
Artificial Intelligence 125 (2001) 3–17

A sufficiently fast algorithm for
finding close to optimal clique trees

Ann Becker, Dan Geiger∗
Computer Science Department, Technion, Haifa 32000, Israel

Received 18 June 1996

Abstract

We offer an algorithm that finds a clique tree such that the size of the largest clique is at most
(2α + 1)k wherek is the size of the largest clique in a clique tree in which this size is minimized
andα is the approximation ratio of anα-approximation algorithm for the 3-way vertex cut problem.
Whenα = 4/3, our algorithm’s complexity is O(24.67kn · poly(n)) and it errs by a factor of 3.67
wherepoly(n) is the running time of linear programming. This algorithm is extended to find clique
trees in which the state space of the largest clique is bounded. Whenk = O(logn), our algorithm
yields a polynomial inference algorithm for Bayesian networks. 2001 Elsevier Science B.V. All
rights reserved.

Keywords:Clique tree algorithm; Triangulation algorithm; Bayesian networks; 3-way vertex cut problem

1. Introduction

All exact inference algorithms for the computation of a posterior probability in general
Bayesian networks have two conceptual phases. One phase handles operations on the
graphical structure itself and the other performs probabilistic computations; The clique tree
algorithm [16] requires us to first find a “good” clique tree and then perform probabilistic
computations on the clique tree and the method of conditioning [17,18] requires us to
find a “good” loop cutset and then perform a calculation using the loop cutset. In [5], we
offered an algorithm that finds a loop cutset for which the logarithm of the state space is
guaranteed to be within a constant factor off the optimal value. In this paper, we provide a
similar optimization for the clique tree algorithm.

* Corresponding author.
E-mail addresses:anyuta@cs.technion.ac.il (A. Becker), dang@cs.technion.ac.il (D. Geiger).

0004-3702/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(00)00075-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81926789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4 A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17

We shall first restrict our discussion to networks for which all vertices have the same
state space size and to the optimality criterion which we call cliquewidth. Thecliquewidth
of an undirected graphG is the size of the largest clique in a clique tree ofG in which
the size of the largest clique is minimized. A more common term istreewidthwhich is the
cliquewidth minus 1.

Preceding this work, all methods in the AI and Statistics communities for finding a clique
tree had no guarantee of performance and could perform rather poorly when presented with
an appropriate example. One algorithm, due to Rose [21], is as follows: repeatedly, select
a vertexv with minimum number of neighborsN(v), deletev from the graph, and make
a clique out ofN(v). The resulting sequence of cliques creates a clique tree. This greedy
algorithm minimizes the size of each clique as it is being created. However, it could easily
make a mistake at the first step that would lead it to a clique tree far off the optimal size.
Another algorithm, investigated by Kjærulff [13], uses a technique known as simulating
annealing which takes a long time to run and has no guarantees on the quality of the output.

Finding an optimal clique tree is NP-complete but for a graph withn vertices and a
cliquewidthk there exists an O(nk+1) algorithm that finds an optimal clique tree [2]. This
algorithm is not practical for the size of Bayesian networks dealt with in practice. Other
algorithms for finding an optimal clique tree have a complexity of O(f (k)n) wheref (k)
is a super-exponential function ofk [7]. These algorithms are practical for cliques of size
k = 5 at most. A more practical algorithm for constructing an optimal clique tree when the
largest clique size is 4 is given in [4]. For larger values ofk there is no algorithm known
to date that can find the optimum clique tree quickly. The exponential dependency ink

cannot be improved unless P= NP because finding an optimal clique tree fork =O(n) is
NP-complete [2].

Kloks in his bookTreewidth[14], which is devoted to finding clique trees in various
graphs, gives apolynomialalgorithm that finds a clique tree of a given graphG such that its
largest clique size is at most a factor 12∆ logn off optimal where∆ is a large unspecified
constant (see also, [6]). Kloks states that finding a polynomial algorithm that constructs
a clique tree such that the size of the largest clique is a constant factor off optimal is a
major open problem. The importance of this problem stems from the fact that many NP-
complete problems on graphs can be solved polynomially if the input graph has a clique
tree with fixed sized cliques and if such a clique tree can be found efficiently [1,3]. Some
of these problems are:INDEPENDENT SET, DOMINATING SET, GRAPHK-COLORABILITY,
HAMILTONIAN CIRCUIT andCONSTRAINT SATISFACTION PROBLEMS[10].

Robertson and Seymour [20], among other key results, were the first to present an
algorithm that finds a clique tree of a given graphG such that its largest clique size
is at most a constant factor off optimal (they actually used a slightly different concept
termedbranchwidth). Reed [19] presents Robertson and Seymour’s algorithm in a more
accessible form and shows that its output is always less than 4 times the cliquewidth and
the complexity is O(k233kn2). Reed also gives an algorithm that errs by a factor of 5 and
has a complexity O(k234kn logn). Lagergren [15] presents efficient parallel algorithms for
this problem.

We offer an algorithm that finds a clique tree such that the size of the largest clique
is at most(2α + 1) times the cliquewidth whereα is the approximation ratio for any
approximation algorithm for the 3-way vertex cut problem. When using a4

3-approximation

A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17 5

algorithm for the 3-way vertex cut problem (α = 4
3) due to [11], our algorithm’s complexity

is O(24.67kn · poly(n)) and it errs by a factor of 3.67 wherepoly(n) is the running time of
linear programming.

