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We consider the algebra of invariants of binary forms of degree 10
with complex coefficients, construct a system of parameters with
degrees 2, 4, 6, 6, 8, 9, 10 and 14 and find the 106 basic invariants.
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1. Introduction

Invariants
LetO(Vn)SL2 denote the algebra of invariants of binary forms (forms in two variables) of degree nwith
complex coefficients. This algebra was extensively studied in the nineteenth century, and for n ≤ 6
the structure was clear and a finite basis was known. Gordan (1868) proved in 1868 thatO(Vn)SL2 has
a finite basis for all n. For n = 7 the invariants were determined by von Gall (1888) and Dixmier and
Lazard (1986) (see also Bedratyuk (2007)). The invariants for n = 8 were found by von Gall (1880)
and Shioda (1967). The case n = 9 was done by Cröni (2002) and the present authors Brouwer and
Popoviciu (2009). Here we consider the case n = 10, and show that O(V10)SL2 is generated by 106
(explicitly known) basic invariants, and give the degrees.

Proposition 1.1. The algebra I of invariants of the binary decimic (form of degree 10) is generated by 106
invariants. The nonzero numbers dm of basic invariants of degree m are
m 2 4 6 8 9 10 11 12 13 14 15 16 17 18 19 21
dm 1 1 4 5 5 8 8 12 15 13 19 5 5 1 2 2

This list agrees with Sylvester and Franklin (1879) for degrees less than 17. Sylvester predicted 3
basic invariants of degree 17 and none of degree higher than 17 for a total of 99 basic invariants. Tom
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Hagedorn (unpublished) found104 invariants, cf. Olver (1999) (p. 40). The existence of basic invariants
of degree 21 seems to be new. That the list is complete follows as a corollary from the construction of
a homogeneous system of parameters (hsop), see below.

Systems of parameters
A (homogeneous) system of parameters for a graded algebra A is an algebraically independent set
S of homogeneous elements of A such that A is module-finite over the subalgebra generated by
the set S. Hilbert (1893) showed the existence of a system of parameters for algebras of invariants,
cf. Proposition 3.2 below.
Here we find an explicit system of parameters for O(V10)SL2 .

Proposition 1.2. The algebra I of invariants of the binary decimic has a system of parameters of degrees
2, 4, 6, 6, 8, 9, 10, 14.

This is useful, since it provides an upper bound for the degrees of basic invariants that is sufficiently
low, so that a simple computer search can find a basis for the invariants up to that degree.

2. Finding the basic invariants

A set of basic invariants of the algebra I of invariants is a minimal set of generators. The individual
generators are not uniquely determined, but their degrees are.

The ring I is graded: I = ⊕mIm, where Im is the subspace of invariants, homogeneous of degreem.
If y1, . . . , yn−2 is a system of parameters, where yi has degree di, then the Poincaré series P(t), defined
by P(t) =

∑
m dim Imt

m, can be written as a rational function in t with denominator
∏
(1 − tdi).

(Throughout this note, dim is vector space dimension, that is, is dimC.)
Now P(t) is known: it was given as a series by Cayley & Sylvester (cf. Sylvester (1878)) and as a

rational function by Springer (1977). For n = 10 we have

P(t) = 1+ t2 + 2t4 + 6t6 + 12t8 + 5t9 + 24t10 + 13t11 + 52t12 + 33t13 + 97t14

+ 80t15 + 177t16 + 160t17 + 319t18 + 301t19 + 540t20 + 547t21 + 887t22

+ 926t23 + 1429t24 + 1512t25 + 2219t26 + 2402t27 + 3367t28 + 3681t29

+ 5015t30 + 5502t31 + 7294t32 + 8064t33 + 10 419t34 + 11 550t35

+ 14 664t36 + 16 253t37 + 20 287t38 + 22 531t39 + 27 682t40 + 30 738t41

+ 37 319t42 + 41 378t43 + 49 671t44 + 55 060t45 + 65 390t46 + 72 391t47

+ 85 250t48 + · · · .

