JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 8, 78-83 (1964)

A Note on the Range of a Vector Measure; Application to the Theory of Optimal Control

H. HERMES

Martin Denver and RIAS The Martin Company, Denver, Colorado

Submitted by J. P. La Salle

I. INTRODUCTION

Let χ be a compact metric space, and y^i , $i = 1, 2, \dots, k$, be continuous vector valued functions on χ into E^n . Let μ be a nonnegative, finite regular measure on the Borel subsets of χ .¹ For each $x \in \chi$, we denote by $\mathscr{A}(x)$ the set $\{y^1(x), \dots, y^k(x)\}$, and by co $\mathscr{A}(x)$ the convex hull of $\mathscr{A}(x)$.

With each μ measurable function z defined on χ associate the vector $v(z) = (\int_{\chi} z_1(x) d\mu, \dots, \int_{\chi} z_n(x) d\mu)$ and denote by $\mathscr{R}_{\mathscr{A}}$ the range, in E^n , of v(z) for measurable functions z such that $z(x) \in \mathscr{A}(x)$, while $\mathscr{R}_{co\mathscr{A}}$ denotes the range of v(z) for measurable functions z such that $z(x) \in co\mathscr{A}(x)$.

It is shown that $\mathscr{R}_{\mathscr{A}} = \mathscr{R}_{\cos\mathscr{A}}$.

This result will be applied to obtain a uniform approximation theorem of the form found in [2], and also to obtain an extended bang-bang principle of the type given in [3], for problems in which the range set of the control vector may vary with time.

II. STUDY OF $\mathcal{R}_{\mathcal{A}}$ AND \mathcal{R}_{cost}

It is evident that $\mathscr{R}_{co\mathscr{A}} \supset \mathscr{R}_{\mathscr{A}}$, hence it will be necessary to show that for any μ measurable function z, with $z(x) \in co\mathscr{A}(x)$, we can produce a μ measurable function y, with $y(x) \in \mathscr{A}(x)$, such that v(y) = v(z). This will necessitate a representation of z in terms of the y^i which will make use of the following extension of a

LEMMA OF FILIPPOV [4]. Let the vector valued function $f(x, \alpha_1, \dots, \alpha_k)$, or more concisely $f(x, \alpha)$, be continuous on $\chi \times Q(x)$ to E^n , where for each $x \in \chi$, the set $Q(x) \subset E^k$ is closed, bounded, and upper semicontinuous with

¹ All definitions will be consistent with those given in [1].

respect to set inclusion, in x. Let R(x) denote the set f(x, Q(x)) and z(x) be a μ measurable function such that $z(x) \in R(x)$. Then there exists a μ measurable function α such that $\alpha(x) \in Q(x)$ and $f(x, \alpha(x)) = z(x)$ for almost all $x \in \chi$.

The proof of this lemma follows word for word the proof given by Filippov, where χ was a closed interval in E^1 , and the measure was Lebesgue measure. It should be noted that his proof requires: for any $\epsilon > 0$, a measurable function on χ be continuous on a closed subset of χ , with measure differing from that of χ by at most ϵ . This is assured by the assumption that μ is a nonnegative, finite regular measure. It is also required that closed sets of χ be μ measurable, a consequence of the definition of a Borel field.

LEMMA 1. If z is any μ measurable function on χ with values in E^n , such that $z(x) \in \operatorname{co} \mathscr{A}(x)$ for each $x \in \chi$, then z admits a representation of the form

$$z(x) = \sum_{i=1}^{k} \alpha_i(x) y^i(x) \tag{1}$$

where the scalar valued functions α_i are μ measurable and $0 \leq \alpha_i(x) \leq 1$, $\sum_{i=1}^k \alpha_i(x) = 1$ for each $x \in \chi$.

PROOF: Since $z(x) \in co \mathcal{A}(x)$, for each x the representation (1) is certainly valid. It remains, therefore, to show that this can be accomplished with μ measurable functions α_i .

