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a b s t r a c t

Dense sub-graphs of sparse graphs (communities), which appear in most real-world
complex networks, play an important role in many contexts. Most existing community
detection algorithms produce a hierarchical structure of communities and seek a partition
into communities that optimizes a given quality function. We propose new methods to
improve the results of any of these algorithms. First we show how to optimize a general
class of additive quality functions (containing the modularity, the performance, and a new
similarity based quality function which we propose) over a larger set of partitions than the
classical methods. Moreover, we define new multi-scale quality functions which make it
possible to detect different scales atwhichmeaningful community structures appear,while
classical approaches find only one partition.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances have emphasized the importance of complex networks in many different domains such as sociology
(acquaintance networks, collaboration networks), biology (metabolic networks, gene networks) or computer science
(Internet topology, web graph, p2p networks, e-mail exchanges). We refer the reader to [3,20,1,13,6] for reviews from
different perspectives and for an extensive bibliography.

The analysis of these networks has brought out important and challenging graph algorithm problems. One of them is
community detection, used to uncover structure in large networks: the corresponding graphs are generally globally sparse
but locally dense; there exist groups of vertices, called communities, with many links between them but few links to other
vertices. Formally, we consider an undirected graph G = (V , E) with n = |V | vertices, m = |E| edges. The aim of a
community detection algorithm is to find a partition P = {C1, . . . , Ck} of the vertices (Ci ∩ Cj = ∅ for i ≠ j and ∪i Ci = V )
that maximizes a given quality function Q (P ) (see Section 2).

Various approaches exist; they belong to a few main methodological categories which we succinctly overview here.
First, the divisive approach starts from the entire graph and successively splits it into more and more communities. Some
algorithms achieve this by removing inter-communities edges (the communities are the remaining connected components)
according to their betweenness [14,8] or their local clustering [17]. Others use recursive bisection mechanisms based on
minimumcuts [10] or spectralmethods [12]. Another family of approaches, the agglomerativeone, starts fromn single-vertex
communities andmerges them successively into larger and larger communities. Some algorithms use hierarchical clustering
methods according to different similarity measurements based on spectral properties [5] or randomwalks [16,15,22]. Other
algorithms are based on greedy optimization of a quality function [2,4]. Finally, direct approaches trying to perform global
optimization of a quality function [7,9], or iteratively modifying the weight of the edges to make clusters appear [21], have
also been used.
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Fig. 1. (a) Example graph with a multi-scale community structure. (b) Hierarchical community structure (dendrogram) found by the Walktrap algorithm
[16,15]: the heights of the nodes represent the steps of the algorithm. The classical approach only considers partitions given by straight horizontal cuts on
this dendrogram; here a partition into 5 communitiesmaximizes themodularityQM

= 0.55. (c) Reordered dendrogramaccording to themulti-scale quality
function QM

α . Horizontal cuts show the best partition Pα for any scale factor α. The maximal modularity QM
= 0.57 (obtained for α = 1

2 ) improves the
classical approach by finding a better partition in the dendrogram. In addition, the relevance function R(α) indicates twomeaningful scale factors (α = 0.42
andα = 0.73) corresponding to a partition into 6 communities and a partition into 3 communities (outlined in dark blue and light blue respectively). Notice
moreover that these partitions are obtained for wide ranges of values of α, which may be seen as an indication of the fact that they are very relevant.

Most community detection algorithms induce series of partitions P0, . . . , Pc corresponding to successive steps of the
algorithm: Pk+1 = Pk\{Ck} ∪ {C

′

1, . . . , C ′j } with Ck = ∪
j
i=1C

′

i and P0 = V . If one considers a divisive algorithm the
partitions Pk are obtained in increasing order of the steps k, and in decreasing order if one considers an agglomerative
algorithm. Classical community detection algorithms output the partition that maximizes a given quality function Q among
the c partitions P0, . . . , Pc .