If we generate invariants of degreem, and have found dim Im independent ones, then we have found
all in degreem. If we know that there is a hsop with degrees 2, 4, 6, 6, 8, 9, 10, 14, then

P(t) = a(t)/(1− t2)(1− t4)(1− t6)2(1− t8)(1− t9)(1− t10)(1− t14)

where

a(t) = 1+ 2t6 + 4t8 + 4t9 + 7t10 + 8t11 + 15t12 + 15t13 + 20t14 + 27t15

+ 29t16 + 35t17 + 40t18 + 44t19 + 47t20 + 55t21 + 52t22 + 57t23 + 56t24

+ 57t25 + 52t26 + 55t27 + 47t28 + 44t29 + 40t30 + 35t31 + 29t32 + 27t33

+ 20t34 + 15t35 + 15t36 + 8t37 + 7t38 + 4t39 + 4t40 + 2t42 + t48.

This means that all basic invariants have degree at most 48, and we never have to consider subspaces
of dimension larger than 85250, which is doable.

So, the procedure is to find basic invariants in some way, and multiply them together so as to
construct for each m the invariants in Im that are known already. Compute a basis for the subspace
of Im spanned by these known invariants, and if this subspace has the same dimension as Im itself, it
is all of Im and we can go to the next m. Since any invariant can be written as a linear combination
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of bracket monomials, it seems reasonable to expect that one can find a spanning set for Im by just
randomly generating some bracket monomials. This worked fine for the nonic, and for the decimic
in degrees below 21, but in degree 21 where dim I21 = 547 and we quickly generated a subspace
of dimension 546, a few dozen attempts to randomly generate an invariant outside this hyperplane
failed. Therefore, we reverted to the procedure with guaranteed success: Gordan proved that a basis
for the invariants can be found effectively by computing transvectants, and this indeed yielded the
106th invariant. (Immediately afterwards the random process also succeeded.)

Various reductions simplify the calculations. First of all, we did the computations modulo a small
prime p, e.g. p = 109 worked. If the images of the invariants under reduction mod p are independent,
then the invariants are independent. Secondly, if the form is

∑10
i=0

(10
i

)
aix10−iyi, we took a4 = a7 =

a9 = 0 and a10 = 1. Again: if the images of the invariants under this substitution are independent,
then the invariants are independent. Similar things work for the nonic. But here we have the invariant
j2 = a0a10 − 10a1a9 + 45a2a8 − 120a3a7 + 210a4a6 − 126a25 of degree 2. After the substitutions this
becomes a0+45a2a8−126a25, and the substitution a0 = −45a2a8+126a

2
5maps Im onto Im/j2Im−2, and

dim Im/j2Im−2 = dim Im − dim Im−2. Now six variables (a1, a2, a3, a5, a6, a8) are left, and the largest
dimension occurring is dim I48/j2I46 = 19 860, comparatively small. (Compared to dim I48 = 85 250,
this saves almost a factor of 80 in computation time when an O(N3) rank algorithm is used.)

The computation was done, and the result is: for m ≤ 48 the values of dm are as listed in
Proposition 1.1. Consequently, if there is a system of parameters with degrees 2, 4, 6, 6, 8, 9, 10, 14, so
that no basic invariant has degree larger than 48, then Proposition 1.1 follows.