Let Q be the simplex defined by $Q = \{\alpha \in E^k \colon \sum_{i=1}^k \alpha_i = 1, 0 \leq \alpha_i \leq 1\}$. Thus Q is closed and bounded. Define

$$f(x, \alpha) = \sum_{i=1}^{k} \alpha_i y^i(x)$$
 for $(x, \alpha) \in \chi \times Q$.

Then f is continuous. If z is any measurable function with z(x) belonging to the set f(x, Q), the extended lemma of Filippov states that z can be represented as $z(x) = f(x, \alpha(x))$ for almost all x, where α is a μ measurable function of x with $\alpha(x) \in Q$.

Theorem 1. $\mathscr{R}_{\mathscr{A}} = \mathscr{R}_{\mathrm{co}\mathscr{A}}.$

PROOF: Certainly $\mathscr{R}_{co\mathscr{A}} \supset \mathscr{R}_{\mathscr{A}}$. Let z be any measurable function with $z(x) \in co \mathscr{A}(x)$. We must produce a measurable function y, with $y(x) \in \mathscr{A}(x)$, such that v(z) = v(y).

By Lemma 1, z admits the representation $z(x) = \sum_{i=1}^{k} \alpha_i(x)y^i(x)$, where the α_i are measurable and satisfy $0 \leq \alpha_i(x) \leq 1$, $\sum_{i=1}^{k} \alpha_i(x) = 1$.

For any measurable subset $E \subset \chi$ define $\mu_{ij}(E) = \int_E y_j^i(x) d\mu$, $i = 1, 2, \dots, k$; $j = 1, 2, \dots, n$, where y_i^i is the *j*th component of the vector y^i .

HERMES

Consider the k^2n dimensional vector $\omega(x)$ defined by

$$\omega(x) = \left(\int_{\chi} \alpha_{1}(x) \, d\mu_{11}, \, \cdots, \, \int_{\chi} \alpha_{1}(x) \, d\mu_{1n}, \, \int_{\chi} \alpha_{1}(x) \, d\mu_{21}, \, \cdots, \, \int_{\chi} \alpha_{1}(x) \, d\mu_{kn}, \right)$$
$$\int_{\chi} \alpha_{2}(x) \, d\mu_{11}, \, \cdots, \, \int_{\chi} \alpha_{k}(x) \, d\mu_{kn} \right).$$

By Theorem 4 [5], there exists a measurable vector α^* with $\alpha_i^*(x) = \{ {}_0^1 \text{ and } \sum_{i=1}^k \alpha_i^*(x) = 1 \}$, such that $\omega(\alpha^*) = \omega(\alpha)$. In particular,

$$\left(\int_{\chi} \alpha_{1}^{*}(x) \, d\mu_{11}, \, \cdots, \, \int_{\chi} \alpha_{1}^{*}(x) \, d\mu_{1n} \right) = \left(\int_{\chi} \alpha_{1}(x) \, d\mu_{11}, \, \cdots, \, \int_{\chi} \alpha_{1}(x) \, d\mu_{1n} \right)$$

$$\left(\int_{\chi} \alpha_{2}^{*}(x) \, d\mu_{21}, \, \cdots, \, \int_{\chi} \alpha_{2}^{*}(x) \, d\mu_{2n} \right) = \left(\int_{\chi} \alpha_{2}(x) \, d\mu_{21}, \, \cdots, \, \int_{\chi} \alpha_{2}(x) \, d\mu_{2n} \right)$$

$$\vdots$$

$$\left(\int_{\chi} \alpha_{k}^{*}(x) \, d\mu_{k1}, \, \cdots, \, \int_{\chi} \alpha_{k}^{*}(x) \, d\mu_{kn} \right) = \left(\int_{\chi} \alpha_{k}(x) \, d\mu_{k1}, \, \cdots, \, \int_{\chi} \alpha_{k}(x) \, d\mu_{kn} \right)$$

Thus

$$\int_{\chi} z(x) \, d\mu = \int_{\chi} \sum_{i=1}^{k} \alpha_i(x) \, y^i(x) \, d\mu = \int_{\chi} \sum_{i=1}^{k} \alpha_i^*(x) \, y^i(x) \, d\mu.$$

Let $I_i = \{x \in \chi: \alpha_i^*(x) = 1\}$, $i = 1, 2, \dots, k$. Then each set I_i is measurable and $\bigcup_{i=1}^k I_i = \chi$, $I_i \cap I_j = \emptyset$ if $i \neq j$. Define $y(x) = y^i(x)$ for $x \in I_i$. Then y is measurable, $y(x) \in \mathscr{A}(x)$ and v(y) = v(z), which completes the proof.

