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The simultaneously k- and (k - I )-saturated chain partitions of a finite partially 
ordered set P determine a matroid G,(P). This matroid is a gammoid. The identity 

on P induces a strong map from G,(P) to G,, , (P). This strong map has a linear 
representation. 

1. INTRODUCTION 

It was observed by Greene and Kleitman ] 7 ] that the Sperner k-families of 
a finite partially ordered set P determine a matroid on the set M of maximal 
elements of P. Greene [6] conjectured that this matroid is induced by a 
matroid on the partially ordered set P -M. We establish in this paper that 
this is indeed the case. 

Corresponding to every positive integer k there is a matroid on P which 
we denote by G,(P). Using a characterization of the Greene-Kleitman 
geometry, P:‘, given in 171, we show that G,(P - M) induces r’i”‘. We 
further prove that G,(P) is a gammoid, and that the identity map on P 
induces a strong map from G,(P) to Gk+,(P). We prove a theorem 
concerning the representation of certain strong maps as linear maps, from 
which it follows that the strong map from G,(P) to G,(P) always has a 
representation. 

In Section 4 we investigate what of the structure of P is inherent in the 
sequence (G,(P): k > 11. We show that the sequence does not uniquely 
determine the partial order, and that the class of all matroids arising in this 
manner from partially ordered sets is not closed under restriction. 
contraction. or duality. We conclude by examining the matroids 
corresponding to a pair of important partially ordered sets, the lattice of 
subsets of an n-element set and the lattice of subspaces of an n-dimensional 
vector space over a finite field. 
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2. PRELIMINANES 

We bring together in this section definitions and results that will be used 
in the paper. The reader is referred to [ 1, 2,9] for detailed expositions 
concerning graph theory and combinatorial geometries. All partially ordered 
sets are finite. 

A combinatorial pregeometry, or matroid, G, on a finite set X is charac- 
terized by a class 9(G) of subsets of X satisfying: 

(1) IfA,BE3(G), then IAJ=]B], and 

(2) for every x E X, there exists ~7 E B such that A - (x) U 

(~1 E .B(G). 

The elements of .9(G) are the bases of G. A subset of X which is contained 
in some basis of G is an independent set. A set CL X is a circuit of G if and 
only if C is not independent in G, but every proper subset of C is 
independent. For a subset Y of X, the rank of Y, denoted rJY), is the 
cardinality of a maximal independent subset of Y. The rank r(G) of the 
matroid is ro(X). A subset F of X is called aflat or closed set provided that 
for every x 6? F, rG(F U {x)) > r,(F). For Y C_ X, the closure of Y, denoted 
PC, is the intersection of all flats of G containing Y. The set of flats of G, 
ordered by inclusion, form a lattice called the geometric lattice of G. Suppose 
H is a second matroid on X. The identity on X induces a strong map from G 
to H if and only if every closed set in H is also a closed set of G. The 
matroid F on X with rF(x) = j X) is called the free matroid on X. The identity 
on X induces a strong map from F to G, called the closure map of G. 

The dual matroid G* of G is a matroid on X having for its set of bases the 
complements of bases of G; i.e., B E 3(G*) if and only if X-B E 9(G). 
For a set Y c X, the restriction of G to Y, G] Y, is characterized by the 
property that Z c Y is independent in G ] Y if and only if Z is independent in 
G. The matroid G . Y= (G*J Y)* is called the contraction of G to Y. G is 
said to be representable over a field F provided there exists a mapping 
f :X + F’, r = r(G), with A E X independent in G if and only if f IA is 
injective and f(,4 ) is linearly independent in F’. 

If D is a digraph and BE V(D): then the class of subsets A c V(D) for 
which there exists sets of vertex-disjoint paths linking A into B form the 
independent sets of a matroid, called the strict gammoid induced by (D, B). 
For vertices x and y of D, (x, JJ) will denote the directed edge from x to y, 
and T(x) will represent (z E V(D): (x, z) E E(B)]. A theorem of Mason [8] 
states that for a flat F of the strict gammoid, the set 
(FnB)u {xEF:I-(x)&F} is a basis for F. If P = (x,, x, ,..., x,) is a path 
in D, then for any j, 1 ,< j < m, the subpath (x,, xl,..., xj) is called an initial 
segment of P and the subpath (xj, xj+, ,..., x,) is a terminal segment of P. 
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Suppose P is a partially ordered set. A chain partition 9? = { Ci : 1 < i < n} 
of P is a partition for which each Ci is a linearly ordered set, or chain. For a 
positive integer k, we define a k-family of P to be a set which contains no 
chain of length k + 1. A Sperner k - family is a k-family of maximum 
cardinality and d,(P) signifies the size of a Sperner k-family. For k > 1. 
d,(P) = d,(P) - dkpl(P), with A,(P) = d,(P). We will also refer to a Sperner 
l-family as a Difworth set. If ?2 = {Di : 1 < i < m) is a chain partition of P. 
we define 

min(k, iOil]. 
i:l 

If A is a Sperner k-family, then 

d,(P) = G (A n Dil < T’ min(k, IDi\\ =P*,Q). 
,?I ,: 

