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A particular class of multivariate negative binomial distributions has probability 
generating functions of the form II- Ql*ll- QSl mz. where a~=-0 and 
S= diag(s, ,..., s,). The main results of this paper concern characterizations of the 
intinitely divisible distributions of this class. kn 1987 Academic Press. Inc. 

1. INTRODUCTION 

One type of n-dimensional exponential distribution has Laplace trans- 
form 

II+ VTJ -I, (1) 

where V is an it x n positive semi-definite matrix and T= diag(t, ,..., t,). 
Such distributions arise naturally from a Wishart matrix with two degrees 
of freedom as the joint distribution of the diagonal elements after scaling by 
dividing by two. 

Griftiths [4] characterizes the class of matrices V for which the dis- 
tribution with Laplace transform (1) is infinitely divisible, after partial 
results by earlier authors. In the proof of this characterization there arises a 

Received 1984; revised July 23, 1986. 

AMS 1980 subject classifications: 60E05; 62HOS. 
Keywords and phrases: Infinite divisibility, multivariate geometric distribution, multivariate 

negative binomial distribution. 

* Research completed while visiting the Department of Mathematics, University of 
Western Australia. 

13 
0047-259X/87 $3.00 

Copyright 0 1987 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81926921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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class of multivariate geometric distributions whose probability generating 
functions (pgfs) are of the form 

II- et II- es1 --‘, (2) 

where Q is an n x n matrix and S = diag(s , ,..., s,). Clearly there is a close 
relationship between multivariate geometric and multivariate exponential 
distributions. Although this relationship is exploited in Grilfiths [4], the 
results obtained there about multivariate geometric distributions are 
incomplete and not stated explicitly. 

The main result of this paper, Theorem 2 in Section 3, gives a complete 
characterization of the n x IZ matrices Q for which (2) is an infinitely 
divisible pgf. Certain of the conditions on Q have a natural and elegant 
statement in graph-theoretic terms. Section 2 considers some preliminary 
aspects of structure, establishing a characterization of those symmetric 
matrices Q for which (2) is a pgf. 

When the pgf (2) is infinitely divisible, 

II- Ql’lZ- QS( --’ (3) 

is a pgf for each a > 0. In this case the corresponding distributions are mul- 
tivariate negative binomial. (It is convenient in this paper to admit random 
variables degenerate at zero as being negative binomial.) 

The pgfs (2) and (3) belong to the class of pgfs of the form 

( H(s)) -3 Y > 0, (4) 

where H is a multilinear form in sl ,..., s,,, i.e., H is of the form 

H(s)=a,+ i 1 ai,. ;,s,,si, .‘. s,,, 
r= 1 :i,. . i,} 

the inner summation being over all r-subsets of { 1, 2,..., n}. Some results 
about pgfs of the form (4) have been obtained by Doss [l] and Milne [7], 
and for the two-dimensional case by Wiid [S] and Edward and 
Gurland [2]. 

In Section 4 we specialize to the bivariate case and show that then the 
class of pgfs (4) is always infinitely divisible, coinciding with the infinitely 
divisible class (3). As a by-product it is found that negative correlation is 
nor possible in bivariate pgfs of the form (3). 

2. BASIC STRUCTURE 

We begin by establishing a simple necessary and sufficient condition 
for (2) to be a pgf, assuming Q is symmetric and positive semi-definite. 
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THEOREM 1. Let Q be an n x n real symmetric positive semi-definite 
matrix and S = diag(s, ,..., s,), where lsij Q 1, i = I,..., n. Then 

is a pgf lff all the eigenvalues of Q lie in the interval [0, 1). The 
(multivariate) marginal pgfs are all of the same general form, the univariate 
marginals being geometric distributions. 