Whenk =O(logn), our algorithm, like previous ones, is polynomial. Consequently, it
yields a polynomial inference algorithm for the class of Bayesian networks that have a
logarithmic cliquewidth. Of course, one does not know a priori what is the cliquewidth of
a given network and so a user must terminate the algorithm if the running time is too long,
in which case, due to the complexity results reported herein, the running time of exact
inference must be quite large as well.

In Section 3, we describe the algorithm and prove its performance guarantee. This
algorithm is made as simple as possible to facilitate the proof. In Section 4, we describe
several heuristics that improve the algorithm’s average case performance. In Section 5, we
describe the changes needed so that the algorithm takes into account vertices with different
state space sizes. The modified algorithm guarantees that the logarithm of the size of the
state space of the heaviest clique in the clique tree found is less than a constant factor off
the optimal value. In Section 6 we describe experiments made using the graph Medianus I.
In most instances our algorithm was superior to an enhanced greedy algorithm both in
terms of the largest state space and in terms of the total state space. In Section 7 we discuss
the extent to which our results can be improved.

2. The clique tree algorithm

The clique tree algorithm is currently the most practical inference method for Bayesian
networks. In this section we provide the relevant highlights of the clique tree algorithm.
For details, consult [12,16].

Definition. A directed acyclic graph (DAG) is a graph with no directed cycles. In a DAG,
pa(v) denotes the set of parents of a vertexv. A Bayesian networkis a DAG such that with
each vertexv we associate a finite setD(v) called the state space ofv and a probability
distributionP(v|pa(v)). The joint distribution ofV is given byP(V)=∏v∈V P (v|pa(v)).

The updating problemis to compute the posterior probability of every vertex given
specific values to a subset of vertices.

The clique tree algorithm solves the updating problem as follows. For every vertex
v, it connects every pair ofv’s parents and removes the direction of all edges in the
graph. The resulting graph is undirected (called the moral graph). Then, the moral graph
is triangulated; edges are added until every cycle of length more than three has a chord.
These are calledfill-in edges. Once the graph is triangulated (or chordal), a tree of cliques,
called theclique tree, is constructed. The clique tree algorithm then loads all probabilities
into the clique tree and performs the calculations on the new structure.

Definition. Let G = (V ,E) be a chordal graph. Aclique treeof G is a treeH such that
each maximal cliqueC of G is a node inH, and for every vertexv of G, if we remove
fromH all nodes not containingv, the remaining nodes stay connected.

6 A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17

The single most important step of this algorithm is triangulation. There are many ways
to add edges to a given graph until it becomes chordal. In particular, one can simply make
a single large clique. However, the time for loading the probabilities and performing the
calculations is proportional to the total state space given by

∑
C∈H

∏
v∈C |D(v)|, which is

dominated by the size of the largest clique if all vertices have the same state space size. For
example, if a largest clique containsm vertices and if their state space is of size two, then
the probability table for this clique is of size 2m. The objective of triangulation is to find a
clique tree such that the largest clique size is as small as possible. Sections 3 and 4 provide
an approximation algorithm for this problem. In Section 5, we describe the changes needed
in order to account for varying state space sizes.

3. The triangulation algorithm

A natural approach to triangulate a graphG = (V ,E) is to use a divide and conquer
technique. In each iteration a minimum set of verticesX is found which removal from
G splits G into two disconnected components having vertex setsA and B such that
A ∪ B ∪ X = V . The setX is called aminimum vertex cut. The algorithm proceeds on
the two smaller problemsG[X ∪ A] andG[X ∪ B], the subgraphs induced fromG by
the vertex setsX ∪A andX ∪ B respectively. Each subgraph is triangulated such thatX

becomes a clique in it.
While this approach yields a triangulated graph, the size of the cliques produced may

grow up to an O(n) factor off their initial size if in each step one of the graphs shrinks only
by a constant number of vertices and the vertex cut found in each step has many edges
connecting it to previously found cuts.1 We leave out the construction of such an example.
Robertson and Seymour, Reed, and Kloks all provide clever modifications that prevent the
initial cliqueX from growing beyond a constant factor off its initial size [14,19,20].

We provide an algorithm that is similar to previous ones except that rather than dividing
the graph to two subproblems using a min-cut/max-flow algorithm, we divide it to three
subproblems using an approximation algorithm for the 3-way vertex cut problem.

The 3-way vertex cut problem is defined as follows: given a weighted undirected graph
and three vertices, find a set of vertices of minimum weight whose removal leaves each of
the three vertices disconnected from the other two. This problem is known to be NP-hard
[8], however, there are someα-approximation algorithms for it, that is, algorithms which
guarantee that the weight of their output is no more thanα times the weight of an optimal
3-way vertex cut. In the next section, we describe a simple 2-approximation algorithm.
A more sophisticated polynomial43-approximation algorithm for the 3-way vertex cut
problem is reported in [11] (actually, their algorithm is a(2− 2

k
)-approximation algorithm

that findsk-way vertex cuts).
Our algorithm produces a triangulated graph whose largest clique size is less than

(2α + 1)k wherek is the cliquewidth ofG andα is the ratio between the weight of the
3-way vertex cut found by the algorithm we use and the optimal 3-way vertex cut. For

1 We thank Leonid Zosin for constructing such an example.

A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17 7

α = 4
3, obtained by using Garg et al.’s algorithm, our approximation algorithm yields a

triangulation having a cliquewidth bounded by 3.67k.