One then defines the dendrogram associated with the running of the algorithm as the tree in which C ′1, . . . , C ′j are
the children of Ck, with the above notation, for all step k. We consider in this paper the situation where the dendrogram
resulting from the running of a community detection algorithm on G is given. There are at most n steps as described above
(c < n), which produce a set S of c + n subsets of V : c subsets Ck corresponding to the steps of the algorithm plus n single-
vertex sets. Many possible partitions are induced by these subsets; we denote by Π the set of all these possible partitions:
Π = {P |∀C ∈ P , C ∈ S and ∪C∈P C = V and ∀Ci ≠ Cj ∈ P , Ci ∩ Cj = ∅}. Intuitively, these partitions are given by
horizontal (but not necessarily straight) cuts of the associated dendrogram (Fig. 1b). We also define in the samemanner the
sets ΠC of all possible partitions of a community C in S. The reader must keep in mind that, throughout this paper, we will
never consider any partition (or sub-partition) containing a community that is not in S, the set of all communities induced
by the given dendrogram.

Contribution

We introduce in this paper new post-processing methods to improve the results of any algorithm that finds hierarchical
community structures (encoded by the dendrogram). We address the two following limitations of the previous contribu-
tions.
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First, we note that considering all possible partitions inΠ (instead of only the c+1 partitionsP0, . . . , Pc) will necessarily
produce better results than the classical method, and cannot be worse. The number of valid partitions being exponential in
general, it is impossible to find efficiently the partition that maximizes an arbitrary quality function. However, wewill show
in Section 2 that this is possible with some reasonable assumptions on the quality function Q (P ). These results are obtained
for a general class of additive quality functions that contains the modularity [14], the performance [3] and a new similarity
based quality function which we introduce in Section 2.

Second, we propose in Section 3 multi-scale quality functions in order to detect community structures at different scales
and to determine the most relevant scales at which the graph should be observed.

We will finally evaluate the benefits of these new approaches with some experiments (Section 4).

2. Improving the partition into communities

In this section, we first introduce a general class of additive quality functions. We show that such functions can be
efficiently optimized1 over all possible partitions P ∈ Π encoded in a dendrogram.

Definition 1. A quality function Q is additive if there exists an elementary function q, such that for any partition P :

Q (P ) =
−
C∈P

q(C).

Let us first show that this definition is not too restrictive by considering three special cases of interest.
The modularity introduced in [14] has already been widely used [2,4,5,7–9,14]. It relies on the internal and total fractions of
edges bond to a community C, respectively e(C) =

∑
i∈C

∑
j∈C

Aij
2m and a(C) =

∑
i∈C

∑
j∈V

Aij
2m (A is the adjacency matrix

andm the number of edges).

QM(P ) =
−
C∈P

e(C)− a(C)2.

This definition directly induces that the modularity is additive, using qM(C) = e(C) − a(C)2. We may also notice that it
satisfies−1 ≤ QM(P ) ≤ 1, and that each evaluation of the function can be done in O(m).
The performance [3] counts the number of correctly classified pairs of vertices (either two vertices belonging to the same
community and connected by an edge, or two vertices belonging to different communities and not connected by an edge):

Q P(P ) =
|{{u, v} ∈ E, C(u) = C(v)}| + |{{u, v} /∈ E, C(u) ≠ C(v)}|

1
2n(n− 1)

where C(u) denotes the community containing vertex u in the partition P . The function Q P is the fraction of correctly
identified pairs of links, and so 0 ≤ Q P(P ) ≤ 1. Its additivity is proved using qP(C) = 1

n(n−1)

∑
u∈C |{v ∈ C, {u, v} ∈

E}| + |{v /∈ C, {u, v} /∈ E}|. This quality function can be computed in O(n2) and may be generalized to weighted graph as
discussed in [3].

A similarity based quality function. This approach supposes thatwe have a distance dij ≥ 0measuring the similarity between
any pair of vertices i and j (the smaller dij is, the more similar i and j are). We want to find homogeneous communities by
minimizing their heterogeneity quantified by the mean square sum of the distances σ(C) = 1

|C|

∑
i,j∈C d2ij.