If P,JY) = d,(P), 5’ is called a k-saturated chain partition. Observe that if Q 
is k-saturated and D E 5’ with 1 D / < k, then the chain partition obtained by 
replacing D with /D / singleton or trivial chains is also k-saturated. We adopt 
the convention of listing only the chains of length at least k: the elements of 
P not contained in these chains will be taken to be trivial chains. Every chain 
partition is defined to be O-saturated. A deep result of Greene and Kleitman 
161 ensures that simultaneously k- and (k - I)-saturated chain partitions 
exist for every positive integer k. The expression (k, k - I)-SCP will be used 
to signify a simultaneously k- and (k - 1). saturated chain partition. For a 
subset A of P, the order ideal, .7(A), generated by A consists of all s in P 
with x < a for some a in A. The order filter, ,7(A). generated by A consists 
of all x in P with x>a for some a in A. 

The graded multipartite graph T,(P) is defined as follows: 

(1) Y(fk(P)) = P,, u P, u . . u P,, 

where the sets Pi = (x’ : ,Y E P} are copies of P, and 

(2) E(T,(P)) = ((9, yic ‘) :x > y in P). 

Note that the graph f,(P) is the bipartite graph representing the partial 
order. A matching or linking in r,(P) is a set of disjoint paths with initial 
vertices in P, and terminal vertices in P,. 

3. THE MATROID G,(P) 

Let q = {Ci : 1 < i < n} be a k-saturated chain partition of P. Suppose 
c, = (x, > x* > .‘. > xm}. Consider the class of m-k chains 
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i(xj~xj+l~“” Jtk x. ) : 1 < j < m -k}. Each of these chains determines a path 
in r,(P) and all of these paths are disjoint. For each Ci with size greater 
than k we perform the same construction. Since paths in I’,(P) corresponding 
to distinct chains of q correspond to disjoint subsets of P, they are clearly 
disjoint. Hence, corresponding to the chain partiton there is a matching in 
r,(P) of size XI= I (I Ci/ - k) = IPJ - d,(P). The following theorem of Greene 
asserts that this matching is maximal. 

THEOREM 3.1 (Greene IS]). The size of a maximal matching in rk(P) is 
/ p / - d,(P). 

Let 2 U 9 be a set of disjoint paths in r,(P) satisfying: 

( 1) The initial vertices of paths in 9 are elements of P,. 

(2) The initial vertices of paths in .W are elements of P,. 

(3) The terminal vertices of paths in -z? U .9 are elements of Pk. 

We say the pair (2,9) is a (k, k - I)-matchitig in r,(P). The (k, k - 1). 
matching is maximal if and only if for every (k, k - I)-matching (.V‘, i5), 
1.2’) > I.!? / and 19~V.l > I,Y ~81. 

Now suppose further that ‘Z is a (k, k - I)-SCP of P. Let 9 be the 
maximal matching in r,(P) corresponding to ‘Z as described at the beginning 
of this section. For each i, 1 < i < n, let Di be the k greatest elements of Ci, 
say Di = ( yi, > yiz > . . . > -vik}. Let R,, 1 <i < n. be the path with initial 
vertex .I>,!, in P, and terminal vertex y& in P, determined by the points of Di. 
If we take .9 to be the set {Ri: 1 < i ,< n), the pair (9, .Z) is easily seen to 
be a (k, k - I)-matching in I’,(P). 

THEOREM 3.2. The matching (9, ,Z) is a maximal (k. k - l)-matching. 

ProoJ Let (9, a) be a (k, k - 1).matching in r,(P). Then Z and .Y are 
matchings in f,(P). Since V is k-saturated, 1-51 > / 5‘1. For each path W in 
3 U .i, let WT be the truncated path obtained by deleting the initial vertex 
of W. Observe the correspondence between the set of paths 
( W’ : W 6 2} U .9 = ;r/ and the matching -.# determined by the chains of 
in rk-,(P); (x:,x:,..., xz) E W if and only if (xy, xi ,..., .$‘) E. R. Similarly 
the set of paths ( WT: WE .Y) U d = 7. corresponds to a second matching 
in r,-.,(P). As P is also (k- 1)-saturated, ~L?U.#~=I%~/>/T’~~= 

1.2 UT/. I 

There is a partial converse to this proposition, for which we need the 
following lemma. 

