
 Procedia Computer Science 98 (2016) 72 – 79

1877-0509 © 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Program Chairs
doi: 10.1016/j.procs.2016.09.013

ScienceDirect
Available online at www.sciencedirect.com

The 7th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2016)

On Atomic Batch Executions in Stream Processing

K. Vidyasankar

Department of Computer Science,Memorial University, St. John’s, Newfoundland, Canada A1B 3X5

Abstract

Stream processing is about processing continuous streams of data by programs in a workflow. Continuous execution is discretized

by grouping input stream tuples into batches and using one batch at a time for the execution of programs. As source input batches

arrive continuously, several batches may be processed in the workflow simultaneously. A general requirement is that each batch be

processed completely in the workflow. That is, all the programs triggered by the batch, directly and transitively, in the workflow

must be executed successfully. Executing only a prefix of the workflow amounts to dropping (discarding) the batches that were

derived by the executed part and were supposed to be input to the rest of the workflow. In some cases, such partial executions

may not be acceptable and may have to be rolled back, amounting to dropping the source input batches that were processed by

the partial execution. We refer to this property of processing the batches either completely or not at all as atomic execution of the

batches. We also attribute the property to the batches themselves, calling them atomic batches, meaning that the property applies to

the set of transactions that are executed due to that batch. If batches are processed in isolation in the workflow, preserving atomicity

is fairly straightforward. When batches are split or merged along the workflow computation, the problem becomes complicated. In

this paper, we study issues relating to the atomicity of batches. We illustrate that, in general, preserving atomicity of some batches

may affect the atomicity of some other batches, and suggest trade-offs.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Stream processing; transactions; atomic batches; compensation.

1. Introduction

Stream processing is about processing continuous streams of data. Stream data arriving from external sources

are processed by programs in a workflow. Continuous execution is discretized by grouping (input) stream tuples

into batches and using one batch at a time for the execution of programs. The programs may generate stream data

which may be input to subsequent programs in the workflow. As source input batches arrive continuously, several

batches may be processed in the workflow simultaneously. In addition some OLTP (OnLine Transaction Processing)

∗ K. Vidyasankar. Tel.: +1-709-864-4369; fax: +1-709-864-2009.

E-mail address: vidya@mun.ca

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Program Chairs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81926895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.09.013&domain=pdf

73 K. Vidyasankar / Procedia Computer Science 98 (2016) 72 – 79

transactions may also be executed concurrently in the workflow. Ensuring correctness of these concurrent executions

is important.

Concurrency issues have been studied widely in database context. The transaction concept has been extremely

helpful to regulate as well as ensure the correctness of concurrent executions in database applications. The concept

was introduced first in the context of (centralized) database systems, and then adopted in various advanced database

and other applications, for example, in Web services1, electronic contracts2 and transactional memory3. Transac-

tions are characterized by ACID properties: Atomicity, Consistency, Isolation and Durability. While these properties

are considered very strictly for database operations and memory operations3, they are relaxed in other applications,

depending on the semantics and constraints of the application environments.

The earliest and most universally applied relaxation is with atomicity and isolation in the definition of sagas4:

• A transaction is said to be correct and to preserve consistency if it is executed completely or not at all;

• A higher level transaction can be split into, and executed by, several lower level transactions;

• Then, isolation is relaxed from the entire high level transaction to the individual lower level transactions;

• For atomicity, all the lower level transactions must be executed successfully, or none at all;

• If some of them are executed successfully, but others cannot be executed successfully, then the earlier ones need

to be compensated, to achieve overall null execution; and

• The compensation can only be logical and should take into account that other transactions might have observed

and used the results of the successfully executed low level transactions.

Stream processing involves continuous execution. As mentioned earlier, this is discretized by grouping (input)

stream tuples into batches and using one batch at a time for the execution of programs. Each batch may trigger a set

of programs in the workflow. Different batches may trigger different sets of programs, depending on the tuples in the

batches and the semantics of the application. A general requirement is that each batch be processed completely in the

workflow. That is, all the programs triggered by the batch, directly and transitively, must be executed successfully.

