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Enhancing the maturation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) will facilitate
their applications in disease modeling and drug discovery. Previous studies suggest that cell alignment could
enhance hPSC-CM maturation; however, the robustness of this approach has not been well investigated. To
this end, we examined if the anisotropic orientation of hPSC-CMs imposed by the underlying aligned fibers
within a 3D microenvironment could improve the maturation of hPSC-CMs. Enriched hPSC-CMs were cultured
for two weeks on Matrigel-coated anisotropic (aligned) and isotropic (random) polycaprolactone (PCL) fibrous
scaffolds, as well as tissue culture polystyrenes (TCPs) as a control. As expected, hPSC-CMs grown on the two
types of fibrous scaffolds exhibited anisotropic and isotropic orientations, respectively. Similar to cells on TCPs,
hPSC-CMs cultured on these scaffolds expressed CM-associated proteins andwere pharmacologically responsive
to adrenergic receptor agonists, a muscarinic agonist, and a gap junction uncoupler in a dose-dependentmanner.
Although hPSC-CMs grown on anisotropic fibrous scaffolds displayed the highest expression of genes encoding a
number of sarcomere proteins, calcium handling proteins and ion channels, their calcium transient kinetics were
slower than cells grown on TCPs. These results suggest that electrospun anisotropic fibrous scaffolds, as a single
method, have limited effect on improving the maturation of hPSC-CMs.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs)
have provided a realistic and excitingplatform for drug-induced toxicity
screening and disease modeling (Burridge et al., 2012; Yang et al.,
2014). Directed differentiation of CMs from hPSCs has been established
in several laboratories (reviewed in (Burridge et al., 2012; Mummery
et al., 2012)), producing immature CMs that have limited ability to
accurately reflect the physiology and pathology of human hearts
(Nunes et al., 2013; Yang et al., 2014). Evidence suggests hPSC-CMs
can progressively mature in long-term culture (Kamakura et al., 2013;
basic fibroblast growth factor;
te; ECM, extracellular matrix;
PSC, human pluripotent stem
ode array; MHC, myosin heavy
; PFA, paraformaldehyde; PCL,
ark Memorial Institute 1640
, scanning electron microscope;

s, Emory University School of

. This is an open access article under
Lundy et al., 2013), but this method can be time consuming which
may limit its utility. Thus, new approaches that enhance hPSC-CM
maturation are needed.

In adult myocardium, CMs are longitudinally aligned in the form of
parallel bundles to facilitate the mechanical contraction and electrical
propagation of the heart tissue. Mimicking nature's work, engineered
anisotropy (namely cell patterning) has been widely used as an
effective approach to improve the maturation of immature CMs (Yang
et al., 2014). This engineered anisotropy can be induced by electrical
(Nunes et al., 2013; Radisic et al., 2004) or mechanical loading
(Thavandiran et al., 2013; Tulloch et al., 2011) and also by substrates
that provide topographical guidance, which create a permissive envi-
ronment to guide the alignment of CMs (Chen et al., 2014; Kim et al.,
2010; Liau et al., 2011; Ma et al., 2014; McCain et al., 2014; Rao et al.,
2013; Salick et al., 2014; Zhang et al., 2013). Aligned CMs may result
in enhanced cardiac phenotypes indicative of cell maturation. Recently,
enhanced sarcomere alignment (Khan et al., 2015; Salick et al., 2014),
excitation-contraction coupling (Zhang et al., 2013), calcium cycling
(Khan et al., 2015; Rao et al., 2013), and drug sensitivity (Chen et al.,
2014) have been reported for hPSC-CMs grown on various micro-
patterned substrates, suggesting improved cell structural and/or
functional maturation. However, the robustness of cell alignment as a
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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single approach to improve the maturation of hPSC-CMs has not been
fully investigated.

Electrospinning is an effective platform technique to produce aniso-
tropic (aligned) fibrous scaffolds (Barnes et al., 2007), comparing to
conventional methods in fabricating aligned substrates, such as soft
lithography (Kim et al., 2010; McCain et al., 2014; Rao et al., 2013;
Salick et al., 2014), photolithography, two-photon initiated polymeriza-
tion (Ma et al., 2014), andmicro-fluidics (Xiao et al., 2014). Importantly,
the as-prepared electrospun scaffolds possess afibrous structure resem-
bling the native extracellular matrix (ECM), a high surface-to-volume
ratio, and a tunable porosity (Li et al., 2002). Remarkably, those fibrous
meshes can be easily fabricatedwith distinct anisotropy through the use
of a non-conductive template, as the surface topography and architec-
ture of the non-conductive template is readily transferrable (Senel
Ayaz et al., 2014; Zhao et al., 2013). A recent study has shown
that using a textile-templated electrospun aligned PU scaffold as the
substrate, neonatal rat CMs displayed more stable and prolonged spon-
taneous syncytium, comparing with cells on tissue culture polystyrenes
(TCPs) (Senel Ayaz et al., 2014). Based on these findings, we examined
whether aligned electrospun fibrous scaffolds could induce the
anisotropic cell alignment and improve the maturation of hPSC-CMs.