3. A system of parameters for O(V10)
SL2

Let Vn be the space of forms of degree n (in the variables x, y). A covariant of order m and degree d
of Vn is an SL2-equivariant homogeneous polynomial map φ : Vn → Vm of degree d. The invariants of
Vn are the covariants of order 0. The identity map is a covariant of order n and degree 1. Customarily,
one indicates such a covariant φ by giving its image of a generic element f ∈ Vn. (In particular, the
identity map is noted f .) Let Vm,d be the space of covariants of orderm and degree d.
Consider f ∈ V10,
f = a0x10 + 10a1x9y+ · · · + 10a9xy9 + a10y10,

and the following covariants

k= (f , f )8 ∈ V4,2, m= (f , k)4 ∈ V6,3,
q= (f , f )6 ∈ V8,2, r = (f , q)8 ∈ V2,3,
kq = (q, q)6 ∈ V4,4, km = (m,m)4 ∈ V4,6,
mq = (q, kq)4 ∈ V4,6,

and invariants (the suffix indicates the degree)

j2 = (f , f )10, A6 = (m,m)6,
j4 = (k, k)4, C6 = (r, r)2,
j8 = (k, km)4, j14 = ((kq, kq)2,mq)4,
j9 = ((m, k)1, k2)8, A14 = ((k, k)22, (m,m)2)8,
j10 = ((m,m)2, k2)8.

Theorem 3.1. The eight invariants j2, j4, A6, C6, j8, j9, j10, j14 + A14 form a homogeneous system of
parameters for the ring O(V10)SL2 of invariants of the binary decimic.
This is proved by invoking Hilbert’s characterization of homogeneous systems of parameters as

sets that define the nullcone.

3.1. The nullcone

The nullcone of Vn, denoted N (Vn), is the set of binary forms of degree n on which all invariants
vanish. It turns out (Hilbert, 1893) that this is precisely the set of binary forms of degree nwith a root
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of multiplicity> n
2 . The elements ofN (Vn) are called nullforms. The nullconeN (Vn⊕Vm) is the set of

pairs (g, h) ∈ Vn⊕Vm such that g and hhave a common root ofmultiplicity> n
2 in g and ofmultiplicity

> m
2 in h. (In this note, this result can be taken as the definition of the symbolN (Vn ⊕ Vm).)
We have the following result, due to Hilbert (1893), formulated for the particular case of binary

forms:

Proposition 3.2. For n ≥ 3, consider i1, . . . , in−2 ∈ O(Vn)SL2 homogeneous invariants of Vn. The
following two conditions are equivalent:
(i) N (Vn) = V(i1, . . . , in−2),
(ii) {i1, . . . , in−2} is a homogeneous system of parameters of O(Vn)SL2 .

(Here V(J) stands for the vanishing locus of J .)

We prove the above theorem by first finding a defining set for the nullcone that is still too large, and
then showing that some elements are superfluous.

We need information on the invariants of Vn for n = 2, 4, 6, 8:

Lemma 3.3. The following are systems of parameters of O(Vn)SL2 for n = 2, 4, 6, 8.
(i) If n = 2: (f , f )2 of degree 2.
(ii) If n = 4: (f , f )4 and ((f , f )2, f )4 of degrees 2 and 3.
(iii) If n = 6: (f , f )6, (k, k)4, ((k, k)2, k)4, and (m2, (k, k)2)4 of degrees 2, 4, 6 and 10, where k = (f , f )4

and m = (f , k)4.
(iv) If n = 8: (f , f )8, ((f , f )4, f )8, (k, k)4, (m, k)4, ((k, k)2, k)4, ((k, k)2,m)4 of degrees 2, 3, 4, 5, 6 and

7, where k = (f , f )6 and m = (f , k)4.

Proof. This is classical for n = 2, 4, 6, see, e.g., Clebsch (1872), Grace and Young (1903) and Schur
(1968), and due to von Gall (1880) and Shioda (1967) for n = 8. �

Lemma 3.4 (Weyman, 1993). Let f ∈ Vd. If d > 4k− 4 and all (f , f )2k, (f , f )2k+2, . . . vanish, then f has
a root of multiplicity d− k+ 1. If d = 4k− 4 and ((f , f )2k−2, f )d, (f , f )2k, (f , f )2k+2, . . . vanish, then f
has a root of multiplicity d− k+ 1. �

Lemma 3.5. Let f ∈ V10 and j2 = (f , f )10, k = (f , f )8 ∈ V4, m = (f , k)4 ∈ V6, q = (f , f )6 ∈ V8. We
have:
(i) If j2 = 0, k 6= 0 and (k,m) ∈ NV4⊕V6 , then f has a root of multiplicity 6.
(ii) If j2 = 0, k = 0 and 0 6= q ∈ NV8 , then f has a root of multiplicity 7.
(iii) If j2 = 0, k = 0 and q = 0, then f has a root of multiplicity 8.