However, minimizing these quantities leads to the partition with n single-vertex community. We will avoid this by
minimizing at the same time the number c(P ) of communities in the partition. The maximal values of these quantities
(namely σ(C) ≤ σmax obtained for C = V , and c(P ) ≤ n) are used in the following definition:

Q S(P ) = −
c(P )

n
−

−
C∈P

σ(C)

σmax
.

This quality function satisfies−2 ≤ Q S(P ) ≤ 0. We prove that it is additive using qS(C) = − 1
n −

σ(C)

σmax
. Each evaluation of

σ(C) requires O(|C|2) distance computations for an arbitrary distance. However, if d is a Euclidean distance then σ(Ci∪Cj)
can be obtained from σ(Ci) and σ(Cj)with only one additional distance computation. Therefore all the σ(C) can be obtained
with n distance computations in this case. Such a distance, based on random walks, was proposed in [16,15] together with
an agglomerative community detection algorithm which computes the values of σ(C). Thus this quality function can be
used within the framework presented here at no additional cost.

The examples above show that the class of additive quality functions is quite general, and that many previously used
quality functions actually fit in this class. We will now show that it is possible to maximize any additive quality function
over the set of partitions Π with a simple recursive approach.

1 Without loss of generality we can consider that the function must be maximized.
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Lemma 1. Given an additive quality function Q and a dendrogram in which the set C has children C1, . . . , Ck, the partition
Pmax ∈ ΠC that maximizes Q is either {C} or P1 ∪ · · · ∪ Pk where Pi ∈ ΠCi maximizes Q over ΠCi and Q (Pmax) = maxP∈ΠC

Q (P ) = max(q(C),
∑

i Q (Pi)).

Proof. Suppose that the partition Pmax ∈ ΠC maximizing Q is not {C}. Then it induces a sub-partition Pi ∈ ΠCi in each of
its children Ci such that Pmax = ∪iPi. Now suppose there exists P ′i ∈ ΠCi such that Q (P ′i ) > Q (Pi). Then the sub-partition
P ′max = P1 ∪ · · · ∪ P ′i ∪ · · · ∪ Pk will satisfy, thanks to additivity, Q (P ′max) > Q (Pmax), which is impossible. �

Theorem 1. Given an additive quality function Q and a dendrogram, it is possible to find the partition P ∈ Π that maximizes Q
with O(n) evaluations of function q. This is achieved by function FindBestPartition.

Proof. Lemma 1 guarantees that the recursive function FindBestPartition finds the partition maximizing Q over Π when
called on the largest set of vertices V . The function is called only once on each node of the dendrogram, thus the total number
of calls (and thus the total number of evaluations of the elementary quality function q) is |S| ≤ 2n. �

Function FindBestPartition(C)
foreach child Ci of C do

(Qi, Pi)← FindBestPartition(Ci)
end
if C has no child or q(C) >

∑
i Qi then

return q(C), {C}
else

return
∑

i Qi,∪iPi

Let us note moreover that some quality functions allow optimizations concerning the computation of the q(C): for
example it is possible to compute efficiently q(Ci ∪ Cj) from the values of q(Ci) and q(Cj) for the modularity [4] and for
the random walk quality function [16,15].

3. Multi-scale community structure detection

Even if most community detection algorithms find hierarchical community structures, they generally output only one
partition (like in Section 2). However, communities often appear at different scales in complex networks. To overcome this
limitation, wewill propose heremulti-scale quality functionswhichwork at different scales.Wewill then propose amethod
to determine the most relevant scales, highlighting meaningful communities.

3.1. Multi-scale quality functions

We will consider in this section a scale factor 0 ≤ α ≤ 1 going from microscopic to macroscopic scales: α = 0
corresponds to smallest communities with only one vertex and α = 1 corresponds to the largest community containing all
the vertices. We will define multi-scale quality functions Qα and the partitions Pα maximizing them should be consistent
with the scale factor, which is captured by the following definition.