Executing only a prefix of the workflow amounts to dropping (discarding) the batches that were derived by the exe-

cuted part and were supposed to be input to the rest of the workflow. In some cases, such partial executions may not

be acceptable and may have to be rolled back, amounting to dropping the source input batches that were processed by

the partial execution. We refer to this property of processing the batches either completely or not at all as atomic exe-
cution of the batches. We also attribute the property to the batches themselves, calling them atomic batches, meaning

that the property applies to the set of transactions that are executed due to that batch.

In many applications, all computations pertaining to an input batch are done in isolation. That is, if a transaction

T (which is an execution of a program P) takes as input a batch a and produces as output a batch a′, and the output

is fed to another transaction T ′ (an execution of program P′), then a′ constitutes the input batch b for T ′. In such

cases, atomicity of batches can be guaranteed in a straightforward manner. When batches are split or merged along

the workflow computation (for example, when b consists of only a part of a′ or it contains tuples from the outputs

of several executions of P, on different batches), the problem gets complicated. In this paper, we study some issues

related to atomicity of batches.

There have been several studies on the application of the transaction concept in stream processing. We elaborate

the approaches in the Related Works section. To our knowledge, none of them address the atomicity property of the

batches. In several applications, each input batch consists of just one tuple and it is processed in isolation. Here,

the atomicity property follows trivially. We start with core definitions of compositions and transactions in stream

processing environments in Section 2. We study the atomicity properties related to batches in Section 3. Some

complex situations are illustrated in Section 4. We discuss related work in Section 5 and conclude in Section 6.

2. Executions

A stream processing workflow is a composition of programs. Formally, a composition C is (P,≺p), where P is a

set of transaction programs {P1, P2, . . . , Pn}, simply called programs, and ≺p is a partial order among them. We call

the (acyclic) graph representing the partial order the composition graph GC(C). Each execution of a program yields

a transaction. A transaction may have some stream and/or non-stream inputs, and may produce some stream and/or

74 K. Vidyasankar / Procedia Computer Science 98 (2016) 72 – 79

non-stream outputs. Stream data are sequences of tuples. Streams coming from outside the composition are called

source streams. The output streams (of any program) are called derived streams.

In an execution of a composition, some of its programs will be executed, resulting in a set of transactions with a

partial order ≺t. We call this a composite transaction, denoted asT = ({T1,T2, . . . ,Tm},≺t). We denote {T1,T2, . . . ,Tm}
as set(T). The graph representing ≺t is called transaction graph GT (T). The transaction graphs are acyclic. We note

that each Ti is an execution of some program Pj. It is possible that T has more than one execution of some Pj (like in

Meehan et al. 5). The partial order ≺t is compatible with ≺p, that is, if Ti is an execution of Pj, Tk is an execution of

Pl and Pj ≺p Pl, then Ti ≺t Tk.

The partial order in the composition graph includes (i) workflow order of the streams, (ii) the order defined between

stream processing transactions and OLTP transactions, and among OLTP transactions, (referred to as control order in

this paper) and (iii) the triggering relationships. Unless explicitly distinguished, we refer to all of these collectively as

triggering relationships. Composite transactions inherit the ordering relationships from the composition. Thus, in a

composite transaction, a transaction Ti may precede another transaction T j due to any of the above three partial orders.

Executions of a composition may be triggered either by the arrival of a batch of stream input or by a OLTP-type in-

vocation in the traditional sense of composition execution. We call the former as stream composite transactions (also,

batch composite transactions) and the latter as OLTP composite transactions. We denote the composite transaction

executed with batch b as T (b). Stream input batches arrive in sequence, for example, as b1, b2, The batch order is

denoted ≺b. The batch b2 and some more batches may arrive before all the transactions in T (b1) are completely exe-

cuted. Thus many stream composite transactions may be executed concurrently. Some OLTP composite transactions

may also be executed concurrently.

General (strict) requirements for correct concurrent executions of composite transactions can be stated as follows6.

1. Unit of atomicity: The atomicity requirement is that each composite transaction is executed either completely or

not at all. That is, the entire T is an atomic unit for each T .

