form a measuring coalgebra. Let K be the
complex vector space spanned by the K,. Write AK for A®K. The A4
module E@® AK can be given the structure of a measuring coalgebra over
A by setting

AE® AK > (E® AK)® (ED AK)
4K,=K,®K,, AE,=E,®1+K,QE,
eK,=1, €E=0

The measuring map is the obvious inclusion of E® 4K in Hom ,(B, B). As
before,

SSE@AK-H
S(Kl)zKI«I
s(E) = _Kl_lEl

again gives H the structure of a Hopf algebra. Since for v=1, K;=1 and
E,= X,, the Hopf algebra H is a deformation of the Lie algebra of vector
fields generated by S.

4.4. Difference Operators on Lie Groups
This time let G be a Lie group with Lie algebra L, and let

B=C*((1—¢ 1l +&)xG)

for some e>0. Let A=R[v, v"']. Again, B is an 4-module. Suppose

S={X,,..,X,}
is a basis for L such that

g:,=exp{v—1)X,
defines a map

g {l—¢l+e)—-0G.
The maps g, can be interpreted as “acceptable” automorphisms
Ki(l—g14+e)xG-(1—¢14+e)xG

K(v,g)=(v, g 'g)
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if Definition 2.1 is generated in an obvious way replacing C" by arbitrary
(real) manifolds. Similarly,

E:C*({(l—&1+e)xG)>C (1 —¢, 1 +£)xG)

_ K (e, )~ flv )
E S, g) ="

evidently defines a deformed derivative with respect to K,. Now setting
K = {K,} and letting E be the free 4 module generated by the set {E,},
E® AK is once more a coalgebra with the familiar coproducts. Once again
E® AK generates a Hopf algebra generalizing the enveloping algebra
U(L).

4.5. Remark. Throughout this paper all deformed derivatives E have
had reproducts of the form

AE=E®1+K®E
and have been represented by difference operators of the form
K—1
E=f ( )
v—1

There is no sacred reason for decreeing that the above comultiplication is
the coproduct for deformations of ordinary derivations. Difference

operators of the form
K—K!
E=f(——Fr
f ( 0—1)71 )

have also been used [6] and have coproducts given by

AE=E'@K+K '®E"

5. CoMMENTS AND CONCLUSIONS

The program described above has three features which should be stressed
in conclusion.

5.1. Quantum Group-like Objects and the Space of Maps

My initial application of the universal measuring coalgebra was to the
problem of handling the differential information concerning the space of
smooth maps between two manifolds X and Y [1]. This theory goes as
follows.
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Suppose X is a point. Then the universal measuring coalgebra
P(C™(Y), C*(X)) is the dual coalgebra C*(Y)°. For this coalgebra there
is a decomposition theorem

C*(Y)°=® T,

yevyY
o0
— k
Ty_ U Ty’
k=0

where Tf, is canonically isomorphic to the dual of the kth jet bundle of
C™(Y) at y.

This geometric interpretation led to the use of P(C*(Y), C*(X)) to
supply jet bundle information about the space of smooth maps from X
to Y. Explicitly, if C(C*(Y), C*(X)) denotes the cocommutative part of
P(C*=(Y), C*(X)) then

ac=r,c=x)= @& T,
g XY
o smooth

T,= | T~
k=1

The subcoalgebras T* could then be interpreted as the fibre at ¢ of the
dual jet bundle for the space of smooth maps.

Now, for Y=X=(1—-¢,14¢)x M for some manifold M, the non com-
mutative part of the measuring coalgebra appears to play a significant role.
Allowing the interpretation of P(C*(Y), C*(X)) as a generalized space of
smooth maps, the quantum group-like Hopf algebras described here may
be interpreted as generalized automorphisms.

5.2. Example 4.4. and Group Coalgebras

While the quantum group-like generators E, appear to behave like
derivations, by enlarging the function ring A by inverting v — 1 the Hopf
algebra generated in 4.4 can be represented as a sub-Hopf algebra of a
group Hopf algebra.

Let % be the group

G={h:(1—-¢1+e)—>G}.

Let A be the algebra 4 with (v — 1) inverted. Form the group algebra A%.
Then the map

A% - Hom ;(A® B, AQ B)
Yh(v, g)=f(v, h~'(v) g)
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is a measuring map. Moreover, the map
ARE® AK - Hom ;(A® B, A® B)
has its image in A%.

5.3. The Interpretation of Quantum Group-like Objects

The last observation is particularly satisfying in the light of the popular
philosophy of quantum theory, in which the parameter (v—1) is not
allowed to vanish but “stops™ at Planck’s constant. Example 4.4 indicates
how Lie algebra theory, where the limit is taken as v — 1, may be replaced
by “quantum Lie theory” where the parameter v is recorded.

The classical Lie algebra picture The quantum Lie picture

The virtue of the universal measuring coalgebra is that it provides a con-
text in which the Lie algebra theory and the quantum Lie theory may be
handled in the same manner.
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