Definition. LetG= (V ,E) be a graph. Adecompositionof G is a partition(X,A,B,C)
of V , whereA andB are non-empty sets, such that there are no edges betweenA,B andC.

Definition. Given an integerk > 1, a real numberα > 1, a graphG = (V ,E) such
that |V | > (2α + 1)k, and a subset of verticesW ⊆ V , a decomposition(X,A,B,C)
of G is called aW-decompositionwith respect to(k,α) if |W | < (α + 1)k, |X| 6 αk,
|(W ∩A)∪X|< (α + 1)k, |(W ∩B) ∪X|< (α + 1)k, and|(W ∩C) ∪X|< (α + 1)k.

For example, supposeG is the chaina− b− c− d − e. The tripletX = {c},A= {a, b},
B = {d, e} andC = ∅ is a decomposition ofG. GivenW = {b, d}, this decomposition is
aW -decomposition ofG with respect tok = 1 andα = 2. GivenW = {b, c}, the triplet
X = {d},A= {a, b, c},B = {e} andC = ∅ is not aW -decomposition ofG with respect to
(k = 1, α = 2) because|(W ∩A)∪X| = 3.

The triangulation algorithm is given in Fig. 1. In order to triangulate a graphG having
a cliquewidthk we call Triangulate(G,∅, k). When the algorithm is called withW = ∅,
the size of the second argument ofTriangulatein each recursive call is (strictly) less than
(α + 1)k because, when|V | > (2α + 1)k, by definition ofW -decompositions, the sets
WA ∪X,WB ∪X,WC ∪X which are the arguments passed in the recursive calls, contain
less than(α + 1)k vertices, respectively. Fig. 2 shows a graph and how it splits into three
subgraphs in a recursive call ofTriangulate. The setW serves to monitor the size of the
largest clique in the subproblems in each recursive call.

ALGORITHM Triangulate (G,W,k)

Input: An undirected graphG(V,E),W ⊆ V ,k.
Output: A triangulation ofG such thatW

is made a clique and such that the size
of the largest clique< (2α + 1)k (Success)
or, a valid statement that the cliquewidth
ofG is larger thank (Failure).

If |V |< (2α + 1)k then make a clique out ofG
else
Find aW -decomposition

(X,A,B,C) of G with respect to(k,α);
If not found return “cliquewidth> k”
WA←W ∩A,WB←W ∩B,WC←W ∩C;
call Triangulate(G[A ∪X],WA ∪X, k);
call Triangulate(G[B ∪X],WB ∪X, k);
call Triangulate(G[C ∪X],WC ∪X, k);
make a clique ofG[W ∪X].

Fig. 1. The triangulation algorithm.

8 A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17

Fig. 2. An example of one level of a recursive call withk = 3 andα = 1. Highlighted vertices are inW and
X= {f,g}. The three graphs at the bottom are passed as arguments to the next level of the recursion.

The next two lemmas show that aW -decomposition must exist or the cliquewidth is
greater thank, in which case the algorithm outputs correctly this fact. Consequently, a naive
way to use this algorithm is to repeatedly callTriangulate(G,∅, k) starting withk = 1 and
incrementingk by 1 whenever the algorithm fails to triangulateG. In the next section, we
provide implementation details and a complexity analysis.

Lemma 1. Given a graphG(V,E) with a cliquewidth6 k, |V |> k + 2, and a subset of
verticesW , |W | > 1, there exists a decomposition(X,A,B,C) of G such that|X| 6 k,
|W ∩A|6 1

2|W |, |W ∩B|6 1
2|W | and |W ∩C|6 1

2|W |.

Proof. A constructive proof of similar claims is given in [14, Lemma 2.2.9]. LetH(G) be
a clique tree ofG with a cliquewidth6 k. Add edges until all cliques in this clique tree
become of sizek and all intersections of cliques become of sizek − 1. Call the resulting
clique treeT (G). Now consider the following algorithm. Start with any cliqueX in T (G).
If there is no connected component inG[V \ X] which has more than12|W | vertices of
W , then stop. Otherwise, letS be a component inG[V \ X] which has more than12|W |
vertices ofW . There exists a vertexy in S which hask − 1 neighbors inX in the graph
T (G) (viewed as a chordal graph). Letx be the vertex inX that is not a neighbor ofy in
T (G). DefineY =X \ {x}∪{y}. Note thatY is a clique and it hask vertices. The algorithm
continues withY .

To show that this algorithm terminates, we prove that in each step of the algorithm one
of two conditions is met. Hereafter, the component which includes the largest part ofW

will be called themain component. The first condition is that the number of vertices in
the main component decreases and the number of vertices ofW in the main component
does not increase. The second condition is that the number of vertices ofW in the main
component decreases.

A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17 9

Notice thatG[V \ Y] has two types of components. One type consist only of vertices
in S \ {y}. If the main component ofG[V \ Y] is among these, the number of vertices is
decreased and the number of vertices ofW does not increase. The other type of components
consist only of vertices of{x} ∪ V \ (S ∪X). The total number of vertices ofW in this set
is less than1

2|W | becauseS contains more than half the vertices ofW . Hence, in this case,
the number of vertices fromW in the main component decreases by one. Consequently,
the algorithm terminates.