Definition 2. Consider a family of quality functions (Qα)0≤α≤1, and denote by Pα the partition in Π maximizing Qα . Then
(Qα)0≤α≤1 aremulti-scale quality functions if

α1 ≤ α2 ⇒ Pα1 ≼ Pα2 with Pα=0 = {{v}|v ∈ V } and Pα=1 = {V }

where Pα1 ≼ Pα2 iff Pα1 is a refinement of Pα2 , i.e. the sets of Pα1 are included in those of Pα2 : for all C1 ∈ Pα1 , there exists
C2 ∈ Pα2 such that C1 ⊆ C2.

Note that for any α, Qα is a quality function, and so the notion of additivity (Definition 1) applies. Now we propose a
general class of additive multi-scale quality functions.

Theorem 2. Let us consider a function h over the parts of V defined by a given dendrogram, such that h(Ci∪Cj) ≥ h(Ci)+h(Cj):
h is larger in macroscopic scales. Likewise, let us consider l such that l(Ci ∪ Cj) ≤ l(Ci) + l(Cj): l is larger in microscopic scales.
Then functions Qα defined by

Qα(P ) =
−
C∈P

qα(C) with qα(C) = αh(C)+ (1− α)l(C)

are additive multi-scale quality functions.

Proof. Suppose that α1 < α2 but Pα1 � Pα2 . Then there exist C ∈ Pα1 and C1, . . . , Ck ∈ Pα2 such that C = C1 ∪ · · · ∪ Ck.
We have qα1(C) = α1h(C) + (1 − α1)l(C) = qα2(C) + (α1 − α2)h(C) + (α2 − α1)l(C). But Pα2 (containing C1, . . . , Ck)
maximizes Qα2 , therefore, qα2(C) ≤ qα2(C1) + · · · + qα2(Ck). Moreover h and l satisfy h(C) ≥ h(C1) + · · · + h(Ck) and
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l(C) ≤ l(C1)+· · ·+ l(Ck). Finallywith the fact thatα1 < α2 we obtain qα1(C) ≤ qα2(C1)+· · ·+qα2(Ck)+(α1−α2)(h(C1)+
· · · + h(Ck))+ (α2 − α1)(l(C1)+ · · · + l(Ck)). We recognize the inequality qα1(C) ≤ qα1(C1)+ · · · + qα1(Ck) which is in
contradiction with the fact that Pα1 maximizes Qα1 . This proves the main property of Definition 2.
Then the additivity is immediate and it is simple to check thatPα=0 = {{v}|v ∈ V } andPα=1 = {V } thanks to the inequalities
satisfied by h and l. �

This theorem makes it possible to create an additive multi-scale quality function from two elementary functions. These
two functionsmust have opposite growing behaviorwith community sizes and they also have to capture expectedproperties
of communities. We now propose suitable multi-scale quality functions which generalize those of Section 2 (the original
quality functions are obtained back as a particular case for α = 1

2 ).

The multi-scale modularity. We generalize the modularity by introducing the scale factor α in its definition:

QM
α (P ) =

−
C∈P

αe(C)− (1− α)a(C)2.

We check that the properties of Theorem 2 are satisfied to ensure that QM
α is an additive multi-scale quality function. We

consider hM(C) = e(C) the fraction of internal edges of community C and lM(C) = −a(C)2 using the fraction of edges
bound to community C. We have hM(Ci ∪ Cj) ≥ hM(Ci) + hM(Cj) because e(Ci ∪ Cj) = e(Ci) + e(Cj) + (fraction of
edges between Ci and Cj). And lM(Ci ∪Cj) ≤ lM(Ci)+ lM(Cj) because a(Ci ∪Cj) = a(Ci)+ a(Cj) and thus lM(Ci)+ lM(Cj)−

lM(Ci ∪ Cj) = 2a(Ci)a(Cj).

The multi-scale performance. It is defined in the same manner by

Q P
α (P ) =

α|{{u, v} ∈ E, C(u) = C(v)}| + (1− α)|{{u, v} /∈ E, C(u) ≠ C(v)}|
1
2n(n− 1)

.