Proof. The covariants k, q and the invariant j2 are:

j2 = −252a 25 + 420a4a6 − 240a3a7 + 90a2a8 − 20a1a9 + 2a0a10,

k = (70a 26 − 112a5a7 + 56a4a8 − 16a3a9 + 2a2a10)y
4

+ (56a5a6 − 112a4a7 + 80a3a8 − 28a2a9 + 4a1a10)xy3

+ (168a 25 − 252a4a6 + 96a3a7 − 6a2a8 − 8a1a9 + 2a0a10)x
2y2

+ (56a4a5 − 112a3a6 + 80a2a7 − 28a1a8 + 4a0a9)x3y
+ (70a 24 − 112a3a5 + 56a2a6 − 16a1a7 + 2a0a8)x

4,

q = (−20a 27 + 30a6a8 − 12a5a9 + 2a4a10)y
8

+ (−40a6a7 + 72a5a8 − 40a4a9 + 8a3a10)y7x
+ (−140a 26 + 168a5a7 − 40a3a9 + 12a2a10)y

6x 2

+ (−168a5a6 + 280a4a7 − 120a3a8 + 8a1a10)y5x3

+ (−252a 25 + 280a4a6 + 40a3a7 − 90a2a8 + 20a1a9 + 2a0a10)y
4x4

+ (−168a4a5 + 280a3a6 − 120a2a7 + 8a0a9)y3x5

+ (−140a 24 + 168a3a5 − 40a1a7 + 12a0a8)y
2x6

+ (−40a3a4 + 72a2a5 − 40a1a6 + 8a0a7)yx7

+ (−20a 23 + 30a2a4 − 12a1a5 + 2a0a6)x
8.
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(i) If (k,m) ∈ NV4⊕V6 then k andm have a common root, of multiplicity 3 in k and of multiplicity 4 in
m. Without loss of generality we consider the cases k = x4, x4 | m and k = x3y, x4 | m.

Case 1: k = x4. Thenm becomes:
m = (f , x4)4 = a4x6 + 6a5x5y+ 15a6x4y2 + 20a7x3y3 + 15a8x2y4 + 6a9xy5 + a10y6.

From x4 | m it follows a7 = · · · = a10 = 0. We replace this in k and because we supposed k = x4 we
obtain also a6 = a5 = 0. But then x6 | f , hence f will have a root of multiplicity 6.

Case 2: k = x3y. Thenm becomes:
m = (f , x3y)4 = −a3x6 − 6a4x5y− 15a5x4y2 − 20a6x3y3 − 15a7x2y4 − 6a8xy5 − a9y6.

From x4 | m it follows a6 = · · · = a9 = 0. We replace this in k and j2 and as we supposed k = x3ywe
obtain

168a 25 + 2a0a10 = 0,

−252a 25 + 2a0a10 = 0,

which implies a5 = 0. But then the coefficient of x3 in kbecomes 0. Contradictionwith our assumption.

(ii) Without loss of generality we suppose x5 | q. We denote by J the ideal generated by j2, the
coefficients of k and the coefficients of x4y4, x3y5, . . . , y8 in q. Denote also by p1, p2 and p3 the
coefficients of x7y, x6y2 and x5y3, respectively, in q. We have

p 41 , p
3
2 , p

2
3 ∈ J,

which implies that x8 | q.
Consider now the ideal J generated by j2, the coefficients of k and the coefficients of

x7y, x6y2, . . . , y8 in q. Denote by p0 the coefficient of x8 in q.Wehave aip0 ∈ J for i = 10, 9, 8, 7, 6, 5, 4.
Because q 6= 0 we find a10 = · · · = a4 = 0. This means that x7 | f , so f will have a root of multiplicity
7.