To this end, we first prepared the aligned and isotropic (random)
polycaprolactone (PCL) fibrous scaffolds, and confirmed the anisotropic
and isotropic alignment of hPSC-CMs cultured on these substrates
coated with Matrigel, including the use of TCPs as a control. We then
evaluated the structural, molecular and functional properties of the
cells after 2 weeks culture on each type of substrates. Our results
show that aligned electrospun fibrous scaffolds can induce the aniso-
tropic cell alignment of hPSC-CMs but do not improve the maturation
of hPSC-CMs.

2. Materials and methods

2.1. Preparation and characterization of electrospun fibrous scaffolds

Electrospun fibrous scaffolds were prepared as previously described
(Cipitria et al., 2011; Xie et al., 2009). In brief, 11% (w/v) PCL solution
was prepared by dissolving PCL (MW 75,000–90,000, cat No. 440744,
Sigma-Aldrich) in 1,1,1,3,3,3-Hexafluoro-2-propanol (HFP, cat No. 105228,
Sigma-Aldrich). After mixing for at least 10 h, the solution was
loaded into a 5-mL BD plastic syringe equipped with a blunt
22-gauge needle. The solution-loaded syringe was mounted into a
syringe pump (KDS-200, Stoelting) where the flow rate was set at
3.0 mL/h and 1.8 mL/h to produce aligned and random fibers, respec-
tively. The needle was connected to the positive output of a high-
voltage power supply (ES30P-5W, Gamma High Voltage Research,
Inc.) set at 13 kV. The collector, a custom-made rotating mandrel, was
grounded and set to rotate at different speeds by adjusting the potential
to 7 V and 1 V to fabricate aligned and random fibers, respectively. The
distance between the needle tip and the collectorwas set at 25 cm. After
approximately 1–1.5 h of collection, the fibrous mat (∼100 μm in thick-
ness)was released from the collector and stored under a chemical hood
for at least 24 h to let the solvent evaporate.

For characterization, the fibrous scaffolds were sputter-coated with
gold/palladium and visualized with a Cold Field Emission Scanning
Electron Microscope (SEM, Hitachi SU8230, Japan). SEM images were
analyzed using NIH ImageJ software. Average fiber diameter and fiber
orientation were calculated for 300 fibers randomly picked from three
different samples (Kuroda et al., 2014).

2.2. Human pluripotent stem cell culture and cardiac differentiation

Human induced pluripotent stem cells (IMR-90 (Yu et al., 2007))
were initially cultured on mouse embryonic fibroblast (MEF) feeders
in hPSC medium and then expanded using either MEF-conditioned
hPSC medium supplemented with 8 ng/mL human basic fibroblast
growth factor (bFGF) or Essential 8™ (E8) medium on plates coated
with growth factor-reduced Matrigel™ (1:60, v/v, cat No. CB-40230C,
Fisher Scientific) (Bhagwati et al., 2013; Chen et al., 2011). hPSC
medium was prepared using KnockOut DMEM medium supplemented
with 20% (v/v) KnockOut serum replacement, 0.5 mM L-glutamine,
0.1 mM nonessential amino acids, 0.1 mM beta-mercaptoethanol, 1%
(v/v) PenStrep (10,000 IU/mL penicillin, 10,000 μg/mL streptomycin
solution), and 4 ng/mL bFGF. All culture media and reagents were pur-
chased from Life Technologies unless otherwise specified. All cultures
were maintained under standard culture conditions (5% CO2, 37 °C).