Suppose now thatX is the final clique considered by this algorithm. IfG[V \ X] has
two or more non empty components, then group them into three sets to form the desired
decomposition. Otherwise, there is only one component inG[V \ X]. Consequently, the
cliqueX is a leaf in the clique treeT (G). SinceV contains at leastk + 2 vertices, and
there is only one component inG[V \ X], there exists a unique cliqueY that contains
k − 1 vertices ofX and which is not a leaf inT (G). The graphG[V \ Y] has at least
two connected components and each contains at most half the vertices ofW (because
|W |> 1). 2
Lemma 2. Given an integerk > 1, a real numberα > 1, a graphG(V,E) with |V | >
(2α + 1)k and a subset of verticesW such that|W | < (α + 1)k, there exists a W-
decomposition(X,A,B,C) of G with respect to(k,α) or the cliquewidth ofG is larger
thank.

Proof. Let G be a graph with a cliquewidth6 k. If |W | 6 1, then letX be any minimal
vertex cut. If|X| 6 k, the resulting decomposition is aW -decomposition with respect to
(k,α). Otherwise, the cliquewidth is larger thank.

Suppose|W | > 1. Let (X,A,B,C) be a decomposition ofG with the properties
guaranteed by Lemma 1. We will prove that(X,A,B,C) is also aW -decomposition
with respect to(k,α). If it were not, then assume that|(W ∩ A) ∪ X| > (α + 1)k, this
inequality implies that|W ∩ A| > αk because|X| 6 k. But according to Lemma 1, we
have|W |> 2|W ∩A|. Consequently,|W |> 2αk in contradiction to its given size which is
smaller than(α+1)k. Hence, if the cliquewidth ofG6 k, then there is aW -decomposition
with respect to(k,α). Equivalently, if there isn’t aW -decomposition with respect to(k,α),
the cliquewidth must be larger thank. 2
Theorem 3. If G(V,E) is a graph withn vertices,k > 1 an integer,α > 1 a real number,
andW is a subset ofV such that|W |< (α + 1)k, then Triangulate(G,W,k) triangulates
G such that the vertices ofW form a clique and such that the size of a largest clique of the
triangulated graph< (2α + 1)k or the algorithm correctly outputs that the cliquewidth of
G is larger thank.

Proof. If the algorithm outputs that the cliquewidth ofG is larger thank, then this is a
valid statement by Lemma 2. Assume the algorithm does not produce this output.

The algorithm always terminates because in every recursive call ofTriangulate the
graphsG[A ∪ X], G[B ∪ X] andG[C ∪ X] have less vertices thanG[A ∪ B ∪ C ∪ X]
sinceA andB are not empty.

Next, we show that the algorithm returns a triangulated graph. We prove this by
induction using the recursive structure of the algorithm. Clearly the claim is true if|V |<

10 A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17

(2α+1)k. Assume|V |> (2α+1)k. By induction the recursive callTriangulate(G[A∪X],
WA ∪X, k) returns a triangulation ofG[A ∪X], such thatWA ∪X is a clique. Similarly,
for B andC. The algorithm then makes a clique ofW ∪ X. Consequently, the graphs
G[A ∪W ∪ X], G[B ∪W ∪ X] andG[C ∪W ∪ X] are triangulated as well. Since the
intersection of these triangulated graphs is a clique, the union must also be triangulated.

It remains to show that the cliquewidth of the triangulated graph is less than(2α + 1)k.
This is clearly true if|V |< (2α+ 1)k. Hence assume|V |> (2α+ 1)k. LetM be a largest
clique in the triangulated graph. There are two cases to consider. IfM contains no vertex
of A \ W , B \ W andC \ W , thenM contains only vertices ofW ∪ X. Consequently,
|M| = |W ∪X|6 |W | + |X|< (α + 1)k + αk, and the cliquewidth is less than(2α + 1)k
as claimed. IfM contains a vertex ofA \W , then it contains no vertex ofB ∪ C because
there are no edges betweenA \W andB ∪C. HenceM is a clique in the triangulation of
G[A∪X]. By induction we know that|M|< (2α+ 1)k. 2

Note that Lemma 2 and Theorem 3 hold for everyα > 1. However, in order to find
a W -decomposition with respect to(k,α) sufficiently fast (Lemma 2 only guarantees
existence), we chooseα to be the approximation factor of an algorithm for the 3-way
vertex cut problem, an algorithm which we employ for finding aW -decomposition. We
now give an algorithm that finds aW -decomposition with respect to(k,α) whereα is
chosen as just described. Then we will argue for correctness.

For every possible selection of four disjoint subsetsWA,WB,WC,WX of W , such
that |WA| > |WB | > |WC |, we show how to check if there exists a W-decomposition
(X,A,B,C) with respect to(k,α), such thatWA ⊆ A,WB ⊆ B,WC ⊆ C andWX ⊆ X.
There are at most 4|W | choices to divideW into four set of verticesWA,WB,WC,WX .

LetWA,WB,WC,WX be a particular selection. We consider two cases,
(1) |WA|< k, and
(2) |WA|> k.