(iii) This follows from Lemma 3.4. �

Lemma 3.6. Let k ∈ V4 and m ∈ V6, k 6= 0, m 6= 0, both of them nullforms. If the transvectants
((m,m)4, k)4, ((m,m)2, k2)8, (m2, k3)12, ((m, k)1, k2)8, and ((k, k) 22 , (m,m)2)8 vanish, then (k,m) ∈
NV4⊕V6 .
Proof. Suppose (k,m) /∈ NV4⊕V6 . Without loss of generality we suppose

k = x3(a1x+ a2y),
m = y4(b1x2 + b2xy+ b3y2).

We have
0 = ((m,m)4, k)4 ∼ a1b 21

Case 1: a1 = 0. Then

0 = ((m,m)2, k2)8 ∼ a 22 b
2
1 ,

0 = ((m, k)1, k2)8 ∼ a 32 b3,

0 = ((k, k) 22 , (m,m)2)8 ∼ a
4
2 (5b

2
2 − 12b1b3).

Because k 6= 0 we have a2 6= 0, but then it follows that b1 = b3 = b2 = 0. Contradiction withm 6= 0.

Case 2: a1 6= 0, b1 = 0. Then

0 = ((m,m)2, k2)8 ∼ a 21 b
2
2 ,

0 = ((m, k)1, k2)8 ∼ a 32 b3,

0 = ((k, k) 22 , (m,m)2)8 ∼ a
4
2 b
2
2 ,

0 = (m2, k3)12 ∼ a1(a 22 b
2
2 − 11a1a2b2b3 + 22a

2
1 b
2
3 ).
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If a2 6= 0 then b2 = b3 = 0. And if a2 = 0 then a 21 b
2
2 = a

3
1 b
2
3 = 0, and again b2 = b3 = 0.

Contradiction withm 6= 0. �

After this preparation we can write down a defining set for the nullcone. Define k,m, q, j2, j4, A6, j8,
j9, j10, j14, A14 as above (before Theorem 3.1), and moreover

j6 = ((k, k)2, k)4, A12 = (m2, k3)12,
B6 = ((q, q)4, q)8.

Proposition 3.7. With notations as above, the nullconeNV10 is defined by

NV10 = V(j2, j4, j6, A6, B6, j8, j9, j10, A12, j14, A14).

Proof. Since k ∈ V4 we can apply Lemma 3.3(ii) and conclude that if j4 = j6 = 0 then k is a nullform.
Without loss of generality we consider three cases: k = 0, k = x4 and k = x3y.

Case 1: k = 0. Denote by I = (j2, k) the ideal generated by j2 and the coefficients of k. Define

A4 = (q, q)8, A10 = (mq, kq)4,
A8 = (kq, kq)4, B12 = ((kq, kq)2, kq)4.

Since q ∈ V8, in order to show that q is a nullform it suffices by Lemma 3.3(iv) to show that each of A4,
B6, A8, A10, B12 and j14 vanishes.
Easy Gröbner basis computations show that A4, A8, A10 ∈ I and B12 ∈ (I, B6). It follows that if k = 0

and j2 = B6 = j14 = 0 then q is a nullform. Now Lemma 3.5 implies that f is a nullform.

Case 2: k = x4. Then we have:

A12 ∼ a 210,

j10 ∼ −a 29 + a8a10,

j8 ∼ 3a 28 − 4a7a9 + a6a10,

A6 ∼ −10a 27 + 15a6a8 − 6a5a9 + a4a10.