Proof Let Y have a multivariate exponential distribution with Laplace 
transform ( 1 ), where V= (I- Q) ~ i - I. Since Q has eigenvalues in [0, 1 ), V 
is positive semi-definite. Now let Z be such that its conditional distribution 
given Y is of independent Poisson random variables with &(ZJY) =Y. 
Then the (unconditional) pgf of Z is 

P(S)=4(&(csF lY))=R(Qexp(-Y,(l-s;)}) 

=/I+ V(Z-S)(-‘=IZ-Ql IZ-QSlpl. (5) 

This establishes the sufficiency of the eigenvalue condition on Q. 
When the given function is a pgf, it is necessarily finite for all complex s 

such that Jsj < 1, s = l,..., n, and hence the polynomial )I- Qzl in z cannot 
vanish for any z less than or equal to one in modulus. This establishes the 
necessity, since the eigenvalues of Q must be real. 

Finally, observe that any subset of variables having the given pgf, has a 
pgf of the same form with I’ replaced by its corresponding submatrix. In 
particular, the univariate marginal distributions have pgfs 

[I -v;;(s;- I)]-‘, i = l,..., n. 1 

Remark 1. With V and Q related as above, either of the two equivalent 
forms (5) may be used. Observe that V is symmetric iff Q is symmetric, and 
further that V is positive semi-definite iff Q has all its eigenvalues in [0, 1). 

Remark 2. Clearly Z ,,..., Z, are mutually independent iff V is diagonal. 

Remark 3. If Y has the structure Yv where v is a vector of positive con- 
stants and Y has an exponential distribution with mean 1, then Z has pgf 

[ 

-1 

l-iVi(Si-ll) . 
I 1 

This corresponds to (5) with 

(6) 

if= C&,> Q=(l+ivi)-’ ?‘. 
1 

683/22/l-2 
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It is the well-known form of multivariate geometric distribution. From con- 
sideration of marginals it follows that a function of the form (6) is a pgf iff 
v, 3 0, i = 1 )...) n. 

Remark 4. Random variables 2, ,..., Z, with pgf (5) are exchangeable iff 

V=a”[(l -p)Z+pJ], -(n-1))‘dpbl, (7) 

where J is a matrix of unit entries. Thus, evaluating the determinant we 
deduce that the pgf of Z is 

i 
l-pcr’~(si-l)[l-~~(l-p)(si-l)]-’ --I 

I 1 

xfi [l -oZ(l -p)(s,- 1)1-r. 

3. CHARACTERIZATION OF INFINITE DIVISIBILITY 

To facilitate an elegant statement and proof of our main characterization 
result, we adopt a graphic-theoretic representation of certain matrix 
properties. Similar graph theory was employed by Griffths [4] in a version 
(Theorem 2) of his main characterization result (Theorem 1). For 
background and terminology not explained here, refer to Wilson [9]. 

Given an n x n matrix Q with the property that all off-diagonal pairs of 
elements satisfy 

4fj4,i 2 09 i#j, i, j= l,..., !I, 

construct a simple graph, G(Q), with vertex-set { 1, 2,..., n} and edge-set 
{{i,j}:i#j, qii+qii#O, i,jE{1,2 ,..., n}}. Colour an edge green if 
qi, + qii < 0 or red if qij + q,; > 0. A circuit in G(Q) is defined to be elemen- 
tary if there are no other edges in G(Q) joining pairs of vertices of the cir- 
cuit, apart from the original circuit edges. 

LEMMA. Let G be a simple graph whose edges are coloured red or green. 
Every circuit in G has an even number of green edges if and only if every 
elementary circuit in G has an even number of green edges. 

ProoJ The necessity is clear. An induction proof on circuit length gives 
the sufficiency. A path r, r2r, trivially has an even number of green edges. 
Assume that all circuits of length less than k have an even number of green 
edges if all elementary circuits have this property. 

If a circuit r, r2 . . . rkr, is not elementary there exists an edge r,r,,, from 
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G not in the circuit. Two circuits are formed with the original edges and the 
edge rIrm, 

w2 ... r,rmrm+, ... rkrl, r,rl+,r,+2 ... rmr,. 