Directed CM differentiation was achieved by a serial application of
either growth factors (activin A and BMP4, R&D Systems) or small
molecules (CHIR99021 and Wnt-C59, SelleckChem) under serum-free,
monolayer culture conditions with minor modifications (Fig. S1)
(Burridge et al., 2014; Laflamme et al., 2007). In brief, for growth
factor-guided method, confluent undifferentiated hPSCs maintained in
condition medium were dissociated with Versene for 5–7 min at 37 °C
and then replated onto Matrigel-coated plates at 2 × 105 cells/cm2.
These cells were fed daily for 2 days with MEF-conditioned medium
supplemented with 8 ng/mL bFGF. Once confluent, cells were treated
with activin A at 100 ng/mL for 24 h (day 0) followed by 10 ng/mL
BMP4 in serum-free Roswell Park Memorial Institute (RPMI) 1640
medium supplemented with insulin-free B27 for 4 days without
medium change. Thereafter the cells were fed with RPMI medium
with B27 containing insulin every other day. Cells were harvested at
differentiation day 16–20 and CMswere enriched using Percoll gradient
centrifugation method (Supplementary method) when the culture
contained b70% CMs.

CM differentiationwas also achieved using small molecules that tar-
get theWnt pathways (Fig. S1) (Burridge et al., 2014). Briefly, confluent
undifferentiated hPSCsmaintained in E8mediumwere dissociatedwith
Versene for 5–7 min at 37 °C and then replated onto Matrigel-coated
plates at 2.5 × 104 cells/cm2. After being fed daily for 4 days with E8
medium, the near-confluent (N85% confluence) cultures were treated
with CHIR99021 at 6 μM in serum-free medium RPMI supplemented
with insulin-free B27 for 48 h followed by medium change. On day 3,
the cultures were treated with 2 μM Wnt-C59 for another 48 h in
RPMI/insulin-free B27. Starting from day 5, cells were maintained in
the serum-free medium RPMI/B27 containing insulin and the medium
was changed every other day.

2.3. Culture of hPSC-CMs on substrates

Electrospun fibrous scaffolds were sterilized by exposing both sides
to a conventional ultraviolet (Chuva de Sousa Lopes et al.) source (30W,
65 cm working distance) for 30 min each side in a laminar flow hood
and were secured in 24-well culture plates using Viton O-rings (Size
014, cat No. LG-1022-510, Wilmad-LabGlass) (Ben-David et al., 2013).
After coating at 4 °C for at least 8 h with 0.5 mL/well of growth factor
reduced Matrigel (1:60, v/v), all samples were seeded with CMs
(N70%) at a density of 7.5 × 105/cm2 and maintained in RPMI/B27
medium for another 2 weeks. The culture medium was replenished
every other day afterwards. After 2-week culturing on electrospun
fibrous scaffolds or TCPs, the cells were either directly fixed for
immunocytchemical analysis of cell alignment or harvested for
RT-PCR analysis. For other analyses on cellular structure and functional
features, cells were dissociated with 0.25% Trypsin/EDTA and replated
to facilitate imaging and recordings.

2.4. Immunocytochemistry and imaging analyses

After 2-week culturing, cells dissociated were replated at
150 × 103/cm2 on Matrigel-coated 96 well plates for cellular structure/
feature analysis. All samples were fixed with freshly prepared 4% (v/v)
paraformaldehyde (PFA, Sigma-Aldrich) for 15min at room temperature
(RT). For consistency, replated cells were fixed 48 h post-seeding. Upon
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permeabilization with 100% ice-cold ethanol (Sigma) for 2 min, the cells
were blockedwith 5% (v/v) normal goat serum (NGS) in PBS for 2 h at RT
followed by incubation with primary antibodies (Abs) at optimal con-
centrations in 1% (v/v) NGS for overnight at 4 °C (Table S1). The cells
were then washed twice in PBS for 5 min and incubated with secondary
Abs at optimal concentrations (Table S1) for 1 h in the dark. After wash-
ing three times with PBS for 5 min each, cell-scaffold constructs were
then mounted in VECTASHIELD® mounting medium with DAPI (Vector
Laboratories Inc.) for confocal imaging. For replated cells, nuclei were
counterstained with 1 μg/mL bisBenzimide Hoechst 33258 (cat No.
B2883, Sigma-Aldrich) at RT for 15 min and then mounted with
“GLOX” buffer (anti-fade buffer and enzymes) (Nori et al., 2015). Nega-
tive controls were carried out in parallel omitting the primary antibody.

Epifluorescence imaging was performed using a Zeiss inverted
microscope equipped with appropriate optical filters. Digital images
were acquired with a Zeiss AxioCam digital camera system and
processed using Zeiss AxioVision LE imaging software. Images were
analyzed with Adobe Photoshop (Adobe Systems). Cell size, shape,
and sarcomere length were quantified using NIH ImageJ software. To
visualize CM alignment in the cell-scaffold constructs, immunostaining
of α-actinin was carried out and images were acquired using an
inverted confocal scanning microscope (Olympus Fluoview 1000)
equipped with FluoView software (Olympus). Confocal images in
Z-stacks were projected with max intensity.