COROLLARY. Let $\mathscr{B}(x)$ be any set in E^n such that $\mathscr{A}(x) \subset \mathscr{B}(x)$ and $\operatorname{co} \mathscr{A}(x) = \operatorname{co} \mathscr{B}(x)$ for each $x \in \chi$. If $\mathscr{R}_{\mathscr{B}}, \mathscr{R}_{\operatorname{co} \mathscr{B}}$ denote the ranges, in E^n , of v(z) for measurable z such that $z(x) \in \mathscr{B}(x)$ and $z(x) \in \operatorname{co} \mathscr{B}(x)$ respectively, then $\mathscr{R}_{\mathscr{A}} = \mathscr{R}_{\mathscr{B}} = \mathscr{R}_{\operatorname{co} \mathscr{A}} = \mathscr{R}_{\operatorname{co} \mathscr{A}}$.

PROOF: Since $\mathscr{A}(x) \subset \mathscr{B}(x) \subset \operatorname{co} \mathscr{B}(x) = \operatorname{co} \mathscr{A}(x)$, it follows that $\mathscr{R}_{\mathscr{A}} \subset \mathscr{R}_{\mathscr{B}} \subset \mathscr{R}_{\operatorname{co} \mathscr{A}} = \mathscr{R}_{\operatorname{co} \mathscr{A}}$. But by Theorem 1, $\mathscr{R}_{\mathscr{A}} = \mathscr{R}_{\operatorname{co} \mathscr{A}}$.

III. APPLICATIONS TO THE THEORY OF OPTIMAL CONTROL

In this section χ will be the interval $[0, t_1] \subset E^1$ and μ Lebesgue measure. A control u will be a vector valued, measurable function defined on $[0, t_1]$ with value u(t) in a given set $U(t) \subset E^r$. We will first consider the system

$$\dot{x}(t) = A(t) x(t) + b(t, u(t)), \ x(0) = x^0$$
(2)

where dot denotes differentiation with respect to t, x is an n vector, A is a measurable $n \times n$ matrix valued function of t, summable over [0,t,], while b is an n vector valued function, continuous on $[0, t_1] \times E^r$.

Assume there exist continuous controls u^1, u^2, \dots, u^k such that if $\mathscr{A}(t) = \{b(t, u^1(t)), \dots, b(t, u^k(t))\}$ while $\mathscr{B}(t) = \{b(t, \sigma): \sigma \in U(t)\}$, then co $\mathscr{A}(t) =$ co $\mathscr{B}(t); t \in [0, t_1]$.

We will show that if a state x^* can be attained in time $t^* \in [0, t_1]$ by an arbitrary control, i.e., for some control u the solution φ^u (which exists and is unique in the class of absolutely continuous functions) of (2) is such that $\varphi^u(t^*) = x^*$, then there is a control v which at each time $t \in [0, t^*]$ assumes one of the values $u^1(t), \dots, u^k(t)$ and is such that $\varphi^v(t^*) = x^*$.

We will call a control v with range at t restricted to the values $u^{1}(t)$, \cdots , $u^{k}(t)$ a restricted control.

Results of this type for an equation of the form (2) were obtained in [3].