Each case uses a different procedure.
Procedure I (|WA| < k): RemoveWX from the graph, add three dummy verticesva ,

vb and vc each connected to all the vertices inWA, WB andWC , respectively. Set the
capacity of all vertices inWA ∪WB ∪WC to infinity and the capacity of all other vertices
to one. Find anα-approximation 3-way vertex cutY which splitsva , vb andvc into three
disconnected components. IfY has a finite weight, then, due to the capacities selected, it
must splitWA,WB andWC to three disconnected components as well. Otherwise drop this
choice from further consideration. Now letX beY ∪WX , A be the union of the connected
components ofG[V \X] such thatWA ⊆A, B be the union of the connected components
of G[V \X] such thatWB ⊆ B, andC = V \ (A∪B ∪X). If |X|< (α + 1)k− |WA| and
|X|6 αk then output(X,A,B,C) as the desired W-decomposition with respect to(k,α)

(because|WA|> |WB |> |WC |).
Procedure II (|WA| > k): RemoveWX from the graph, add a dummy vertexva that is

connected to all the vertices inWA, and add another dummy vertexvbc that is connected
to all vertices inWB andWC . Set the capacity of all vertices inWA ∪WB ∪WC to infinity
and the capacity of all other vertices to one. Find a minimum vertex cutY which splits
va and vbc into two disconnected components. IfY has a finite weight, then, it must
split WA andWB ∪WC as well. Otherwise drop this choice from further consideration.

A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17 11

Finding a minimum vertex cut is done by any of the well known max-flow/min-cut
algorithms. Now letX be Y ∪ WX , A be the union of the connected components of
G[V \ X] such thatWA ⊆ A, B = V \ (A ∪ X), andC = ∅. If |X| < (α + 1)k − |WA|,
|X| < (α + 1)k − |WB ∪WC | and |X| 6 αk then output(X,A,B,C) as the desiredW -
decomposition with respect to(k,α).

Now we will show that if aW -decomposition with respect to(k,α) exists, as guaranteed
by Lemma 2, then either procedure I or procedure II will find aW -decomposition
with respect to(k,α) for some choice ofWA,WB,WC,WX . Let (X′,A′,B ′,C′) be a
decomposition ofG with the properties guaranteed by Lemma 1. LetWA = A′ ∩ W ,
WB = B ′ ∩W ,WC = C′ ∩W andWX = X′ ∩W , and assume without loss of generality
that |WA|> |WB |> |WC |. Procedure I for|WA|< k, and procedure II for|WA|> k both
generate for this choice ofWA,WB,WC,WX , a decomposition(X,A,B,C). We now show
that in either case this decomposition is aW -decomposition with respect to(k,α).

Case 1:|WA| < k. The set of verticesX′ \ WX is a 3-way vertex cut for the sets
WA, WB , andWC in the graphG[V \ WX]. An α-approximation algorithm for the 3-
way vertex cut problem outputs a cutY , such that|Y | 6 α|X′ \ WX|. Sinceα > 1,
we get |Y ∪ WX| 6 α|X′|. Consequently,|Y ∪ WX| 6 αk because|X′| 6 k. Finally,
|WA ∪ (Y ∪WX)| < k + αk = (α + 1)k. Thus all the conditions for aW -decomposition
with respect to(k,α) are met.

Case 2:|WA| > k. The set of verticesX′ \ WX is a vertex cut for the setsWA,
WB ∪WC in G[V \WX]. A max-flow/min-cut algorithm outputs a vertex cutY such that
|Y |6 |X′ \WX|. Consequently|Y ∪WX|6 k because|X′|6 k. Finally, since|W |> 2|WA|
(Lemma 1), we get|WA ∪ (Y ∪ WX)| < ((α + 1)/2)k + k 6 (α + 1)k. Hence from
|WB ∪WC)|< αk it follows that|(WB ∪WC)∪ (Y ∪WX)|< αk + k = (α+ 1)k. Thus all
the conditions for aW -decomposition with respect to(k,α) are met.

4. Implementation and complexity

The algorithm presented in the previous section can be improved substantially by three
adjustments: processing the input of the algorithm, changing the termination condition of
the recursion, and processing the output of the algorithm. We shall first describe these
changes and demonstrate the algorithm on a simple example. Then, we provide further
implementation details and analyze the algorithm’s complexity.

The input graph of the algorithm may contain vertices such that all their neighbors are
connected. A vertexv is calledsimplicial in G if its neighborsN(v) form a clique. Before
callingTriangulate, starting with the input graphG, we repeatedly remove every simplicial
vertex from the current graph yielding a graphG′. The graphG′ has a cliquewidth no larger
than that ofG. By triangulatingG′ byTriangulate(or any other triangulation algorithm) we
triangulateG as well. Hence, this preprocessing step retains the validity of the algorithm.
This step improves the running time complexity whenever simplicial vertices are found.

The termination condition of the recursion is that whenever|V |< (2α + 1)k a clique is
formed out ofG. However, instead of a clique, it suffices to produce a clique tree ofG in
whichW is a clique. This step is done by forming a clique ofW and then completing it to
a clique tree ofG by any of the known greedy heuristics. The proof of Theorem 3 remains

12 A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17

valid without any change. Consequently, the worst case approximation is not affected.
However, in many instances the approximation is improved.

The output of the algorithm is a triangulated graphT (G) which is not necessarily
minimal. This means that some edges that were added (fill-in edges) might possibly be
removed and the resulting graph remains triangulated. Kjærulff provides an algorithm that,
given a triangulation of a graphG and an ordering on its vertices, produces a minimal
triangulated graph [13]. We use Kjærulff’s algorithm with an ordering that is determined
as follows. First in the ordering are the simplicial vertices in the order in which they are
removed fromG. The order of the remaining vertices is determined recursively while
runningTriangulate; In each level of the recursion, the vertices inX \ W follow those
in A \W , those inB \W and those inC \W .