LEMMA 3.3. Suppose (9,s) is a maximal (k, k - 1)-matching in r,(P), 
-9 = Qi: 1 < i ,< m, and that there is a maximal y in P belonging to every 
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Sperner k-family, with no initial vertex of a path in .R corresponding to y. 
Then there is a maximal (k, k - l)-matching (.Y,2) with no initial vertex 
of a path in 2 corresponding to y. 

Proof. Consider the strict gammoid G induced by (f,(P), Pk), and let F 
be the flat of G spanned by P,. Set B = {x E F: T(x) @ F) U (F n Pk). This 
set is a basis for F, and no vertex of a path in .1 can be contained in F. 
Furthermore, every path Qi meets B in a single vertex, say ( bi) = B n Qi. 
Let Qi be the terminal segment of Qi with initial vertex bi. Since 
d&P - ( JF)) = d,(P) - 1, there is a maximal matching in F,(P) which misses 

?‘oq say F = (T,: 1 < i < m}. Every path in B also meets B in a single 
vertex. so we assume B is indexed so that bi is on Ti. Let Ti be the initial 
segment of Ti with terminal vertex bi. Clearly each Ti is contained in F. 
Hence (.Y, 9) is a maximal (k, k - 1)matching in T,(P), where .Y- is 
defined to be the set of paths obtained by joining each Ti to Q: at bi. I 

THEOREM 3.4. Let (I’, ,@) be a maximal (k, k - l)-matching in r,(P). 
The initial vertices of paths in .59 correspond to the tops of chains of length 
at least k in some (k, k - I)-SCP of P. 

Proof: Proof is by induction on JPI. The theorem is clearly true for all 
partially ordered sets of cardinality at most k + 1. Say / P( = n and assume 
the statement is true for every partially ordered set which fewer than n 
elements. 

Case 1. For some maximal element b. d,(P - (b)) = d,(P). 
Under these circumstances, Greene and Kleitman [6] have shown that 

dk_,(P - (b}) = d,-,(P), Hence b” and b’ must be initial vertices of paths in 
i and A’, respectively, say b” is on Q and b’ is on R. The matching 
C.2 - {QL .R - iR\ u lQrl) is therefore maxima1 in rk(P - (b)). By the 
inductive hypothesis there is a (k, k - 1) - SCP of P - {b) whose set of tops 
corresponds to the initial vertices of .@ - {R ] U {Q’}. If c1 is the initial 
vertex of Qr, the element b can be adjoined to the chain with top c to form a 
(k,k- 1)-SCP of P. 

Case 2. For every maxima1 element x, d,(P - (x)) = d,(P) - 1. 
Let @ be a (k, k - 1).SCP of P with (,?-, F) the corresponding (k, k - 1). 

matching in T,(P). Let A, and B, be, respectively. the initial vertices of paths 
in W and C. If B # A, then there exists a b in B - A. Were b not maximal in 
P, there would be a c maxima1 in P with c > b. If C is the chain with top b 
and S is any Sperner k-family of P, then 1 C n SI = k. But by hypothesis c 
belongs to S, and (C n S) U (c) would be a chain of length k + 1 in S. So b 
must be maximal in P. Therefore no vertex corresponding to b is on any path 
of .%‘, and by the previous lemma we may assume that no vertex of a path in 
I corresponds to b. Hence (2, c#) is a maximal (k, k - 1).matching in 
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F’,(P - (b}); so by the inductive hypothesis there is a (k, k - I)-SCP g of 
P - {b 1 with A as its set of tops. Note that 

Therefore b also belongs to every Sperner (k - I)-family of P and g is a 
(k, k - I)-SCP of P. 1 

Let G be the restriction to P, U P, of the strict gammoid induced by 
(r,(P), Pk) and consider G . P,, the contraction of G to P,. A set X, is a 
basis of G . P, if and only if there exists a set Y, s P, such that 

(1) X, U Y, is a basis for G, and 

(2) Y, is a basis for GIP,; i.e., Y,, is the set of initial vertices in a 
maximal linking of P,, to Pk. 

This is equivalent to the condition that there exists a maximal (k, k - 1). 
matching (.3,X) in r,(P) with X, as the set of initial vertices of .1. This 
observation together with Theorem 3.4 establishes the following result. 

THEOREM 3.5. Corresponding to every partially ordered set P and every 
positive integer k there is a matroid G,(P) whose bases are the tops of chains 
of iength at least k of the simultaneousiy k- and (k - 1 )-saturated chain 
partitions of P. This matroid is in fact a gammoid, being the contraction of a 
restriction of a strict gammoid. 