2.5. Real time quantitative RT-PCR

Total RNAwas isolated from cells after theywere cultured on fibrous
scaffolds or TCPs for 2weeks using an AurumTotal RNAmini kit (cat No.
732-6820, Bio-Rad); the genomic DNA was digested with RNase-free
DNase provided in the kit, according to the manufacturer's instruction.
The quality and quantity of the extracted RNA were analyzed on a
Nanodrop spectrophotometer (ND-1000, Thermo Fisher Scientific).
Total RNA (0.5 μg) was reverse-transcribed using a SuperScript®
VILO™ cDNA kit (Life Technologies) per manufacturer's recommenda-
tion. Real-time PCR was performed in a 15 μL reaction mixture contain-
ing 1.5 μL of cDNA, 5.4 μL of nuclease-free water (Applied Biosystems),
200 nM of forward and reverse primers (Table S2) for each gene, and
2× iTaq™ SyBr Green master mix (cat No: 172-5124, Bio-Rad) and
detectedwith an ABI 7500 RT PCR system (Applied Biosystems). A com-
parative Ct method was used for analyzing the level of each targeting
gene, which was normalized to the Ct value of housekeeping gene
glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Fold of change
was then calculated as 2−ΔΔCt.

2.6. Multielectrode array recordings

A multielectrode array (MEA) mapping data acquisition system
(Axion Biosystems) was used to assess the electrophysiological
phenotypes and pharmacological responses of CMs. Briefly, following
enzymatic dissociation, cells were replated onto fibronectin-coated
MEA chambers at 3 × 105 cells per chamber and maintained in
RPMI/B27 medium for 3–7 days prior to recording. Extracellular
recordings were acquired using a 64-channel Muse MEA system
(Axion Biosystems) for 30 s at baseline and after 5min upon incubation
with each cardio-active pharmacological compound at ascending
concentrations. Data were analyzed using the Axion's Integrated
Studio software. Information about the compounds, their sources and
concentrations is included in Table S3.

2.7. Calcium imaging

Live cell imaging was used to evaluate intracellular calcium tran-
sients. Briefly, cells were replated on Matrigel-coated glass coverslips
for additional 3–7 days. Cells on glass coverslips were then incubated
with 5 μM calcium indicator dye Fluo-4 AM (cat No. F14201, Life
Technologies) and 2 drops/mL NucBlue® Live ReadyProbes® Reagent
(Hoechst 33342, cat No. R37605, Life Technologies) at 37 °C for 15 min.
After that, the glass coverslips were transferred to a temperature-
controlled microscope chamber, and perfused with normal Tyrode's so-
lution which was freshly prepared in ultrapure water (18 MΩ cm−1)
containing 148.8 mM NaCl, 4 mM KCl, 0.53 mM MgCl2, 1.8 mM CaCl2,
0.33 mM NaH2PO4, 5 mM HEPES, and 5 mM D-glucose (pH adjusted
to 7.4 with NaOH) (Nguyen et al., 2014; Tano et al., 2014). Optical
recordings of intracellular calcium transients were acquired in line scan
mode using an inverted confocal scanning microscope (Olympus
Fluoview 1000) equipped with FluoView software (Olympus). The
optical recordings were then analyzed with the Clampfit data analysis
module of Axon™ pCLAMP™ 10 Electrophysiology data acquisition and
analysis software (Molecular Devices).

2.8. Statistics

Data are expressed as mean± standard error (SE) when applicable.
Sample size for each analysis is described in figure legends. Mann–
Whitney U test, one-way or two-way ANOVA test was used where
appropriate. The difference in the classification of sarcomeric organi-
zation was assessed using chi-square test. A p-value of 0.05 was
considered significant.

3. Results

3.1. Preparation and characterization of electrospun fibrous scaffolds

To generate electrospun fibrous scaffolds that induce the anisotropic
and isotropic CM alignment, we first prepared and characterized the
aligned and random PCL fibrous meshes. As expected, electrospinning
of PCL solution yielded bead-free and uniform fiberswith distinct orien-
tations (Fig. 1A). Histogram analysis of fiber alignment in each type of
fibrous scaffolds confirmed the well-defined anisotropic and isotropic
features (Fig. 1B). Fiber diameters showed a similar distribution in size
in the range of 230–2200 nm, with an almost identical histogram peak
frequency at 500–600 nm (Fig. 1C). As anticipated, the average sizes
of aligned and random fibers were indistinguishable, and were at
approximately 0.7 μm (p N 0.05, inset in Fig. 1C).