We now demonstrate the effects of these modifications on the graph depicted in Fig. 2
(assumingW = ∅). If simplicial vertices are removed, then the remaining graph does
not contain the verticesa andb. The next phase, whenk = 3 andα = 1, creates three
cliques:{c, d, e, f, g}, {f,g,h, i} and{f,g, j, k}, in addition to{a, c} and{b, c} due to the
simplicial vertices. Finally, applying Kjærulff’s minimization algorithm removes the edges
(f, i), (f, j), (c, f), (c, g), (d, g) yielding an optimal clique tree.

The total complexity of runningTriangulatewith a givenk is the time it takes to find
a W-decomposition times the number of nodes in the recursion tree which is at most
n. The time it takes to verify whether a choiceWA,WB,WC,WX can generate aW -
decomposition with respect to(k,α = 4

3) takespoly(n) which is the time it takes to run
Garg et al’s4

3-approximation algorithm for the 3-way vertex cut problem. This polynom is
quite high as it is the complexity linear programming. (A more practical algorithm, without
a polynomial complexity guarantee, is the simplex algorithm.) Thus the complexity of
runningTriangulatewith a givenk is O(4(1+α)kn ·poly(n)) whereα = 4

3, because there are
at most 4|W | choices and|W |< (α+ 1)k. Since, in the worst case, the algorithm is run for
i = 1 up to the cliquewidth ofG, the total running time is O(

∑k
i=1 42.33in ·poly(n)) which

is O(24.67kn · poly(n)). The size of the largest clique in the output is at most 2α+1= 3.67
times the cliquewidth.

In a simpler implementation we use a straightforward 2-approximation algorithm for
finding a 3-way vertex cut; Find a minimum vertex cut betweenva and{vb, vc}, a minimum
vertex cut betweenvb and{va, vc} and a minimum vertex cut betweenvc and{va, vb}. The
output vertex cut is the union of any two of the three vertex cuts. This output is clearly a 3-
way cut and it is at most twice the optimal weight because each of the three cuts weighs less
than an optimal 3-way vertex cut. Finding each vertex cut is done using a max-flow/min-cut
algorithm which takes O(kn2 logn). This algorithm for the 3-way vertex cut is analogous
to the one described in [9] for the edge multiway cut. A more clever implementation using
Reed’s arguments can find an appropriate vertex cut in O(k2n). Consequently, sinceα = 2,
the total complexity is O(k243kn2) and the largest clique in the output is at most 5 times
the cliquewidth.

In practice, our implemented algorithm, which uses the 2-approximation 3-way vertex
cut, encountered a much smaller complexity. The setW is almost always less than
(1+ α)k and in most cases it is less thank which implies that the complexity encountered
is proportional to 22k rather than to 24.67k. Furthermore, when aW -decomposition
(X,A,B,C) exists, it is often the case thatW consists of two subsets and the third is

A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17 13

empty, in which case the algorithm for finding a 3-way vertex cut is not activated (as is
the case in the graph of Section 6). In addition, instead of increasingk by one whenever
Triangulatefails on the inputk, we can increase it to the minimal valuek∗ for which a
decomposition that was tested with respect to(k,α) was found to be aW -decomposition
with respect to(k∗, α) (k∗ > k).

Finally, note that Theorem 3 provides only a worst case bound of 2α + 1 for the ratio
between the size of the largest clique and the cliquewidth of the given graph. However, if
for an integerk, Triangulateproduces a triangulation having a largest clique of sizel and
the algorithm fails fork − 1 (it is run fori = 1, . . . , k until it succeeds), then the ratiol/k
is an upper bound for the ratio between the output and the cliquewidth ofG because the
cliquewidth must be greater thank − 1. This bound is much tighter than 2α + 1 because
it takes into account the given graph and the specific steps made byTriangulate. It is an
instance-specific posteriori bound rather than a worst case a priori bound. The boundl/k

is produced by the algorithm in order to inform the user about the quality of the clique tree
found.

5. The weighted problem

It remains to describe the changes needed in order to account for different state spaces
of each vertex. The weightw(v) of a vertexv is the logarithm (base 2) of its state space
size and the weight of a clique is the sum of the weights of its constituent vertices. Note
that the weight of a vertex with a binary state space is 1 and the weight of other vertices is
larger than 1. Our optimality criterion is now the weighted cliquewidth ofG. Theweighted
cliquewidthof G is the weight of the heaviest clique in a clique tree ofG in which the
weight of the heaviest clique is minimized.

To minimize the heaviest clique, we modify the algorithm as follows. We find a
weighted W-decompositionwith respect to(m,α), namely, a decomposition(X,A,B,C)
of G = (V ,E), wherew(V) > (2α + 1)m, such that the following holds:w(W) <
(α + 1)m, w(X) 6 αm, w((W ∩ A) ∪ X) < (α + 1)m, w((W ∩ B) ∪ X) < (α + 1)m
andw((W ∩ C) ∪X) < (α + 1)m. As in the unweighted case, we recursively triangulate
the graphsG[A∪X],G[B ∪X], andG[C ∪X] and make a clique out ofW ∪X. Once the
termination condition is met, namely,w(V) < (2α + 1)m, we apply the following greedy
algorithm which is called theminimum weight heuristics: repeatedly, select a vertexv
which forms with its neighborsN(v) a set of minimum weight, remove it from the current
graph, and makeN(v) a clique. We call this modified algorithmW -Triangulate.