If all circuits of length less than k have an even number of green edges, 
then the number of green edges in each circuit is even. Since r,r,,, is 
included in both circuits the original circuit has an even number of green 
edges. This completes the induction proof of the lemma. 1 

Remark 5. Define Q* = Q + Q’, where ’ denotes transpose. Then it is 
clear that the statement “every circuit in G(Q) has an even number of green 
edges” can be expressed algebraically as 

4;r24::r, ... 4&, 2 0 for all subsets (rl ,..., rk) of { l,..., H}. (8) 

THEOREM 2. Let Q be an n x n (real) matrix. Then 

P(s) = II- Ql (I- QSl - ‘, 

with S = diag(s, ,..., s,), is an infinitely divisible (multivariate geometric) pgf 
iff: 

(i) the eigenvalues of Q are bounded (strictly) in modulus by one; 

(ii) qii30 andqliqji30, i#j, i, jE{l,&...,n}; and 

(iii) every elementary circuit in the graph G(Q) has an even number of 
green edges. 

Proof: When (i) is satisfied, it can be shown (cf. Grifliths [4]) that the 
expansion 

In P(s) = InIl- Ql + f tr{ (QS)k}/k 
k=l 

(9) 

is valid and convergent for lsil < 1, i= l,..., n. Then P(s) is infinitely 
divisible iff the coefficients, apart from the constant term, in the multiple 
variable power series (9) are non-negative. That is, P(s) is infinitely 
divisible iff for all non-negative integers j, ,..., j, (not all zero) the coefficient 
of s’: . . . tii in (9) is non-negative, i.e., 

where the summation is over i, ,..., ikE (1, 2 ,..., n> such that 
k=j, + ... +j,, and the number of indices i, ,..., i, equal to I is jr, 
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I= 1, 2,..., n. To establish the theorem it will be shown that the totality of 
conditions (10) is equivalent to 

4r,r24qr, . . qr,,, 2 0 for all subsets {r,,..., rk} of (l,..., it}. (11) 

Under condition (ii), (8) and (11) are equivalent and, because of the 
lemma, equivalent to (iii). Now observe that terms in the sums on the 1.h.s. 
of ( 10) can all be factored into products as in ( 11) and diagonal entries q,,, 
r E (l,..., n}, the latter being non-negative when (ii) is satisfied. Hence, the 
sufficiency of (i), (ii). and (iii) has been proved. 

Necessity. For condition (i), necessity follows straightforwardly as in 
the proof of Theorem 1. 

Placing k = 1 in (10) yields qii > 0, i = l,..., n. This together with (10) for 
k = 2 shows that the remaining conditions in (ii) are necessary. 

It has now been shown that (i) and (ii) are necessary, and that when 
they are satisfied 

(11)0(8)o(iii). 

Hence to complete the proof of necessity, and thereby of the theorem, we 
have to show only that (10) implies (11) and therefore (iii). It is clearly 
enough to do this assuming rlr2 ... rkr, is an elementary circuit in G(Q). 
In this case (10) with j,, = . . . = jrk = 1 is equivalent to 

4r,r2qr2r, . . . qrv, + qr,‘kqrkrk-, ’ . . qrm 2 0. 

Because (ii) is satisfied, both products on the 1.h.s. are non-negative. 1 

COROLLARY 1. Conditions (ii) and (iii) of the theorem can be replaced 
by: 

(ii’) P(s) can be expressed as 

II- Q,l II-- ad -‘9 

where Q, = t lqiil 1. 

ProoJ The sufficiency is clear from (lo), and the necessity from 
(11). I 

COROLLARY 2. If Q satisfies (i), (ii) of Theorem 2 and all the off- 
diagonal elements of Q* = Q + Q’ are non-zero, then P(s) is an infinitely 
divisible pgf if and only if 

4$&t 4:; ’ 09 i, j, ke (1, 2 ,..., n}. 
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Proof: In this case all the elementary circuits of G(Q) are triangles. 

Remark 6. When n > 2, not all P(s) satisfying (i) and (ii) of Theorem 2 
are infinitely divisible. Consider the exchangeable distribution in Remark 4 
when a2 = 1. Then 

Q=Z-(Z+ V)-’ 

Hence, from Corollary 2, although P(s) is a pgf for all -(n - 1))’ <p < 1, 
it is infinitely divisible only if 0 6 p < 1. 