We use hP(C) = 1
n(n−1)

∑
u∈C |{v ∈ C, {u, v} ∈ E}| and lP(C) = 1

n(n−1)

∑
u∈C |{v /∈ C, {u, v} /∈ E}|. The two inequalities

required by Theorem 2 are easily verified if we remark that hP(C) counts the number of edges inside C and lP(C) counts the
number of non-existing edges between vertices of C and other vertices.

A multi-scale similarity based quality function. Using the same idea, we can generalize the third quality function based on
similarity measurement dij between vertices. However, the quantity σ(C) measuring community homogeneity must also
satisfy σ(Ci ∪ Cj) ≥ σ(Ci)+ σ(Cj), which is the case for Euclidean distances.

Q S
α (P ) = −αc(P )− (1− α)

−
C∈P

σ(C)

σmax

hS(C) = − 1
n trivially satisfies the inequality of Theorem 2. The other inequality satisfied by lS(C) = − σ(C)

σmax
comes from the

restriction on d pointed out above.

3.2. Finding the best partition for every scale

A multi-scale quality function Qα allows us to find a partition Pα for any scale factor 0 ≤ α ≤ 1. We will show in
this section how to compute efficiently all these partitions for the general class of multi-scale quality functions defined in
Theorem 2. The order between the Pα (Definition 2 indicates that α1 ≤ α2 ⇒ Pα1 ≼ Pα2 ) implies that the total number
of different partitions Pα is at most n. Indeed, each partition is obtained from the previous one by splitting at least one
community. Therefore, the number of communities of the kth partition is at least k. The number of communities of each
partition being less than n (the number of vertices) we cannot have more than n different partitions Pα .

To determine all the partitions Pα , we only need to determine the list of the particular scale factors αi at which Pα

changes (split of a community into sub-communities). The corresponding modifications induce a new hierarchy into the
community structure: the community splits can be ordered by scale factors αi at which they occur. The dendrogram can be
reordered with this new hierarchy as illustrated in Fig. 1c. This provides more accurate information on community scales
and improves comparison between them.

For each partition P , the function Qα(P ) = l(P ) + (h(P ) − l(P ))α can be seen as an affine function of the parameter
α. Therefore, finding all the best partitions Pα is equivalent to finding the function QΠ

max(α) = Qα(Pα) defined as follows.

Definition 3. The piecewise affine function QΠC
max(α) maximizes Qα(P ) over all possible partitions P ∈ ΠC :

QΠC
max(α) = max

P∈ΠC

Qα(P ).

Theorem 3. Given additive multi-scale quality functions Qα satisfying Theorem 2 and a dendrogram, it is possible to compute
QΠ
max(α) bymaking at mostO(n) evaluations of the elementary quality function qα . The additional average complexity isO(n

√
n)

for an arbitrary dendrogram, it is O(n log(n)) for balanced ones and the worst case is O(n2). This is achieved by the function
FindMultiscalePartitions.
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Proof. For a given α, and for a community C having children C1, . . . , Ck in the dendrogram, Lemma 1 indicates that
maxP∈ΠCQα(P ) = max(qα(C),

∑
i maxP∈ΠCi

Qα(P )). This equality holds for any α and thus we deduce QΠC
max(α) =

max(qα(C),
∑

i Q
ΠCi
max (α)). This proves the correctness of the recursive function FindMultiscalePartitions that computesQΠC

max

by manipulating piecewise affine functions. QΠ
max(α) is obtained for parameter C = V .

The function is recursively called exactly once on each node of the dendrogram, leading to O(n) evaluations of the
elementary quality function qα . Each call also evaluates a sum and a maximum operation on piecewise affine functions
encoded by the list of their particular points (αi,Q

ΠCi
max (αi)). These operations are done in time linear in the size of input

piecewise functions, and the sum of their sizes is at most |C|. Therefore this additional complexity is represented by the
sum over all the nodes of the dendrogram of operations in O(|C|). We can notice that this sum is nothing else than the path
length of the hierarchical tree structure of community. Classical analysis shows that the path length is between n log(n) and
n2 with an average value (over all trees of size n) in O(n

√
n) [19]. �

Function FindMultiscalePartitions(C)
foreach child Ci of C do

Q
ΠCi
max ← FindMultiscalePartitions(Ci);

end
if C has no child then

return α → qα(C)
else

return α → max(qα(C),
∑

i Q
ΠCi
max )

During the computation, we can keep in memory the communities Ci that are split at each scale factor αi. This provides
all necessary information to know at which scale factor α each community appears and disappears from the partitions Pα .
This also makes it possible to build the reorganized dendrogram and all partitions Pα (see Fig. 1c).