The following claim holds.

Theorem 4. If G is a graph withn vertices,m andα > 1 are real numbers, andW is a
subset ofV such thatw(W) < (α + 1)m, thenW -Triangulate(G,W,m) triangulatesG
such that the vertices ofW form a clique and such that the weight of a heaviest clique of
the triangulated graph< (2α + 1)m or the algorithm correctly outputs that the weighted
cliquewidth ofG is larger thanm.

14 A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17

Proof. Theorem 3 and Lemmas 1 and 2 remain valid when the cardinality of sets is
replaced with their weight andk is replaced withm. 2

Theorem 4 states that in the clique tree found byW -Triangulate the weight of the
heaviest clique is less than 2α + 1 times the weighted cliquewidth.

The complexity ofW -Triangulatedepends on the maximum size ofW throughout the
recursive calls which we denote bys. The complexity ofW -Triangulate is O(k243sn2)

when the 2-approximation algorithm for the 3-way vertex cut problem is used. The heaviest
clique in the resulting clique tree is at most 5 times the weighted cliquewidth. Since,
k 6 s 6min{m,n}, this complexity is comparable to the complexity of inference on the
resulting clique tree which is O(25mn) and it is smaller than the complexity of inference if
state spaces are sufficiently large.

6. Experimental results

Kjærulff has tested several heuristic algorithms for constructing clique trees for two
graphs that were used for a medical application: Medianus I and Medianus II [13]. His
experiments show that the minimum weight heuristics enhanced by removing redundant
fill-in edges is superior to all other heuristics that were considered. We will compare
W -Triangulatewith this enhanced minimum weight heuristics on Medianus I (see Fig. 4).
We use two optimality criteria for the comparison, the logarithm of the state space size of
the heaviest clique denoted byM and the logarithm of the sum of the state space sizes of
all cliques (the logarithm of the total state space) denoted byT . CriterionM is the one that
served to developW -TriangulateandT is the one that optimizes the construction of the
probability tables for the resulting clique tree.

The two algorithms were run on Medianus I with state sizes randomly selected from
the range 3 to 21 with an average of approximately 6 (as in [13]). One hundred random
runs were made. In 68 runs our algorithm has outperformed the enhanced minimum weight
heuristics in both optimality criteria. Fig. 3 shows that the averaged improvement ofT was
0.64 and the maximum improvement was 2.37 which amounts to a reduction of storage by
a factor of about 5. In the 16 instances in which the greedy method was more successful,
the difference was at most 1.22. Of course, to obtain the best results one can simply run
both algorithms.

When the state space size of each vertex was selected between 6 and 32 with an
average of 13, we found two graphs in whichT is approximately 30 usingW -Triangulate

W-Triangulate Eq Greedy

∆ave ∆max # # ∆ave ∆max

M 75 .62 2.35 16 9 .3 .93

T 73 .64 2.37 11 16 .42 1.22

Fig. 3. The results for 100 runs on Medianus I. The first line records the differences on the average and in the
extreme case of the logarithm of the heaviest clique. In 16 instances the algorithms produced equal output. The
second line records the same information regarding the logarithm of the total state space.

A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17 15

Fig. 4. The Medianus I graph.

and T is approximately 34.5 using the enhanced greedy algorithm which implies that
instead of 1GB of memory which we need for storing the conditional probabilities, the
greedy algorithm would have used over 20GB. In general, as the state spaces increase our
algorithm becomes far better than the enhanced minimum weight heuristics.

Recall that the algorithmW -Triangulate(G,∅, k) is run with increasing values ofk until
a triangulation is found. We have recorded the number of verticesl in the largest clique (in
size) of the clique tree found byW -Triangulate(G,∅, k) when it succeeded and compared
it to the value ofk. Let ∆ = l − k. The largest clique size found is of sizel while the
cliquewidth is larger thank − 1 (because the algorithm failed withk − 1 as an input).
Then,∆ was 0 in 6 graphs (provably optimum size), 1 in 14 graphs (at most one vertex
off optimum), 2 in 29 graphs, 3 in 48 graphs and 4 in 3 graphs. The worst case upper
bound on the ratio between the size of the largest clique and the unknown cliquewidth was
l/k = 10/6 rather than 3.67 which is guaranteed in theory. Indeed, one cannot hope to
improve the clique tree too much on this graph.

We also collected some statistics on the running time complexity. We counted the
number of partitions made each time aW -decomposition is constructed. The count for
Medianus I was always far less than 4k rather than 43k which is the worst case bound. The
recursion depth was at most 3. The algorithm runs in less than a minute for most graph
instances but occasionally it takes up to two minutes. On these examples Robertson and
Seymour’s algorithm runs faster and obtains identical results. Our algorithm is faster when
k is large andn is small.