2. Serializability: The execution is equivalent to a serial execution of the composite transactions.

3. Transaction order: The effective execution order of the transactions of T should obey the partial order ≺t. That

is, for any i, j, if Ti ≺t T j, then Ti should precede T j in the serial execution.

4. Batch order: The serial execution should reflect the batch order ≺b. That is, for i < j, (all the transactions in)

T (bi) should precede (the transactions of) T (b j) in the serial execution. OLTP composite transactions may occur

in any order in the serial execution, relative to the stream composite transactions.

5. Completion: For each T equal to ({T1,T2, . . . ,Tm},≺t), all Ti’s, for 1 ≤ i ≤ m, must be executed. And, if T is the

set of composite transactions under consideration, all of them must be executed.

6. Monotonic execution: At any time, the executed schedule must be such that, for any composite transaction T , its

projection on the completed transactions of T should be a prefix1 of the transaction graph GT (T).

In most applications, the transactions will be executed in distributed fashion. Satisfying the above requirements

would be impossible or, at the very least, will yield very poor performance. The semantics of the application may be

such that many of those requirements could be relaxed. In this paper, we consider the following relaxations.

Like in sagas, we take the individual transactions (that is, individual executions of programs in the composition)

as atomic units. That is, the atomic units are T ’s, not T ’s. Then, serializability is with respect to the atomic units,

namely, individual transactions. If some inconsistency can be tolerated, the transaction order need not be followed

for some transactions. Batch order may not be important for some T ’s, and even for some T ’s within a composite

transaction T . The completion requirement is that, for each composite transaction T , all its constituent transactions

should be executed, that is, the entire transaction graph GT (T) should be executed.. Relaxation of this requirement

amounts to execution of only a prefix of the transaction graph. The monotonic execution property, that, at any time,

the parts of the composite transactions that have been executed successfully should be prefixes of their respective

transaction graphs, follows from the requirement that the transaction order should be followed in the execution. It also

implies that compensation, if required, should be done in reverse order.

1 A subgraph H of an acyclic graph G is a prefix of G if all the edges from H to the rest of the graph are outdirected.

75 K. Vidyasankar / Procedia Computer Science 98 (2016) 72 – 79

P1

P2

P3

a1

a'1

b13
b12
b11

b'13

b'12

b'11

c132
c131
c122
c121
c112
c111

a1

a'1

b11 b12 b13

b'11 b'12 b'13

c111 c112 c121 c122 c131 c132

(b)(a) T1,1

T2,11 T2,12 T2,13

T3,111 T3,112 T3,121 T3,122 T3,131 T3,132

Fig. 1. Splitting of the batches

P1

P3

a6
a5
a4
a3
a2
a1

a’6
a’5
a’4
a’3
a’2
a’1

b3
b2
b1

b'3
b’2
b’1

c1

T1,1 T1.2 T1,3 T1,4 T1,5 T1,6

T2,1 T2,2 T2,3

T3,1

a1 a2 a3 a4 a5 a6

a'3 a'4 a'5 a'6

b1 b2 b3

b'1 b'2 b'3
c1

(a) (b)

a'1 a'2

Fig. 2. Merging of batches

We show in the next section that, in certain circumstances, it may not be possible to satisfy both completion and

monotonic execution properties independently.

3. Atomicity of Batches

Consider a composite transaction T and a transaction T in set(T). Let b be a batch input to T . The batch composite

transaction T (b) consists of {T } union all the transactions triggered directly or indirectly by T in T (as per our general

usage of the term ‘triggering’). This definition applies to both source and derived batches.

We consider a simple example of processing stream inputs in a workflow consisting of a sequence of three programs

P1, P2 and P3. Input batches will be denoted by unprimed variables xi and the corresponding outputs by primed

variables x′i . Stream inputs/outputs for P1, P2 and P3 will be denoted by a, b and c, respectively.

