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I. INTRODUCTION 

Let x be a compact metric space, and yi, i = 1,2, ..., k, be continuous 
vector valued functions on x into E n. Let p be a nonnegative, finite regular 
measure on the Bore1 subsets of X. l For each x E X, we denote by d(x) the 

set {Y’(X), . . ., ~~(41, and by co d(x) the convex hull of A?(X). 
With each TV measurable function x defined on x associate the vector 

$4 = Cs, JG~ dp, ‘.., s, z,,(x) 4) and denote by W, the range,in En, 
of V(Z) for measurable functions z such that z(x) E d(x), while 94?)co,d denotes 
the range of V(Z) for measurable functions x such that z(x) E co d(x). 

It is shown that 9, = Wco+ 
This result will be applied to obtain a uniform approximation theorem of 

the form found in [2], and also to obtain an extended bang-bang principle 
of the type given in [3], for problems in which the range set of the control 

vector may vary with time. 

II. STUDY OF 9, AND .%?co~ 

It is evident that WcOd 3 W&, hence it will be necessary to show that for 
any p measurable function z, with z(x) E co S’(X), we can produce a p measur- 
able function y, with y(x) E d(x), such that o(y) = V(Z). This will necessitate 
a representation of z in terms of the yi which will make use of the following 
extension of a 

LEMMA OF FILIPPOV [4]. Let the vector valued function f(x, ml, ..., an), 
or more concisely f(x, or), be continuous on x x Q(x) to ES, where for each 
x E X, the set Q(x) C Ek is closed, bounded, and upper se&continuous wi?h 

1 All definitions will be consistent with those given in [l]. 
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respect to set inclusion, in x. Let R(x) denote the set f(x, Q(x)) and z(x) be a p. 

measurable function such that x(x) E R(x), Then there exists a p measurable 
function (Y such that N(X) E Q(x) and f(x, a(x)) = z(x) for almost all x E x. 

The proof of this lemma follows word for word the proof given by Filippov, 
where x was a closed interval in El, and the measure was Lebesgue measure. 
It should be noted that his proof requires: for any E > 0, a measurable 
function on x be continuous on a closed subset of x, with measure differing 
from that of x by at most E. This is assured by the assumption that p is a 
nonnegative, finite regular measure. It is also required that closed sets of x 
be p measurable, a consequence of the definition 

LEMMA 1. If z is any p measurable function on 
that z(x) E co d(x) for each x E x, then z admits a 

x(x) = -$ ai y”(x) 
i=l 

of a Bore1 field. 

x with values in En, such 
representation of the form 

(1) 

where the scalar valued functions 0~~ are p measurable and 0 < ai < I, 

xf=, q(x) = 1 for each x E x. 

PROOF: Since z(x) E co d(x), for each x the representation (1) is certainly 
valid. It remains, therefore, to show that this can be accomplished with p 
measurable functions ai. 

Let Q be the simplex defined by Q = (a E Ek: zf=, o($ = 1, 0 < 0~~ < 1). 
Thus Q is closed and bounded. Define 

f(x, 4 = 2 %YYX) 
i=l 

for (x, 4 E x x Q. 

Then f  is continuous. If z is any measurable function with s(x) belonging 
to the set f(x, Q), the extended lemma of Filippov states that z can be repre- 
sented as z(x) = f(x, a(x)) for almost all x, where (Y is a p measurable function 
of x with a(x) E Q. 

THEOREM 1. 9, = 9t?c0~. 

PROOF: Certainly 9?)c0d 3 9&. Let z be any measurable function with 
z(x) E co d(x). We must produce a measurable function y, with y(x) E d(x), 
such that v(z) = v(y). 

By Lemma 1, z admits the representation z(x) = ~~~, cli(x)yi(x), where 
the 0~~ are measurable and satisfy 0 < ai Q 1, zf=, ai = 1. 

For any measurable subset E C x define pii(E) = S,y:(x) dp, i = 1,2, ..., k; 
j = 1, 2, ..., n, where y: is the jth component of the vector yi. 



80 HERMES 

Consider the Ksn dimensional vector w(x) defined by 

44 = (j, d-4 &I,, ---s j x 44 hn, j, 44 CEcLzl, **-p j, 44 htn, 

s 44 dtLm -**> f 44 dvlcn x K ) . 

By Theorem 4 [5], there exists a measurable vector LY* with a:(~) = 
{i and ZF=i &‘(x) = 1, such that ~(a*) = ~(a). In particular, 

Thus 

j x(x) dp = 
x 

j 3 m,(x) yi(x) dp = j 2 u,*(x) y”(x) dp. 
x .j=l xi=1 

Let li = (X E X: $(x) = 11, i = 1,2, ..., K. Then each set Ii is measur- 
able and Ut,, Ii = X, Ii n Ii = 0 if i # j. Define y(x) = yi(x) for x E 1,. 
Then y is measurable, y(x) E d(x) and a(y) = o(z), which completes the proof. 

COROLLARY. Let a(x) be any set in E* such that &4(x) C B(x) and co d(x) = 
co 9qx)foY each x E x. If 929, C2&&? denote the ranges, in En, of v(z) for measur- 
a& z such that Z(X) E 2@(x) and x(x) E co a(x) respectively, thm 9& = ~3~ = 
92 ml - - -%,d. 

PROOF: Since d(x) C a(x) C co 97(x) = co d(x), it follows that WM C 

R9 c %, = %os4- But by Theorem 1, gti = gcO&. 