The rank of G,(P) can be determined using Theorem 3.1: 

r(GdP)) = (IPI -d,-,(P)) - (IPI -d,(P)) =A,#?. 

THEOREM 3.6. If F is a k-saturated chain partition of P, then there 
exists a (k, k - I)-SCP Q such that the tops of %Y are contained in the set of 
tops of %. Thus subsets of the tops of k-saturated chain partitions are 
independent sets in G,(P). 

Proof: Let (I, 9) be the (k, k - I)-matching in J’,(P) determined by 9. 
Since V is k-saturated, 9 is a maximal matching. The initial vertices of 
Z? U .9 are an independent set in the strict gammoid induced by (T,(P), Pk). 
Therefore we can find a maximal (k, k - I)-matching (F, g) with the initial 
vertices of 2 contained in the set of initial vertices of 6. Then by 
Theorem 3.4, there is a (k, k - I)-SCP 5? with set of tops containing the set 
of tops of V. I 

We wish to show that if P’ is the set of maximal elements of P, the 
matroid G,(P - P’) induces the corresponding Greene-Kleitman geometry 
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r”$o. The Greene-Kleitman geometry is defined by means of a rank function 
rk. If P* = P- P’, then for XcP’ 

f-k(X) = /XI + dk(P*) - d,(P* u X). 

THEOREM 3.7. G,(P*) induces r’,“‘. 

Proof: Greene and Kleitman 161 have shown that a subset X of P’ is 
” independent in r”, if and only if there exists a k-saturated chain partition of 

P* for which X can be matched into the tops of chains of length at least k. 
By Theorem 3.6, this is equivalent to the condition that there exists a 
(k, k - 1 )-SCP of P* having the same property. 1 

LEMMA 3.8. Let r be a digraph or1 V(T) = X and let B be a subset of X 
with b E B. Say B’ = B - (b). Let G and G’ be the strict gammoids induced 
bv (f, B) and (I-, B’), respectively. Theu the identity map on X extends to a 
strong map from G to G’. 

Proof. Let F be a flat of G’ with A = (x E F: f(x) @ F}. By Mason’s 
theorem, C = A U (B’ f’ F) is a basis for F in G’. Let x E X - F. Then there 
exists a G/-independent linking of C U (s}. This linking is also G- 
independent. Hence x & FG. Therefore F is a closed set in G. m 

A strong map f: G + H is elemenfarjl if and only if r(H) = r(G) - I. 
Suppose G and H are matroids on X and that the identity on X induces an 
elementary strong map from G to H. Let it be the set of flats F of H for 
which r,,(F) < rJF). Then. ir is an order filter in the lattice of flats of G. If 
F is a principal order filter, that is,. ir is generated by a single flat, then the 

map is called principal. 

THEOREM 3.9. Let r, G. and G’ be as in Lemma 3.8. Then the identity. 
on X induces a principal map. 

Proof. Let F = (b} U T(b)” ‘. We will show that F generates the order 
filter of flats F’ of G’ for which r,(F’) > r(,,(F’). Let A = (s E F: T(x) S&F}. 
Since r(b) z F. b 4. A. Therefore, 

r,(F) = IA U (Fn B)j > jA U (Fn B’)I = r(,,(F’). 

Suppose that F’ is a flat of G’ with r,(F’) > r(,,(F’). Let 
A’ = {x E F’: T(s) Y$ F’}. Now r(;(F’) = iA’ U (F’ n B)I and r,,,(F’) = 
IA’ U (F’ n B’)l. Hence (b} U T(b) is contained in F’, and F G F’. m 

We obtain as a corollary to Theorem 3.9 a result due to Ingleton and Piff 
171. 

COROLLARY 3.10. Strict gammoids are duals of transversal matroids. 
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Proof: Dowling and Kelly [3] have characterized the duals of transversal 
matroids (cotransversal matroids) as those matroids whose closure map 
admits a principal factorization. A strict gammoid is induced by a pair 
(r. B) while the corresponding matroid on V(T) induced by (r, V(T)) is 
free. I 

THEOREM 3.11. For k > 1, the identity on P induces a strong map from 

G, - ,(P) to G,(P). 

Proof Let H and H’ be the strict gammoids induced by 
(r,(P), Pk-, U Pk) and (r,(P), Pk), respectively. By repeated use of 
Lemma 3.8 we have that the identity on V(r) induces a strong map from H 
to H’. Note, however, that H is a direct sum of two matroids, the strict 
gammoid H” induced by (r,- ,(P), P,_ 1) and the free matroid on P,. The 
restriction of this map to P, U P, is a strong map from G” = H” I(PO U P,) 
to G’ = H’I(P, U PI). But then the identity on P, induces a strong map from 
G” . P, = Gk-,(P) to G’ . P, = G,(P). m 

The following corollary is a theorem of Greene and Kleitman [6J 
concerning the structure of the Sperner k-families of P. 