If A12 = j10 = j8 = A6 = 0 then it follows that a10 = · · · = a7 = 0. If we substitute this in kwe obtain

k = 70a 26 y
4
+ 56a5a6xy3 + (168a 25 − 252a4a6)x

2y2

+ (56a4a5 − 112a3a6)x3y+ (70a 24 − 112a3a5 + 56a2a6)x
4,

and as we supposed k = x4 we get also a6 = a5 = 0, which implies that f is a nullform.

Case 3: k = x3y. Then we have:

j9 ∼ a9,
A14 ∼ a7a9 − a 28 ,

j10 ∼ −5a 27 + 2a6a8 + 3a5a9,

A6 ∼ −10a 26 + 15a5a7 − 6a4a8 + a3a9.

If j9 = A14 = j10 = A6 = 0 then a9 = · · · = a6 = 0. We substitute this in k and j2:

k = 2a2a10y4 + 4a1a10xy3 + (168a 25 + 2a0a10)x
2y2 + 56a4a5x3y+ (70a 24 − 112a3a5)x

4,

j2 = −252a 25 + 2a0a10.

From 168a 25 + 2a0a10 = −252a
2
5 + 2a0a10 = 0 we find a5 = 0, which contradicts k = x

3y. �

So far, we defined the nullcone using 11 invariants, but we need a definition using 8 invariants. As
a first step, replace the two invariants of degree 14 by a single one.
Now for f = x2y(2a1x7 + 9a8y7) all invariants from Proposition 3.7 vanish, except A14. And for

f = y3(120a3x7 + a10y7) all invariants from Proposition 3.7 vanish, except j14. That means that the
single invariant of degree 14 cannot be either j14 or A14. However, as it turns out we can use j14+ A14.



A.E. Brouwer, M. Popoviciu / Journal of Symbolic Computation 45 (2010) 837–843 843

3.2. Finding the system of parameters

Proposition 3.7 gives an explicit set of invariants (and in particular an explicit set of degrees of
invariants) that define the nullcone. Having that, only a finite amount of work is left.
The final part of the construction of the system of parameters was done by computer. All

computations were carried out in the ring R generated by the 106 invariants found in Section 2. Or,
more precisely, in the quotient Q = R/j2R, reduced mod p, where this time p = 197 (the different p
has no significance), and again a4, a7 and a9were taken to be zero. It was checked that the graded parts
of the resulting ring have the expected dimension (for degree up to 54), so that no collapse occurred
as a consequence of the reduction mod p or the substitution of variables.
The ideal generated in this ring by all invariants of degrees 4, 6, 8, 9, 10, 14 has full dimension 542

for its graded part of degree 24. We know that dim I24 = 1429 and dim I22 = 887 and multiplication
by j2 is an injection, so dim I24/j2I22 = 542. It follows that the ideal generated by these invariants,
togetherwith j2, contains all of I24, so that no invariants of degree 12 are needed to define the nullcone
(since their squares are in I24, and they themselves are in the radical).
With only j14 + A14 instead of all invariants of degree 14 in the set of generators of the ideal, one

finds full dimension 1148 for the graded part of degree 28, so this single invariant of degree 14 suffices.
With only j10 instead of all invariants of degree 10, one finds full dimension 221 in degree 20, so

this single invariant of degree 10 suffices.
With only j9 instead of all invariants of degree 9, one finds full dimension 890 in degree 27, so this

single invariant of degree 9 suffices.
With only j8 instead of all invariants of degree 8, one finds full dimension 2279 in degree 32, so

this single invariant of degree 8 suffices.
That only leaves the invariants of degree 6. After some work it turned out that with only A6

and C6 one finds full dimension 37892 in degree 54, so these suffice, and we have constructed the
homogeneous system of parameters promised in Theorem 3.1.

Note that one knows what to expect if all is well: the coefficients of the polynomial a(t) from
Section 2 give for each degree the codimension of the set of invariants in the ideal generated by the
hsop in the space of all invariants of that degree. Since 54 is the smallest multiple of 6 where a(t) has
zero coefficient, that explains why the computation had to extend to there.
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