16 A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17

7. Discussion

We presented an algorithms that finds a clique tree in which the largest clique is no
more than 3.67 times the cliquewidth. If the cliquewidth ofG is of sizek =O(logn), then
our approximation algorithm is polynomial since its complexity is O(24.67kn · poly(n))
wherepoly(n) is the complexity of linear programming. It is well known that inference
in an optimal clique tree with binary variables takes O(2kn) which is polynomial for
a logarithmic cliquewidth. Thus, inference done using the clique tree produced by
our algorithm, as well as by Robertson and Seymour’s algorithm, is guaranteed to be
polynomial as well because if we err at most by a constant factor, the time of inference
is at most the optimal time raised to some power and so inference stays polynomial. Note
that the heuristic constructions of clique trees which do not guarantee a constant error
bound are not polynomial.

Our results could possibly be improved by constructing an algorithm that finds an
optimal clique tree with respect to the weighted cliquewidth with a complexity of optimal
inference, i.e., O(2kn), or errs by a factor smaller than 3.67. Our current algorithm,
however, can yield at best an error factor of 3 if an efficient exact algorithm is found
for the 3-way vertex cut problem for graphs with bounded cliquewidth. The existence of
such an algorithm is hinted parenthetically in [9] but the dependency ink is possibly super
exponential.

As a final comment, let us shed light on the common utterance used by the AI
community, that “inference is easy in sparse graphs”. Recall that if the cliquewidth is of
sizek, then the graph has no more thankn edges (see, e.g., Section 4). Hence, sparse graphs
in the context of easy inference should mean that the cliquewidth is of size O(logn), which
allows a polynomial inference algorithm, and implies that there are no more than O(n logn)
edges in the graph.

Acknowledgements

We thank Seffi Naor for pointing us to the term treewidth, and for pointing us to
[11]. We thank Leonid Zosin for showing us examples of poor clique trees produced by
various greedy algorithms. We thank Linda van der Gaag and Hans Bodlaender for their
helpful comments and for the references they provided us, in particular, Reed’s paper. The
conference version of this paper can be found in theProceedings of the 12th conference
on Uncertainty in Artificial Intelligence. This research was supported by the fund for
promotion of research at the technion.

References

[1] S. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded decomposability,
BIT 25 (1985) 2–23.

[2] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of finding embeddings in ak-tree, SIAM J.
Algebraic and Discrete Methods 8 (1987) 277–284.

A. Becker, D. Geiger / Artificial Intelligence 125 (2001) 3–17 17

[3] S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree-decomposable graphs, J. Algorithms 12 (1991)
308–340.

[4] S. Arnborg, A. Proskurowski, Characterization and recognition of partial 3-trees, SIAM J. Algebraic and
Discrete Methods 7 (1986) 305–314.

[5] A. Becker, D. Geiger, Optimization of Pearl’s method of conditioning and greedy-like approximation
algorithms for the vertex feedback set problem, Artificial Intelligence 82 (1996) 1–22.

[6] H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, T. Kloks, Approximating treewidth, pathwidth, and
minimum elimination tree height, Graph-theoretic concepts in computer science, in: Proc. 17th International
Workshop, WG’91, Fischbachau, Germany, Lecture Notes in Computer Science, Vol. 570, Springer, Berlin,
1991; See also: J. Algorithms 18 (1995) 238–255.

[7] H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth, in: Proc. 25th
ACM STOC, 1993, pp. 226–234.

[8] W.H. Cunningham, The optimal multiterminal cut problem, Discrete Mathematics and Theoretical
Computer Science (DIMACS Series) 5 (1991) 105–120.

[9] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, M. Yannakakis, The complexity of multiway
cuts, in: Proc. 24th Annual ACM STOC, 1994, pp. 241–251.

[10] R. Dechter, J. Pearl, Tree clustering for constraint networks, Artificial Intelligence 38 (1989) 353–366.
[11] N. Garg, V.V. Vazirani, M. Yannakakis, Multiway cuts in directed and node weighted graphs, in: Proc.

Automata, Languages and Programming, 21st International Colloquium, ICALP94, Jerusalem, Israel,
Lecture Notes in Computer Science, Vol. 820, Springer, Berlin, 1994, pp. 487–498.

[12] F.V. Jensen, S.L. Lauritzen, K.G. Olesen, Bayesian updating in causal probabilistic networks by local
computations, Computational Statistics Quarterly 4 (1990) 269–282.

[13] U. Kjærulff, Triangulation of graph-algorithms giving small total state space, Technical Report R 90-09,
Department of Mathematics and Computer Science, Aalborg University, Denmark, 1990.

[14] T. Kloks, Treewidth, Lecture Notes in Computer Science, Vol. 842, Springer, Berlin, 1994.
[15] J. Lagergren, Efficient parallel algorithms for graphs of bounded treewidth, J. Algorithms 20 (1996) 20–44.
[16] S.L. Lauritzen, D.J. Spiegelhalter, Local computations with probabilities on graphical structures and their

application to expert systems (with discussion), J. Roy. Statist. Soc. B 50 (2) (1988) 157–224.
[17] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan

Kaufmann, San Mateo, CA, 1988.
[18] J. Pearl, Fusion, propagation and structuring in belief networks, Artificial Intelligence 29 (3) (1986) 241–

288.
[19] B. Reed, Finding approximate separators and computing treewidth quickly, in: Proc. 24th Annual

Symposium on Theory of Computing, ACM Press, NY, 1992, pp. 221–228.
[20] N. Robertson, P.D. Seymour, Graph minors XIII. The disjoint paths problem, J. Combinatorial Theory B 63

(1995) 65–110.
[21] D. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl. 32 (1974) 597–609.