The sequence of input batches for P1 is a1, a2, . . . , and the executions are transactions T1,1,T1,2, . . . (the first index

is that of the program and the second index is that of the input batch), producing the output sequence a′1, a
′
2 In

the case where each batch of Pi is executed in isolation, a′i = bi, and similarly b′i = ci. Then, for batch a1, T (a1) is

{T1,1,T2,1,T3,1}. Compensation of the batch a1 involves compensating all the three transactions in this set.

For batch b1, we have T (b1) as {T2,1,T3,1}. Compensating b1 will involve compensating T2,1 and T3,1. The com-

pensation amounts to dropping the tuples in the batch b1 at the level of executing P2. As mentioned earlier, it is also

possible that when a need for compensating b1 arises, even the source batches from which b1 was derived need to be

compensated. In this example, the corresponding source batch is a1 and hence the transaction T (a1) also (that is, T1,1

also) needs to be compensated.

Definition: For a set of batches B, a source covering batch set, denoted scover(B), is a set of source input batches

from which the batches in B are derived.

In the current example, scover(b1) is {a1}. Note that when B contains a single batch, {b1} here, we drop the curly

brackets for notational simplicity. We now consider the cases where a batch is not executed in isolation. First, we

consider splits alone, then merges alone, and finally both of them occurring in the execution.

(a) Splits: Consider the following with respect to our composition example, depicted in Fig. 1. (In all the figures,

horizontal edges denote batch order.)

• Input batch a1 for P1 results in execution of T1,1, producing output batch a′1.

• The batch a′1 is split into three batches b11, b12, b13, and each b′1 j is split into two batches c1 j1 and c1 j2.

• Then the corresponding executions of P2 are T2,11,T2,12,T2,13.

• Now, the batch order among the three batches translates to T2,11 ≺b T2,12 ≺b T2,13.

• The executions of P3 are T3,111,T3,112,T3,121,T3,122,T3,131,T3,132.

76 K. Vidyasankar / Procedia Computer Science 98 (2016) 72 – 79

P1

P2

P3

a2
a1

a'2
a'1

b23
b22
b21
b13
b12
b11

b'23
b'22
b'21
b'13
b'12
b'11

c13
c12
c11

T1,1 T1,2

T2,11 T2,12 T2,13 T2,21 T2,22 T2,23

T3,11 T3,12 T3,13

a1 a2

a'1 a'2
b11 b12 b13 b21 b22 b23

b'11 b'12 b'13 b'21 b'22 b'23

c11 c12 c13

(a) (b)

Fig. 3. Splitting and merging of batches

P1

P3

a5
a4 a4
a3 a3 a3

a2 a2
a1

b3
b2 b2

b1

c2 c1

a1

b2

a2 a3 a3 a4 a5a4a2a3

b1b1 b3b3b2

c1 c2

T1,3T1,2T1,1

T2,1 T2,2

T3,1 T3,2

(a) (b)

Fig. 4. Overlapping batches

For compensating b11, the transaction T (b11) consisting of {T2,11,T3,111,T3,112} needs to be compensated. And,

scover(b11) is {a1}. Compensating a1 amounts to compensating all the transactions listed above.

(b) Merges: Merging of the batches is depicted in Fig. 2:

• Input batches a1, a2, . . . , a6, for P1, result in executions of T1,1,T1,2, . . . ,T1,6, producing a′1, a
′
2, . . . , a

′
6

as output

batches, respectively.

• Batch b1 is a′2 · a
′
1, b2 is a′4 · a

′
3, and b3 is a′

6
· a′

5
(where “·” indicates concatenation, of batches in the order of

their arrival), and the executions of P2 are T2,1,T2,2,T2,3.

• Batch c1 is b′3 · b
′
2 · b

′
1, and the execution of P3 yield T3,1.

Here, T (a1) is {T1,1,T2,1,T3,1} and T (a2) is {T1,2,T2,1,T3,1}. Compensation of T (a1) involves compensations of

T2,1 and T3,1 also. This compensates part of T (a2) also. We discuss three ways of handling this.

(a) Compensate T1,1 only. Then, the monotonic execution requirement, namely, that the completed transactions of

T (a1) should be a prefix of its transaction graph, will be violated.