Remark 7. Suppose that X=X, i X2, the direct sum of X, and X2, 
has pgf (5) where V is a symmetric positive semi-definite matrix. Then X, 
and X2 are independent iff V,, = 0. This is necessary, since if Xi is an 
element of X, and Xj of X2, 

COV(Xi, Xi) = us, 

and so independence implies V,Z = 0. Conversely, if V,, = 0 then (in an 
obvious notation) 

If P(s) is infinitely divisible and V is not symmetric a characterization of 
independence is more involved. Observe that for X with pgf (5) 

cov(X,, X,) = ujp,i. (12) 

Hence, it is possible that cov(X,, X,) = 0 whenever Xi is an element of X, 
and X, of X2 with X =X, i X2 but that X, and X2 are not independent. 

Define a directed graph G,(Q) with vertices { 1, 2,..., n} and edges 
({i,j}: i#j, qii#O, i, jE { 1, 2 ,..., n)}. 

THEOREM 3. Suppose that X has an infinitely divisible pgf of the form (5) 
and that the vertex set of G,(Q) is partitioned into U, and Uz. Set 
Xi= (X,: kE U,), i= 1,2. Then X, and X2 are independent iff every (direc- 
ted) circuit in GJQ) contains vertices of either UI or U2, but not both. 

Proof: This is immediate from (10) and (11) since independence is 
equivalent to In P(s) being a sum of two functions, one of s, and one 
of s*. 1 

COROLLARY. A sufjcient condition for independence is that either 
Q,, = 0 or Qzl = 0. 
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Proof: Under the given condition it is clear that a directed circuit of 
G,(Q) cannot contain vertices of both U, and Uz. 1 

Remark 8. Observe that, in view of (12) it is not necessary that V be 
positive definite even when it is symmetric. 

The class of pgfs obtained from Theorem 2 with symmetric Q is strictly 
larger than the class of infinitely divisible pgfs that can be obtained from 
Theorem 1. It is easy to exhibit a suitable example. 

Remark 9. When X, ,..., X, have a pgf of the form (3) it follows that 
x, + “’ + X, has pgf 

where I’= (Z-Q))’ -I and A,3 ... 3 A,, are the eigenvalues of V. Thus 
x, + ..’ + X, will have some negative binomial distribution iff 
2, = .‘. =A,=2 and Ak+,= ..’ = A,, =0 for some k, 1 d kbn. In par- 
ticular the distribution of X, + ... + X, will be negative binomial with 
index a iff V is of rank one. 

Further, it is easy to check that the distribution of the sum of any 1 of 
x 1 ,..., X,, has a negative binomial distribution with index a iff V is of rank 
one. 

4. BIVARIATE GEOMETRIC DISTRIBUTIONS 

Observe that in Theorem 2, when II = 2, the third condition plays no 
role: (i) and (ii) alone are necessary and sufficient for P(s), of the specified 
form, to be an infinitely divisible pgf. We now consider the bivariate case in 
a different parametrization (cf. (4)). 

THEOREM 4. Let 

P(s,, s2) = (a, + alsl + a2s2 + a12s,s2)-‘. 

Then P(s,, s2) is a pgf isf 

(i) a,+a,+a,+a,,= 1; 
(ii) a,>O, a, GO, a,<O; 

and either 

(iiia) a,, 60 or 

(iiib) a,z > 0, ala2 3 a,,aO, 

(13) 
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and the roots of 

a,+(a,+a,)s+a,,s*=O (14) 

(both real) are strictly greater than one. 
Further, if P(s,, s2) is a pgf then it is infinitely divisible. 

ProojI Sufficiency of (i), (iii), and (iiia). This is well-known, being 
established first by Edwards and Gurland [2]: start from the bivariate 
Poisson pgf (cf. Johnson and Katz [S, Chap. 11, Sect. 41) 

exp(la,(s, - l)+ia,(s,- l)+J.a,,(s,s,- 1)) 

and let 1 have an exponential distribution with parameter one. 

Sufficiency of(i), (ii), and (iiib). Clearly (i) ensures P(l, I)= 1. When (ii) is 
satisfied a 2 x 2 matrix Q can be found satisfying 

qll = -a,lao, q2* = --a21a0, 412421= (ala2 - a12aoY4. 