If we compare the complexity of this post-processing algorithm to those of the known community detection algorithms,
we can deduce that it may be integrated after almost any of them without changing their overall complexity. Moreover,
hierarchical structures obtained from real cases tend to be balanced [4], which is themost favorable case for our complexity.

3.3. A notion of scale relevance

We showed that one can obtain all best partitions Pα for any scale factor α. However all these partitions may not have
the same relevance in terms of the community structure.Wewill provide in this section, amethod to estimate the relevance
of these partitions and to retrieve the most meaningful scale factors at which clear community structures appear.

The algorithm of Section 3.2 allows us to knowwhen each community C appears and disappears from the partitions Pα .
Let αmin(C) and αmax(C) be these two scale factors: C ∈ Pα for αmin(C) < α < αmax(C). One may consider that the most
relevant communities will be present for wide ranges of scale factors. We use this to measure the relevance of a community
C by αmax(C) − αmin(C) and the best scale representing C as α =

αmax(C)−αmin(C)

2 . These two notions are captured by the
following definition.

Definition 4. We define the relevance function Rα(C) of a community C at scale α by

Rα(C) =
αmax(C)− αmin(C)

2
+

2(αmax(C)− α)(α − αmin(C))

αmax(C)− αmin(C)
.

This leads to the global relevance function R(α) = 1
n

∑
C∈Pα
|C|Rα(C).

Rα(C) is a quadratic function of α. Its maximum is R( αmax(C)−αmin(C)

2 ) = αmax(C)−αmin(C) and R(αmin(C)) = R(αmax(C))

=
αmax(C)−αmin(C)

2 . It may be used for determining the scale factors corresponding to relevant community structures. We can
use it to find the best scale α which maximizes R(α), but we can also focus on other local maxima of R(α) corresponding
to other interesting scales. This method allows us to determine several relevant scales and thus several relevant partitions
(see Fig. 1c for an example).

The computation of R(α) and its maxima can be done in O(n). R(α) is a quadratic function that can be written as
R(α) = Aα2

+ Bα+ C between each specific αi (αi correspond to splits of communities in the hierarchy given by partitions
Pα). At each split, the coefficients A, B and C are modified according to the coefficients of Rα(C) of the corresponding
communities. The previous algorithm gives the list of these splits, which allows to compute coefficients A, B and C by
updating them at each αi. Each community leads to two updates (in constant time) of the coefficients (one when it appears
at αmax(C) and one when it disappears at αmin(C)), thus the overall complexity is O(n).
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Fig. 2. Performance of the different methods measured by the similarity between the partition found and the actual generated partition. Left: influence of
the size of the graph. Right: influence of the modularity of the reference partition.

4. Experimental evaluation

In this section, we evaluate and compare the performances of different methods and quality functions presented in this
paper. Comparing community detection results is a difficult task because one needs some test graphs whose community
structure is already known. A classical approach is to use randomly generated graphs with communities. We will compare
the partitions obtained by post-processing the results of the same agglomerative algorithm [16,15] on a large set of such
graphs.