COROLLARY 3.12. d,(P) <A,-,(P). 

Proof: As was noted earlier, r(G,(P)) = A,(P). 1 

THEOREM 3.13. Suppose G and G’ are matroids on X with the identitJt 
inducing a principal map from G to G’. Suppose further that G has a repre- 
sentation o: X + K’ over the field K. If the order of K is sufJcient!v large. 
there is a linear map L: K’ + K’~ ’ such that L 0 a is a representation of G’. 

Proof: Let A be the flat of G which generates the order filter of flats F 
with r,.(F) < rG.(F) and let u: G-t K’ be a representation of G. For K 
sufficiently large, we can find a vector v in the linear span of a(A) which not 
contained in the linear span of a(F) for any flat F of G properly contained in 
A. Let L:K’-+K’-’ be the canonical linear transformation having the linear 
span of v for its kernel. We show that L(a(G)) is a representation of G’. 

For any rank (r - 1) flat F of G not containing A, the G-flat A C? F has 
rank r,(A) - 1. Therefore the linear span of a(A f7 F) is the intersection of 
the linear spans of a(A) and a(F). Hence v is not in the span of any set a(F), 
F a flat of G not containing A. 

First, if Y is an independent set in G’, it is also independent in G, and 
u(Y) is linearly independent. The flat A is not contained in p since 
p = p”. Therefore (v) U u(Y) is linearly independent. Since L has nullity 
one, L(u(Y)) must be linearly independent. 

Next assume that Y is a dependent set in G’. If Y is dependent in G, then 
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certainly L(o(Y)) is linearly dependent. So suppose Y is independent in G. 
Then A E p and v is contained in the linear span of u(Y). Hence L(o(Y)) is 
linearly dependent. fl 

THEOREM 3.14. The strong map from G,(P) to G,+,(P) is representable 
as a linear map between representations of G,(P) and G,, ,(P). 

ProoJ: Let G, and G, be, respectively. the strict gammoids induced by 

W-%+ I and P,, , on f,+ , (Pf. Repeated applications of Theorem 3.13 to 
the principal maps from the free matroid on r,+ ,(P) to G, and from G, to 
G, yield a representation (T of G, and a linear representation L of the strong 
map from G, to G,. 

Let B be the linear span of o(P,,) and let ZZ be the canonical linear 
transformation on a(G,) with kernel B. It is easily seen that il o u is a 
representation of the contraction G, . (V(T) - P,) and that the map L 
applied to the restriction of 17 o CJ to P, is a linear representation of the 
strong map from G,(P) to G,+,(P). 1 

4. STRUCTURAL PROPERTIES OF P INHERENT IN G,(P):k> 1. 

THEOREM 4.1. d,(P) = Cf_, r(G,W). 

Proof: By Theorem 3.1, we have that r(G,(P)) = d,(P). 1 Q i < k. 1 

THEOREM 4.2. The height of P is the maximal k for which r(G,(P)) > 0. 

Proof: Let h be the height of P. Then a maximal chain in P determines a 
path in r,(P) from P, to P,. Since there is no path of length h + 1 in r,,(P), 
the initial vertex of this path corresponds to a point independent in G,,(P). 
Clearly r(G, + 1(P)) = 0. 

Recall that X(.4) and .7(A) are, respectively, the order-filter and order 
ideal generated by A G P. In [6 ] a partial order is defined on the class of 
Sperner k-families of an arbitrary partially ordered set, and under this 
ordering the Sperner k-families are shown to form a distributive lattice. In P 
there is a Sperner k-family A such that for every Sperner k-family B of P, 
B C_ .?‘(A). We call A the unit Sperner k-family of P. Let A’ = max[A 1. 

LEMMA 4.3. Zfx @F(,A’), then x E ,Y(A’). 

ProoJ Suppose there exists an x @ .?-(A’) U .?‘(A’). Then (x} U A is a k- 
family of P, contradicting the maximality of A. 1 

THEOREM 4.4. Ifx &..(A’), then x is a loop in G,(P). 
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Proof: Suppose the theorem is false. Then there exists a (k, k - 1)SCP 
V with x 65 Y(A’) the top of a nontrivial chain C E GY. By Lemma 4.3 there 
isanaEA’witha>x.Butthen(a}U(CnA)isachainoflengthk+lin 
A. I 

For k = 1, we have a stronger result. 