To prove the preceding assertion, let X(t) denote a fundamental solution of the homogeneous equation $\dot{x} = A(t)x$. Then for any control u, the solution of (2) is given by

$$\varphi^{u}(t) = X(t) x^{0} + X(t) \int_{0}^{t} X^{-1}(\tau) b(\tau, u(\tau)) d\tau, t \in [0, t_{1}].$$

Let u be a control such that $\varphi^u(t^*) = x^*$. It will suffice to show there exists a restricted control v such that

$$\int_0^{t^*} X^{-1}(\tau) \ b(\tau, \ u(\tau)) \ d\tau = \int_0^{t^*} X^{-1}(\tau) \ b(\tau, \ v(\tau)) \ d\tau.$$

Define

$$\mathscr{A}^{*}(t) = \{X^{-1}(t) \ b(t, u^{1}(t)), \ \cdots, \ X^{-1}(t) \ b(t, u^{k}(t))\}$$

 $\mathscr{B}^{*}(t) = \{X^{-1}(t) \ b(t, \sigma) : \sigma \in U(t)\}.$

Since $X^{-1}(t)$ is a linear operator, and co $\mathscr{A}(t) = \operatorname{co} \mathscr{B}(t)$, it follows that co $\mathscr{A}^*(t) = \operatorname{co} \mathscr{B}^*(t)$ for each $t \in [0, t^*]$. The corollary to Theorem 1 yields $\mathscr{R}_{\mathscr{A}^*} = \mathscr{R}_{\operatorname{co}\mathscr{B}^*}$. Thus there is a measurable function y such that $y(t) \in \mathscr{A}^*(t)$ and $\int_0^{t^*} y(\tau) d\tau = \int_0^{t^*} X^{-1}(\tau)b(\tau, u(\tau)) d\tau$. By Filippov's lemma y can be realized in the form $y(t) = X^{-1}(t)b(t, v(t))$ for almost all t, where the measurable function v is such that $v(t) \in \{u^1(t), \dots, u^k(t)\}$. This completes the argument.

We next consider the system

$$\dot{x}(t) = f(t, x(t), u(t)), x(0) = x^0.$$
 (3)

HERMES

It will be assumed that each component f_i of the *n* vector valued function f is bounded by M in absolute value, continuous in all arguments, and satisfies a uniform Lipschitz condition of the form

$$|f_i(t, x, u) - f_i(t, \bar{x}, u)| \leq K ||x - \bar{x}||,$$

where

$$||x - \bar{x}|| = \sum_{i=1}^{n} |x_i - \bar{x}_i|.$$

Again, for any control u, a unique solution of (3) exists in the class of absolutely continuous functions.

Assume u^1, u^2, \dots, u^k are k continuous controls such that if $\mathscr{A}(t, x) = \{f(t, x, u^1(t)), \dots, f(t, x, u^k(t))\}$ while $\mathscr{B}(t, x) = \{f(t, x, \sigma): \sigma \in U(t)\}$, then $\cos \mathscr{A}(t, x) = \cos \mathscr{B}(t, x)$, for all $(t, x) \in [0, t_1] \times E^n$.

We will show that if given any $\epsilon > 0$ and an arbitrary control u, there exists a restricted control v such that $|| \varphi^u(t) - \varphi^v(t) || < \epsilon$ for all $0 \le t \le t_1$.

Let φ^u be the trajectory to be approximated and, for the moment, let v be an arbitrary control. Then

$$\begin{split} \varphi^{u}(t) - \varphi^{v}(t) &= \int_{0}^{t} \left[f(\tau, \varphi^{u}(\tau), u(\tau)) - f(\tau, \varphi^{v}(\tau), v(\tau)) \right] d\tau \\ &= \int_{0}^{t} \left[f(\tau, \varphi^{u}(\tau), u(\tau)) - f(\tau, \varphi^{u}(\tau), v(\tau)) \right] d\tau \\ &+ \int_{0}^{t} \left[f(\tau, \varphi^{u}(\tau), v(\tau)) - f(\tau, \varphi^{v}(t), v(\tau)) \right] d\tau. \end{split}$$

Using the assumed Lipschitz condition we obtain

$$|| \varphi^{u}(t) - \varphi^{v}(t) || \leq \left\| \int_{0}^{t} [f(\tau, \varphi^{u}(\tau), u(\tau)) - f(\tau, \varphi^{u}(\tau), v(\tau)) d\tau \right\| + nK \int_{0}^{t} || \varphi^{u}(\tau) - \varphi^{v}(\tau) || d\tau.$$
(4)

It can now be seen that the result would be an immediate consequence of the Gronwall inequality if we could show the existence of a restricted vwhich makes the term $|| \int_0^t [f(\tau, \varphi^u(\tau), u(\tau)) - f(\tau, \varphi^u(\tau), v(\tau))] d\tau ||$ arbitrarily small, uniformly for $t \in [0, t_1]$.