If (iiib) holds then q12q2, > 0 and it is possible to choose Q to be symmetric 
with q,? 20. Hence Q is positive semi-definite, since qI1 > 0, qz2 20, and 
lQ[ = a12/a0 > 0. Further, P(s,, s2) can be written as 

where S = diag(s,, sz). 
Clearly the eigenvalues of Q are non-negative; they will be in (0, 1) 

provided 

0 = (I- Qsl II- Ql-‘= a0 + (a, + a?) s + a,2s2 

has roots in (1, co). Since this is ensured by (iiib), Theorem 1 implies that 
P(s,, s2) is a pgf. This can be deduced also from Theorem 2 which yields 
the further result that P(s, , s2) is infinitely divisible. 

Necessity. Clearly (i) is necessary. If (X,, X,) has pgf P(s,, s2) then 

a;‘=P(X,=O,X,= ) 0,a,=P(X,=1,X2=0), a2=P(X,=0,X,=1) 

and hence (ii) is necessary. If a r2 d 0 the proof is completed. If aI > 0 it is 
necessary that a,a2>a,,a,. 

To show a, a, > a,2ao first note that regression of X, on X2 is linear. The 
coefficient of s, - 1 in P(s,, s2) is 

F(X,sp)= -Cl +(a2+a,,)(sz- 1)1-2[a, +a,,+a,,(s,-- l)], 



22 GRIFFITHS AND MILNE 

and the coefficient of s; in this expression, divided by P(X, =x) is 

&(X,/X, = x) = (u1u2 - a+“) cx + b, (15) 

where c > 0 and both sides of (15) must be non-negative for all x = 0, l,.... 
Finally, observe that (ii), a,,>O, and ala2 2a,,u0 being satisfied, it 

follows from the proof of sufliciency above that the roots of (14) are strictly 
greater than one. 1 

It seems useful to restate the result of this theorem in the form of the 
following corollary. 

COROLLARY 1. Any pgf of the form (13) is infinitely divisible, and the 
class of all such pgfs coincides with the class of all (infinitely divisible) pgfs 
of the form (4) with n = 2. 

COROLLARY 2. Negative correlation is not possible in pgfs of the form 
(13), or in pgfs of the form (4) with n = 2. 

Proof: The result follows since, for the pgf (13), the covariance is 
a, a, - ulzuO and this quantity is always non-negative. i 

Remark 10. If (13) is to be a non-degenerate bivariate pgf, we must 
have at least one of the inequalities ui2 # 0, a, a, # 0 satisfied. Then each 
marginal distribution will be geometric. 

Remark 11. The two-dimensional pgf 1 I - V( S - Z)l-’ can be expressed 
as 

~r-V(S-z)~~“=(1-~)z(1-~,(S,-l))-~(l-~2(S*-1))-a 

x (1 -p(l -Q,(s,- 1)))’ (1 -B,(s,- l)))‘}P”. (16) 

where ~=vi2v2,v~‘v~‘, 8,=v,‘lVI, 8,=vi;‘IVl. If (X, Y) has pgf (16), 
then 

P(X=x, Y= y) 

= f P(k; a, p) P( x;cc+k,8,)P(y;a+k,8,), x, y=O, l,..., (17) 
k=O 

where a,,, = u(u+ l)...(u+x- 1) and 

ptx;fi, e)=p,,,(x!)-l (1 +e)y+-x)ex. 
The distribution (17) is a mixture of independent negative binomial 
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distributions, mixed by another negative binomial distribution. The 
conditional pgf of X given Y = y is 

{l-/qS1-l)}P (Ifl.){l-&,-l)}.V 

={l-~(~,-l)}-(“+“) {(l-?)+tl(l-~(s,-l)))‘, (18) 

where A= (ul, + IVI)(l + u,,)-‘, q5= 1 VI u~l, q=q5-‘. The distribution 
corresponding to ( 18) is 

dxlY)= 5 (:‘) (l-~)rg’-‘P(x;cc+r,A), x = 0, l.... (19) 
i-=0 

The conditions of Theorems 4 imply that I > 0 0 <q < 1 when 4 > 0, so 
then (19) is a mixture. If 4 < 0, then -1~4 ~0, and (18) represents a 
convolution of negative binomial and binomial distributions. 
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