THEOREM 4.5. x is a loop of G,(P) ifand only ifx &F(A). 

ProoJ: The proof is by induction on IPI. We assume the theorem is true 
for every partially ordered set Q with 1 Ql < 1 PI, Let x E F(A) and choose 
y<x with yin A. 

Case 1. d,(P- (y})=d,(P)- 1. 

Let Y be a minimal chain partition of P - ( y). If x = y, then Q U {x} is a 
minimal chain partition of P. Otherwise, let C, be the chain containing x. 
Then the chain partition obtained by deleting x from C, and adjoining the 
new chain {x, y} is a minimal chain partition of P with x as the top of 

1x3 Y/. 

Case 2. d,(P - {y}) = d,(P). 

Let B be the unit Dilworth set in P - {y} and let @ be a minimal chain 
partition of P. Since B is a Dilworth set of P, every chain of ‘% contains a 
point of B. Say C is the chain containing y, and let {z} = Cf’? B. By the 
inductive hypothesis, since z is in F(B), z is not a loop in G,(P - { y}). 
Therefore there is a minimal chain partition p’ of P - {y} with z as the top 
of, say, C’. Then the chain partition of P obtained by deleting x from the 
chain of @’ containing it and adjoining {x, y} to C’ is a minimal chain 
partition of P, with x as the top of a chain. 0 

The assumption k = 1 in the previous theorem is necessary. If P contains 
an element x not comparable to any other element of P, then for k > 2, x is 
in A’, hence .F(A’). and is clearly a loop in G,(P). 

THEOREM 4.6. Every maximal element of P which is not contained in A 
is an isthmus in G,(P). 

Proof: That every element of P-A is contained in a nontrivial chain in 
any k-saturated chain partition of P is an immediate consequence of the 
definition of k-saturation. The maximal elements of P are certainly the tops 
of the chains containing them. 

LEMMA 4.1. Let $5 = (C,, C, ,..., C,/ be an m-saturated chain partition 
of P, with x as the top of C,. Let x ( y in P. Then y is on a nontrivial chain 
of g’, sa.y C,, and the chain partition $9” = $7 - (C,, C,} V {C, V (y}, 
C, U ( y)} is m-saturated. 
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ProoJ: Let S be a Sperner m-family of P. Since /S n C, 1 = m, y cannot 
belong to S. Therefore, y is on a nontrivial chain of @, say C,, and 

/SnC,- {VII = m. Hence p,(g) =/I,,@‘), and %’ is m-saturated. I 

THEOREM 4.8. If x is an isthmus in G,(P), then x is maximal in P. 

Proof Suppose x is not maximal in P, say x < ~3. Let ‘V be any 
(k, k - I)-SCP of P. If x is not the top of a chain of q. we are finished. Ifs 
is the top of a chain, we can apply Lemma 4.7 with m = k and m = k - 1 to 
obtain a (k, k - 1)SCP with x on a chain having y as its top. 1 

COROLLARY 4.9. The maximal elements of P are precisely the isthmuses 
of G,(P). 

Proof: Certainly every maximal element must be the top of the chain 
containing it in any minimal chain partition; hence every maximal element is 
an isthmus. By Theorem 4.8 these are the only isthmuses. I 

Let us denote by .Z, those matroids G for which there exists a partially 
ordered set P with G = G,(P). Define .V(, = U k rO ,<k and let .6 represent the 
class of all gammoids. We have already seen that ,C,, c 6. The following 
theorem establishes that this containment is proper. 

THEOREM 4.10. For ezlerj’ partially set P with 1 PI > 2, G,(P) is not 
connected. 

ProoJ For k = 1, the maximal elements of P are isthmuses of G,(P). So 
suppose k > 2 and let A be the unit Sperner k-family of P with A’ = max[A ]. 
Then A -A’ G I(A’) -A’, so that every element of A -A’ is a loop in 
G,(P). Now IA - A’( > d,(P) -d,(P) = Cr- z d,(P) >.d,(P). So either 
A - A’ # 0 or r(G,(P)) = d,(P) = 0, in which case every element of P is a 
loop. a 

THEOREM 4.11. If G E .t , then there exists a partial& ordered set P for 
which G,(P) = G @ H, where H is a preboolean matroid consisting on!,? of 
loops and isthmuses. 