Subdivide the interval $[0, t_1]$ into *m* equal subintervals each of length $\delta = t_1/m$. Let I_j denote the *j*th subinterval. By the corollary to Theorem 1, for each *j* there exists a measurable function y^j defined on I_j with values $y^j(t) \in \mathscr{A}(t, \varphi^u(t))$ such that

$$\int_{I_j} f(\tau, \varphi^u(\tau), u(\tau)) d\tau = \int_{I_j} y^j(\tau) d\tau.$$
(5)

By Filippov's lemma y^{j} can be realized in the form

.

$$y^{j}(t) = f(t, \varphi^{u}(t), v^{j}(t))$$

$$(6)$$

for almost all t in I_j , where v^j is a restricted control on I_j . Define $v(t) = v^j(t)$ for $t \in I_j$, $j = 1, 2, \dots, m$.

For any $t \in [0, t_1]$ let ν be an integer such that $\nu \delta < t \le (\nu + 1)\delta$. Using (5) and (6)

$$\left\|\int_{0}^{t}\left[f(\tau,\varphi^{u}(\tau),u(\tau))-f(\tau,\varphi^{u}(\tau),v(\tau))\,d\tau\right]\right\|$$
$$=\left\|\int_{v\delta}^{t}\left[f(\tau,\varphi^{u}(\tau),u(\tau))-f(\tau,\varphi^{u}(\tau),v(\tau))\right]d\tau\right\|\leqslant 2nt_{1}M/m,$$

M being the bound on the components of the vector *f*. If given any $\epsilon_1 > 0$, one can choose $m > 2nt_1M/\epsilon_1$, thereby obtaining

$$\left\|\int_0^t \left[f(\tau,\varphi^u(\tau),u(\tau))-f(\tau,\varphi^u(\tau),v(\tau))\right]\,d\tau\,\right\|<\epsilon_1,\,t\in[0,\,t_1].$$

Using this bound in (4), the Gronwall inequality yields $|| \varphi^{u}(t) - \varphi^{v}(t) || \leq \epsilon_1 e^{nKt_1}$ for all $t \in [0, t_1]$, which completes the argument.

Other results concerning uniform approximation theorems can be found in [2].

REFERENCES

- 1. DUNFORD, N., AND SCHWARTZ, J. T., "Linear Operators." Interscience, New York, 1958.
- 2. WARGA, J., Relaxed Variational Problems, J. Math. Anal. Appl. 4, 111-128 (1962).
- NEUSTADT, L. W., The existence of optimal controls in the absence of convexity conditions. Aerospace Rept. A-62-1732.1-16. (To appear in J. Math. Anal. Appl.)
- FILIPPOV, A. F., On certain questions in the theory of optimal control. Transl. J. Soc. Ind. Appl. Math. Series on Control, 1, No. 1 (1962).
- DVORETZKY, A., WALD, A., AND WOLFOWITZ, J., Relations among certain ranges of vector measures. *Pacific J. Math.* 1 59-74 (1951).
- BLACKWELL, D., The range of certain vector integrals. Proc. Am. Math. Soc. No. 3, 390-395 (1951).
- EGGLESTON, H. C., "Convexity," Cambridge Tracts in Math. and Math. Physics No. 47. Cambridge Univ. Press, 1958.
- LASALLE, J. P., The time optimal control problem. "Contributions to the Theory of Nonlinear Oscillations," Vol. V, pp. 1-24. Princeton Univ. Press, Princeton, New Jersey, 1960.