(b) Compensate all the three transactions {T1,1,T2,1,T3,1}. This amounts to dropping the batches a′2, b′2 and b′3. This

affects the completion requirements of T (ai)’s, for i from 2 to 6.

(c) Compensate all the transactions in this example. Note that the batch b1 is derived from both a1 and a2. Similarly,

c1 is derived from all the six source batches of P1. Compensating all the transactions amounts to dropping (that

is, compensating) all the six batches {a1, a2, . . . , a6}. This will not affect the completion and monotonic execution

requirements of any other batches.

We identify a few properties.

Definition: Let b be a source input batch.

• Compensation of T (b) is interfering if it affects the completion requirements of any other batches.

• The batch b is independent if the compensation of T (b) is non-interfering.

• A non-intrusive compensation of T (b) is compensation of (the transactions in) a prefix of GT (T (b)) that is

non-interfering.

To distinguish from non-intrusive compensation, we sometimes use the term full compensation for compensating

all the transactions in T (b). A non-intrusive compensation of a batch may affect the monotonic execution of that

batch. Referring to the three options mentioned above in our current example, option (a) describes a non-intrusive

compensation, option (b) is an interfering compensation and Option (c) describes an scover that is independent (whose

full compensation is non-interfering). Note that the sets of transactions executed for any two independent batch sets

will not have any transactions in common.

77 K. Vidyasankar / Procedia Computer Science 98 (2016) 72 – 79

(c) Splits and merges: Figure 3 depicts both splits and merges.

• Input batches a1 and a2 for P1 results in execution of T1,1 and T1,2 producing output batches a′1 and a′2.

• Batch a′1 is split into three batches b11, b12, b13, and similarly a′2 is split into three batches b21, b22, b23, for

P2, resulting in executions of T2,11,T2,12,T2,13 and T2,21,T2,22,T2,23, producing output batches b′11, b
′
12, b

′
13, and

b′21, b
′
22, b

′
23.

• Batch c11 is b′12 · b
′
11, c12 is b′21 · b

′
13, and c13 is b′23 · b

′
22. The executions of P3 are T3,11,T3,12,T3,13.

Here, T (a1) and T (a2) are, respectively, {T1,1,T2,11,T2,12,T2,13,T3,11,T3,12} and {T1,2,T2,21,T2,22,T2,23,T3,12,T3,13}.
The two batch composite transactions have T3,12 in common. Thus, neither a1 nor a2 is independent.

Full compensation of a1, that is, full compensation of T (a1), results in compensating T3,12 also. This will amount to

dropping the batch b′21, thus affecting the completion requirement of T (a2), while preserving the monotonic execution

property of both batches. An independent scover of a1, and also of a2, is {a1, a2}.

The above examples suggest the following straightforward way of computing independent scovers for batches b.

Here, we extend the transaction graph notation to a set of (composite) transactions.

• Let T be the transaction for which b is input.

• Let D1 be the set of all transactions to which there is a directed path from T in the transaction graph GT (T).

• Let U1 be the set of transactions from which there is a directed path to some transaction in D1.

• Let D2 be the set of transactions to which there is a directed path from some transaction in U1.

• Continue building up the sets Di and U j this way until Uk, for some k, such that Uk equals Uk−1.

• Let si be the set of source batches that are input to Ui.

• Then an independent scover(b) is sk, which is the set of source batches that are input to Uk.

.

We note that the above computation for scover will terminate at some point in the cases discussed above. We will

see, in the following section, that this may not be true in some other situations.

4. Complex batches

In this section, we consider some complicated compositions of batches.

(a) Overlapping batches: So far, we assumed that batches input to the executions of a program are disjoint. In

practice, the batches may overlap. For example, in the problem of computing an aggregate function every 5 minutes

where the batch consists of the tuples received in the preceding 10 minutes, every two consecutive batches will overlap.

Figure 4 depicts overlapping batches in our composition example. The transactions and batches used for them are:

• Input batches of T1,1,T1,2 and T1,3 are a3 · a2 · a1, a4 · a3 · a2, and a5 · a4 · a3; the respective output batches are

b1, b2 and b3.