Proof. Let G be a gammoid on a set X. Ingleton and Piff ]7] have shown 
that there exists a transversal matroid T and a set Y CX for which 
G = T. (X - Y), ( Yl = r(T) - r(G). Let R 5 XX 2 be a presentation of T 
and let Y’ be a copy of Y with S: Y’ + Y an injection. Let P be the partial 
order on X U Z U Y’ defined by the transitive and reflexive closure of R U S. 
Clearly P has height 3. A maximal (2, 1 )-matching in T,(P) determines a 
maximal matching in R in which each vertex of Y is covered. Hence every 
basis in G,(P) is a basis of G. On the other hand, let B be a basis in G. Let 
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M be a corresponding maximal matching in R which covers YUB. Then 
MU S is a chain partition of P which determines a maximal (2, 1)matching 
in r,(P). Therefore B is also a basis in G,(P). 1 

Although it is not true in general that Fk s $L+, , the next theorem does 
establish that every member of .Fk can be embedded as a direct summand of 
a memer of ,Yk + , . 

THEOREM 4.12. Let P be a partially ordered set and let G = G,(P) for 
some positive integer k. Then there exists a partially ordered set P’ for which 
G, + 1 (P’) = G @ 9,,, represents the preboolean matroid consisting of r loops, 
r = r(G) = A,(P). 

ProoJ Since Gk+ ,(P) is a strong map image of G,(P), if 
A,(P) = Aktl(P). then G,(P) = G,+,(P). So we will assume that 
Ak+ ,(P) < A,(P). Let Q be a set of r elements disjoint from P. Define a 
partial order on P’ = PU Q by setting 

x & y if and only if (1) x, yEP,x& y; 

(2) x E Q, y E P; 

(3) x = y E Q. 

That is, the set Q is adjoined to P as an antichain with each element of Q 
being less than every element of P. The following sequence of lemmas 
establishes that P’ satisfies the requirements of the proposition. 

LEMMA 4.13. Let j be a positive integer and let A be a Sperner j-familv 
of P’. Then A does not cut Q; i.e., either A C? Q = 0 or Q s A. 

Proof Suppose AnQ#0, say xE A -Q. Let A’=min[A], and let 
J~EA’. Then xky, so -vEQ;i.e., A’cQ. The set A-A’ is a (j-l)- 
family of P’, so A G (A -A’) U Q is a j-family of P’. The maximality of A 
impliesA=(A-A’)UQ; that is, QcA. 1 

LEMMA 4.14. d,(P’) = d,(P). 

Proof. Clearly d,(P’) > d,(P). Let B be any Sperner k-family of P’. If 
B C P we are done, so we assume that B n Q # 0. By Lemma 4.14, Q E B. 
Since B-Q is a (k-1)-family of P, d,(P’)=jB(=jB-Ql+iQi~ 
d,_ ,(P) + A,(P) = d,(P). Therefore d,(P’) = d,(P). I 

LEMMA 4.15. A set A s P’ is a Sperner (k + I)-family of P’ if and only 
if Q s A and A - Q is a Sperner k-family of P. 
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Proof. Let B be a Sperner k-family of P. Then A = B u Q is a (k + 1). 
family of P’ with 

IA I = 4m + d,(P) > d,(P) + d/c+ I(P) = 4+1(P). 

Therefore, no Sperner (k + 1)family of P’ is contained in P. Using 
Lemma 4.13, we can conclude that every Sperner (k + 1)-family A of P’ 
contains Q. Since A - Q must be a k-family P’, we obtain from the 
maximality of A that IA - Ql = d,(P). 1 

LEMMA 4.16. Let V be a (k + 1, k)-SCP of P’ and let 59” be the 
restriction of F to P. Then @’ is a (k, k - 1).SCP of P. 

Proof. Let B be a Sperner k-family of P. Since B U Q is a Sperner 
(k + I)-family of P’, for each C E @ we have that I(B U Q) fT Cl = k + 1. 
Since Q is an antichain, 1 Q f7 C/ < 1. Therefore 1 B n C] > k, from which we 
can conclude that JB f? C] = k and /Q n C/ = 1. Hence every chain of V’ 
meets every Sperner k-family in k points, so g’ is k-saturated. 

Next we let B be a Sperner (k - l)-family of P. Since B U Q is a Sperner 
k-family of P’, the above argument also establishes that @’ is (k - 1). 
saturated. i 

Let F be an arbitrary (k, k - l)-SCP of P. We know that @ contains 
d,(P) chains of length at least k, say C, , C, ,..., C,. Let Q = (q, , q2 ,..., q,} 
and define @’ to be the chain partition of P’ with nontrivial chains 
(CiU (qi}: 1 <i<n}. 

LEMMA 4.17. The chain partition W of P’ as defined above is 
simultaneous1.v (k + 1, k)-saturated. 

Proof. We calculate 

/?,+,(F)= \‘, min[k + 1, IC'll 
c ’ E ‘6’ 

= \‘ min]k,]C]] + n 
CG i 

= d,(P) + d,(P) = d,, ,(P’). 