We generate test graphs according to the following parameters: number of vertices n, number of communities c , average
internal and external 2 degrees din and dout . We divide the n vertices into c equal-sized sets thenwe draw each possible edge
with probabilities pin or pout chosen according to din and dout . We evaluate the partitions found by comparing them to the
original generated partition. To achieve this, we use the Rand index corrected by Hubert and Arabie [18,11] which evaluates
the similarities between two partitions. The Rand index I(Pi, Pj) is the ratio of pairs of vertices correlated by the partitions
Pi and Pj (two vertices are correlated by the partitions Pi and Pj if they are classified in the same community or in different
communities in the two partitions). The expected value of I for a random partition is not zero. To avoid this, Hubert and
Arabie proposed a corrected index that is also more sensitive: I ′ = I−Iexp

Imax−Iexp
where Iexp is the expected value of I for two

random partitions with the same community size as Pi and Pj.
We will compare the following approaches: Classical Modularity (CM) maximizes QM over P0, . . . , Pc , Best Modularity

(BM) maximizes QM over Π , and Multi-scale Modularity (MM) maximizes QM
α over Π for the most relevant scale factor α

given by R(α). Similarly, we define Best Performance (BP) andMulti-scale Performance (MP) using Q P and Best Similarity (BS)
andMulti-scale Similarity (MS) using Q S .

The first test considers a set of 25 000 graphswith different sizes (100 ≤ n ≤ 10 000), different numbers of communities,
different internal degrees 4 ≤ din ≤ 10 and external degrees such that the expected modularity of the reference partition
satisfies 0.2 ≤ QM(Pref ) ≤ 0.6. The results (Fig. 2) show that the performance Q P is not very well suited for community
detection in sparse networks because it gives too much importance to non-existing edges. We may also notice that the
similarity based quality function Q S does not produce satisfying results without considering its multi-scale version Q S

α . And
finally, we see that the classical and the best modularity methods produce good results that are improved by themulti-scale
approach.

The next two experiments show advantages of the multi-scale quality functions. First, we will test their ability to find
communities at any scale by considering different sizes of communities. We generated a set of graphs with n = 1000
vertices, the same internal degrees din = 3 and the same expected modularity QM

exp = 0.3, but they differ in their number of
communities 2 ≤ c ≤ 100. The results (Fig. 3) show that multi-scale approaches (MM and MS) find the good partition for
any number and size of communities while CM and BM approaches have difficulties in finding small communities.

2 In this paper, for a given graph divided into communities, internal edges are the ones linking two vertices in a same community; external edges are the
ones linking vertices in two different communities.
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Fig. 3. Influence of the number of communities on generated graphs with n = 1000 vertices. Top: similarity between the partition found and the actual
generated partition. Bottom: modularity QM of the partition found and of the reference partition.

Fig. 4. Detection of communities at two different scales: distance from the macroscopic and the microscopic partitions in function of the total internal
degree din = dmicro

in + dmacro
in .

It is interesting to compare the value of modularity found by the different approaches. Of course the BMmethod obtains
the largest value, but all other approaches find partitions that aremore similar to the reference partition. Moreover, it shows
that it is possible to find a bad partition (that does not represent the correct scale)with a largermodularity than the reference
partition. This disadvantage of the modularity is addressed by the multi-scale modularity proposed in this paper.

Finally,we generated graphswith 1000 vertices and two community scales: vertices are divided into 10 communities that
are themselves divided into 10 communities. This defines a macroscopic and a microscopic partition. Edges are randomly
drawn in order to obtain three fixed average degrees dmicro

in , dmacro
in and dout chosen between 2 and 6. We considered the two

best scale factors indicated by the relevance function R(α) and compared the associated partitions to the two generated
partitions. The results (Fig. 4) show that the multi-scale quality functions make it possible to find distinct partitions
corresponding to different scales. In comparison the BMmethod, that only find one partition, only detects the macroscopic
partition.

5. Conclusion

We proposed in this paper, methods improving the results of any community detection algorithm finding a hierarchical
structure of communities. First, we showed how to optimize additive quality functions over a larger set of partitions
than classical approaches. Moreover, we proposed multi-scale quality functions that work at different scales and make it
possible to find more than only one relevant partition. Experiments have shown that these methods provide a significant
improvement over classical approaches, especially in detecting small communities or communities that appear at different
scales.

Moreover, scale factors associated with each community enable to reorder the dendrogram (Fig. 1c), and we are
convinced that they could also be integrated in a multi-scale visualization tool of complex networks based on community
decomposition.
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