• Input batches of T2,1 and T2,2 are b2 · b1, and b3 · b2; the respective output batches are c1 and c2;

• Input batches of T3,1 and T3,2 are c1 and c2, respectively.

Here, we can interpret as (i) an input batch is made up of several smaller batches and (ii) each such batch is input

multiple times in the executions of a program.

Here, to compensate the batch a3, all the transactions listed above (and a few others like those of P2 for which b1

or b3 are input) need to be compensated, resulting in other batches contributing only partially at different levels of

execution. For example, the batch a4 will be used only in the next batch a6 · a5 · a4, and similarly a5 will be used in

the next two batches. We say that a4 and a5 are partially dropped. If the execution pattern continues as in the figure,

partial drops are unavoidable; the iterative computation of scovers will not terminate and so an independent scover
will not be obtained. Hence, a suitable scover can be chosen to compensate either fully or non-intrusively.

78 K. Vidyasankar / Procedia Computer Science 98 (2016) 72 – 79

P1

P3

a6 a5 a4 a3 a2 a1

a'6a'4
a'5a'2
a'3a'1

b3 b2 b1

b'3
b'1
b'2

c3
c2
c1

T1,1 T1.2 T1,3 T1,4 T1,5 T1,6

T2,1 T2,2 T2,3

T3,1

a1 a2 a3 a4 a5 a6

a'3 a'4 a'5 a'6

b1 b2 b3

b'1 b'2 b'3
c3

(a) (b)

c1c2

T3,2 T3,3

a'2a'1

Fig. 5. Merging with relaxed batch order

(b) Relaxing batch order: As mentioned in Sec. 2, the batch order could be relaxed for some programs in the

composition. That is, the batches need not be processed in the order they arrive. Then, they could even be processed

in parallel, by different copies of the program. For instance, in our example composition, P1 may be executed in

parallel. Then, the output batches of P1 may arrive at P2 in an order which is different from the order in which their

corresponding input batches arrive. This really does not affect the batch composite transactions for different batches

when they are executed in isolation; each of them will still have one transaction of the program P1. However, when

splits and merges of the batches are involved down the workflow, things get complicated.

Figure 5 illustrates an execution of our example composition where batch order is relaxed for P1 and P2. The

outputs of P1 for batches {a1, a2, a3, a4, a5, a6} are merged in the executions of P2 and then the outputs of P2 arrive for

P3 sequentially, both in the order shown. They are not merged in the executions of P3. The important point to note is

that merging of non-consecutive derived batches occurs at P2. By our definition, {a1, a3} will be an scover(b1). If we

would like the scover to be a consecutive set of batches, then we should add a2 to this set. And, for not affecting com-

pletion and monotonic execution requirements of other batches, we end up expanding scover to {a1, a2, a3, a4, a5, a6},
to get an independent set.

5. Related Work

In addition to the papers mentioned in Sec. 1, discussing transactional properties in different environments

some other works include the following.

• Discussion of transactional stream processing7 and the proposal of a unified transaction model, called UTM,

that treats events also as transactions. Atomicity and isolation properties for transactions in this model are

discussed in detail in the paper.

• Discussion of events and triggers in the context of Complex Event Processing over Event Streams8. They also

define stream ACID properties for transactions: s-Atomicity, s-consistency, s-Isolation and s-Durability. The

s-Atomicity notion requires “all operations stimulated by a single input event should occur in their entirely”.

That is, a triggering transaction as well as all transactions triggered by them form a single unit of atomicity. In

contrast, all transactions (including triggering and triggered ones) are individual atomic units in our paper.

• Transactional execution of stream composition in S-Store 5. In that paper, the unit of atomicity is the entire

composite transaction. They also use the term “atomic batch”. The batches are executed in isolation.

• Treating entire read-only composite transactions reflecting “continuous queries reading updatable resources” as

the unit of atomicity in9. Such considerations are very useful, especially in IoT environments where monitoring

and actuations are predominant, and monitoring should be consistent.

• Other papers discussing stream transactions and compositions10,11,12.