Therefore, F’ is (k + 1)saturated. Similarly, 

P&F)= \‘, min[k, ]C’]] 
C’E% 

zzz \‘ min[k. IC]] 
CT6 

= d,(P) = d,(P’). 

Hence, F’ is also k-saturated. 
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FIGURE I 

By Lemmas 4.17 and 4.18 it is evident that the bases of G,(P) and 
G, + ,(I”) are identical. Thus the elements of Q = P’ -P are loops in 
G, + I (P’). Therefore G, + , can be factored as the direct sum of th trivial 
matroid. 5Y0,,, on Q and G = G,(P). 1 

We conclude this section with examples which show that YO is not closed 
under restriction, contraction, duality, and that the sequence {G,(P): k > 0) 
does not uniquely determine the partial order P. 

EXAMPLE. Let P be the partially ordered set whose graph is given in 
Fig. 1. G,(P) is a rank four transversal matroid with only the elements of 
(w, x, y, z} being loops. Therefore the matroid G’ = G,(P) - {w) = 
G,(P)/{ w) is also a rank four transversal matroid, since the class of 
transversal matroids is closed under restriction. Since G’ contains only three 
loops, G’ cannot be a member of ,Yk for k > 1. Also, the matroid 
Q/lx, ,I’, z} = G/{ w,x, V, z} is not a cotransversal matroid. Since the class 
of cotransversal matroids is closed under contraction, G’ cannot be 
cotransversal. Therefore G’ 6Z .Y, , and hence G’ 6Z ,YO. 

EXAMPLE. Let P be the partially ordered set with graph shown in Fig. 2. 
G,(P) has rank three, contains no loops, and has the unique isthmus x. Thus 
G = G,(P)* has rank three, no isthmuses and x is its unique loop. Since G 
contains no isthmuss, G @ ,K. But by Theorem 4.11 G 6? .Yi for k > 1. So 
G 6Z ,YO. (Figure 3) 

G,(P,) = G,(P,) for every positive integer k. However, there is no order- 
preserving map from P, into P,. 
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FIGURE 2 
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5. THE MATROIDS Gk(9,J AND Gk(V,(q)) 

In this section .%‘,, and V,(q) will denote, respectively, the lattice of subsets 
of an n-element set and the lattice of subspaces of an n-dimensional vector 
space over GF(q). A well-known result of Erdos [4] states that for every 
k < n, dk(9,J is the sum of the k largest binomial coefficients and that the 
only Sperner k-families are the obvious ones. A corresponding result holds 
for V,(q); dk(Vn(q)) is the sum of the k largest Gaussian coefftcients and, 
depending on the parity of k and n, there are either one or two Sperner k- 
families. 

LEMMA 5.1. Let iw be a k-saturated chain partition of a partially 
ordered set P with unit Sperner k-family S. Let A = max[ S]. The restriction 
of F to Q =, F(A) is a minimal chain partition of Q. 

Proof. Let P’ be the restriction of q to Q. Since every element of Q -A 
is on a nontrivial chain of q’ containing a point of A, 

For both ,Y?,, and V,(q), the set of maximal elements in the unit Sperner k- 
family contains d,(P) elements. We say that a partially ordered set is k- 
principal provided that the set of maximal elements in the unit Sperner k- 
family of P has cardinality d,(P). 

THEOREM 5.2. Let P be a k-principal partially ordered set with unit 
Sperner k-family S and A = max[S j. Then G,(P) is a principal matroid. 
Indeed, the loopless part of G,(P) is G,(Q) where Q =.~F(A). 

Proof: By Lemma 5.1, every basis of G,(P) is a basis of G,(Q). So we 
assume that B is a basis of G,(Q) corresponding to a minimal chain partition 
P = {Ci: i < r}. Let B = {Di: i < r} be a (k, k - l)-SCP of P with 
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62’ = {Di: i < r} being its restriction to 2 (A). We assume G?‘, ~,~‘, and A 
are indexed so that for i < r, CinA = DinA = D{ n.4 = {ai}. For each 
i~r,SnDicD:,withISnDiJ=k.HencePj(~)=Pj(~’)forj=k,k-1. 
Consider the chain partition GY’ = {C, U 0;: i < r}. Since we are extending 
chains of length at least k, we have that p,(P) =/Ij(#) for j = k, k - 1. 
Therefore P is a (k, k - I)-SCP of P with set of tops B; i.e., B is a basis of 
G,(P). 1 

COROLLARY 5.3. Each term of the sequences Gk(9J: k > I} and 
1 Gk( V,,(q)): k > 1 } is a principal matroid. 
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