III. APPLICATIONS TO THE THEORY OF OPTIMAL CONTROL 

In this section x will be the interval [0, tl] C El and p Lebesgue measure. 
A control u will be a vector valued, measurable function defined on [0, tl] 
with value u(t) in a given set U(t) C Er. 
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We will first consider the system 

L?(t) = A(t)x(t) + b(t, u(t)), x(0) = x0 (2) 

where dot denotes differentiation with respect to t, x is an n vector, A is a 
measurable n x n matrix valued function of t, summable over [O,t,], while b 
is an n vector valued function, continuous on [0, tl] x E’. 

Assume there exist continuous controls ul, u2, “‘, uk such that if d(t) = 
{b(t, u’(t)), “‘, b(t, u”(t))} while 33(t) = {b(t, u): (T E U(t)}, then co d(t) = 
co LB(t); t E [O, t1]. 

We will show that sf a state x* can be attained in time t* E [0, tJ by an 
arbitrary control, i.e., for some control u the solution vu (which exists and is 
unique in the class of absolutely continuous functions) of (2) is such that 
@(t*) = x*, then there is a control v which at each time t E [0, t*] assumes 
one of the values u’(t), ..., u”(t) and is such that v”(t*) = x*. 

We will call a control v with range at t restricted to the values d(t), “‘, 
u”(t) a restricted control. 

Results of this type for an equation of the form (2) were obtained in [3]. 
To prove the preceding assertion, let X(t) denote a fundamental solution 

of the homogeneous equation 2 = A(t)x. Then for any control u, the solution 
of (2) is given by 

p”(t) = X(t) x0 + X(t) j” X-l(r) b(r, U(T)) dr, t E [0, tI]. 
0 

Let u be a control such that @(t*) = x*. It will suffice to show there exists 
a restricted control v such that 

jt* X-‘(T) b(T, U(T)) dT = j” x-l(T) b(T, V(T)) dT. 
0 0 

Define 
d*(t) = {X-l(t) b(t, ul(t)), ..*, X-l(t) b(t, u’(t))} 

.93*(t) = (X-l(t) b(t, CT) : a E U(t)}. 

Since X-l(t) is a linear operator, and co d(t) = co &Y(t), it follows that 
co d*(t) = cog*(t) f or each t E [0, t*]. The corollary to Theorem 1 yields 
w,* ,w,,*. Thus there is a measurable function y such that y(t) E d*(t) 
and so y(T) dT = Ji* X-l(T)b(T, u(T)) dT. By Filippov’s lemma y can be 
realized in the formy = X-l(t)b(t, v(t)) f or almost all t, where the measur- 
able function v is such that v(t) E {u’(t), ..., uk(t)}. This completes the argu- 
ment. 

We next consider the system 

z?(t) = f(t, x(t), u(t)), x(0) = x0. (3) 

6 
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It will be assumed that each component fi of the 1z vector valued function f 
is bounded by M in absolute value, continuous in all arguments, and satis- 
fies a uniform Lipschitz condition of the form 

where 

I/X-fll =~jX~-*JiI* 

i=l 

Again, for any control u, a unique solution of (3) exists in the class of 
absolutely continuous functions. 

Assume ~2, u2, ** ., uk are k continuous controls such that if &(t, x) = 

{f(c % W)* “‘> f(t, x9 u”(t))> while g(t, x) = {f(t, x, u): u E u(t)}, then 
co &(t, X) = co s(t, x), for all (t, x) E [0, tl] x En. 

We will show that if given any E > 0 and an arbitrary control u, there exists 
a restricted control v such that 11 p(t) - p)“(t) 11 < E for all 0 < t < t,. 

Let 7 be the trajectory to be approximated and, for the moment, let v  
be an arbitrary control. Then 

VW - v”(t) = 1: [f (7, v+), w - f CT, PW +>)I dT 

= s 1 [f (7, T’“(d, u(T)) - f (7, ‘?‘,“bh v(T)>] d7 

+ 1” [f (7, 9’%), v(T)) - f (7, P”(t)> +>)I dT. 
0 

Using the assumed Lipschitz condition we obtain 

11 ‘Putt) - ‘P”(t) 11 < j / ,: if (7, Y?‘“(T), U(T)) - f (7, P”(T), V(T)) d7 11 

+ nK 1” II P,“(T) - V’“(T) 11 d7. (4) 
‘0 

It can now be seen that the result would be an immediate consequence 
of the Gronwall inequality if we could show the existence of a restricted v  
which makes the term ]I si v(T, p(T), u(T)) - f (7, v,“(T), V(T))] dT I] arbitrarily 
small, uniformly for t E [0, tl]. 

Subdivide the interval [0, tl] into m equal subintervals each of length 
8 = Q/m. Let 1, denote the jth subinterval. By the corollary to Theorem 1, 
for each j there exists a measurable function yj defined on Ij with values 
yj(t) E d(t, q,“(t)) such that 

s,fh P”(T), U(T)> dT = j-,, Y+) d7. (5) 2 
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By Filippov’s lemma yj can be realized in the form 

Y(t) = f(4 v(t), 3t>> (6) 

for almost all t in Ij, where vj is a restricted control on 4. Define v(t) = vi(t) 
for tEIj,j=l,2;..,m. 

For any t E [0, tJ let Y be an integer such that VS < t < (v + l)S. Using 

(5) and (6) 

= / j 11, [fb, QJ”(T), U(T)> - f(~, ~‘(4 +))I d7 / / < 2%Ww 

M being the bound on the components of the vector f. If given any e1 > 0, 
one can choose m > 2nt,M/q, thereby obtaining 

I/ j” [fk, ‘?‘“(d, u(T)) - f@, VW(T)> ‘+)>I dT / j < 9, t c [o, td 
0 

Using this bound in (4), the Gronwall inequality yields j 1 p(t) - q?(t) 1 j < 
e,enKtl for all t E [0, tl], which completes the argument. 

Other results concerning uniform approximation theorems can be found 
in [2]. 
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