79 K. Vidyasankar / Procedia Computer Science 98 (2016) 72 – 79

6. Conclusion

After seeing the benefits of transactional properties to argue correctness of concurrent executions in database

applications, these properties have been applied in several non-database contexts. They have been investigated in

stream processing also. Concurrent executions in stream processing are data oriented whereas they are operation

oriented in databases. In addition, stream executions are continuous. They appear to require additional transactional

properties that are not relevant in database applications. In this paper, we have identified one such property, namely,

atomic executions of batches of stream tuples.

The notion of atomicity of batches is that they must be processed either completely or not at all. Partial execution

amounts to dropping some derived tuples in the middle of the workflow execution. To roll back partial execution, the

source input batches that derived the tuples under consideration need to be compensated. When batches are processed

in isolation, such compensation is straight-forward. However, when output batches of a program are split into smaller

batches and/or merged with other batches for input to subsequent programs in the workflow, the compensation may

not be independent, that is, it will affect the completion requirements of some other batches. To avoid the latter, non-

intrusive compensation may be done. This will affect monotonic execution property of the current batches. We have

illustrated these properties with several examples in this paper. We argue that, in practice, some trade-off between

independence and intrusiveness in compensation is inevitable. Note that in a failure-free execution, each batch will

be processed completely, by one or more composite transactions. Thus, the above mentioned trade-off may come into

picture only during compensation.

While processing, various factors may determine whether batches are to be split or merged at different stages. The

study in this paper suggests that atomicity is another factor that could be considered. Obviously, isolated execution

(without splitting or merging) at any level enhances independent execution and compensation properties.

The scover is a covering source batch set for a given batch. We can also define covering batch sets in intermediate

levels. These batches may be compensated when the initial prefix of the execution cannot be compensated. Covering

batch sets in intermediate level might also help to identify programs that produce “bad” outputs and replace or rectify

them.

Acknowledgment

This research is supported in part by the Natural Sciences and Engineering Research Council of Canada Discovery

Grant 3182.

References

1. K. Vidyasankar, G. Vossen, Multi-level modeling of web service compositions with transactional properties, Database Management 22 (2)

(2011) 1–31.

2. K. Vidyasankar, P. R. Krishna, K. Karlapalem, A multi-level model for activity commitments in e-contracts, in: Proceeding OTM Confer-

ences, 2007, pp. 300–317.

3. S. Peri, K. Vidyasankar, Correctness of concurrent executions of closed nested transactions in transactional memory systems, Theoretical

Computer Science 496 (2013) 125–153.

4. H. Garcia-Molina, K. Salem, Sagas, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, ACM Press,

1987, pp. 249–259.

5. J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas, U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier, A. Pavlo, M. Stonebraker, K. Tufte,

H. Wang, S-store: Streaming meets transaction processing, Proc. VLDB Endow. 8 (13) (2015) 2134–2145.

6. K. Vidyasankar, A transaction model for executions of compositions on internet of things services, in: Procedia Computer Science, Elsevier,

2016, pp. 195–202. doi:10.1016/j.procs.2016.04.116.

7. I. Botan, P. M. Fischer, D. Kossmann, N. Tatbul, Transactional stream processing, in: Proceedings EDBT, ACM Press, 2012.

8. D. Wang, E. A. Rundensteiner, R. T. E. III, Active complex event processing over event streams, in: Proceedings of the VLDB Endowment,

ACM Press, 2011, pp. 634–645.

9. L. Gürgen, C. Roncancio, S. Labbé, V. Olive, Transactional issues in sensor data management, in: Proceedings of the 3rd International

Workshop on Data Management for Sensor Networks (DMSN’06), Seoul, South Korea, 2006, pp. 27–32.

10. L. Golab, M. Özsu, Issues in data stream management, ACM SIGMOD Record 32 (2) (2003) 5–14.

11. A. I. Luigi Atzori, G. Morabito, The internet of things: A survey, Computer Networks 54 (15) (2010) 2787–2805.

12. N. Conway, Transactions and data stream processing, in: Online Publication, http://neilconway.org/docs/stream txn.pdf, 2008, pp. 1–28.