3.2. Culture of hPSC-CMs on electrospun fibrous scaffolds

To determine the effect of the electrospun fibrous scaffold culture on
hSPC-CMs, we first prepared enriched CMs from batches of hPSCs
containing approximately 98% of cells positive for stem cell markers
SSEA-4 and TRA-1-60 (Fig. S1B). At the end of differentiation, cultures
induced by growth factors contained up to approximately 70% CMs
(Movie S1 and Fig. S1C), and cultures that had b70% purity were further
enriched using Percoll gradient centrifugation to as high as 95% CMs
(Fig. S1D). Cultures induced by small molecules contained N85% CMs
(Movie S2 and Fig. S1E).

These hPSC-CMs (N70% purity) were then replated onto Matrigel-
coated fibrous scaffolds and TCPs, and maintained for another 2 weeks
(Fig. 2A). Often upon overnight culturing, the replated hPSC-CMs
restarted spontaneous contractions. After 2 weeks growth, hPSC-CMs
were stained with sarcomeric protein α-actinin, for the visualization
of CMs within fibrous scaffolds. As shown in Fig. 2B, hPSC-CMs
displayed distinct cellular organizations: CMs on aligned fibrous
scaffolds were extended and elongated in the direction parallel to the
fiber alignment whereas cells on random fibrous scaffolds stayed
together and remained relatively circular, illustrating an apparent
anisotropic or isotropic feature of CMs grown on the two different
types of scaffolds. In comparison, cells cultured on TCPs formed large
cellular bundles with random orientations (Fig. 2B, and Movie S3).
These data confirmed the anisotropic alignment of hPSC-CMs induced
by aligned PCL fibrous scaffolds.



Fig. 1. Aligned and random of electrospun PCL fibrous scaffolds. (A) SEM micrographs, (B) histograms of fiber orientations, and (C) histograms of fiber diameters of both aligned and
random fibrous scaffolds. Inset in (C): the averaged fiber diameters of aligned and random fibrous scaffolds. Data were expressed as mean ± standard deviation (n = 300). n.s. not
significant via Mann–Whitney U test. Scale bar in (A): 5 μm.
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3.3. Cardiac protein expression and structural characteristics

We replated the ensuing hPSC-CMs on Matrigel-coated plates and
evaluated the structure characteristics by immunocytochemistry. All
cardiac-relevant markers examined were detected on hPSC-CMs with
little difference among cells on all substrates. In particular, the majority
of the cells expressed sarcomeric proteins troponin T, myosin heavy
chain (MHC), α-actinin, troponin I, cell adherens junction protein
cadherin, as well as cardiac transcription factor NKX2.5 (Fig. 3). MLC-
2A, a major myosin light chain (MLC) isoform that is expressed in
both atria and ventricle, was detected in most cells (Fig. 3, row 4).
MLC2V, anothermajorMLC isoform that becomes restricted to ventricle
at the late stage of development (de Chuva et al., 2006) and has been
used to indicate maturity of ventricular CMs (Lian et al., 2012), was
only detected in a small number of cells (Fig. 3, row 4). The observation
on MLC-2A and MLC-2V is consistent with a previous report for
differentiation day 30 hPSC-CMs (Burridge et al., 2014) and indicates a
fetal-like cell phenotype. On the other hand, smooth muscle actin,
a marker known to label immature CMs and be replaced by skeletal
actin and cardiac actin as development proceeds (Clement et al.,
2007), was only detected in a small number of cells (Fig. 3, row 1).
Ki67, a cell proliferation indicator, was also only detected in a small
number of cells (Fig. 3, row 5, arrows), suggesting that the cells on all
substrates were of low proliferative capabilities. Altogether, the immu-
nochemical analyses indicate that the hPSC-CMs cultured on all sub-
strates expressed CM-associated proteins although likely with an
immature phenotype.

To assess the structural maturation of the hPSC-CMs, we analyzed
the levels of the organization of the Z-line protein α-actinin as well as
CM morphology. In particular, the extent of sarcomeric striation on
hPSC-CMs was evaluated and categorized into four different levels
(Birket et al., 2013; Nguyen et al., 2014; Ribeiro et al., 2015): Level I



Fig. 2.Anisotropic or isotropic alignment of hPSC-CMs cultured on the three substrates. (A) Schematic illustration of procedures used to directly differentiate hPSCs into CMs and to culture
differentiated CMs on electrospunfibrous scaffolds or tissue culture polystyrenes (TCPs). After the cells were cultured on fibrous scaffolds or TCPs for 2weeks, theywere fixed directly and
then subjected to immunocytochemical analysis of cell alignment. (B) Epi-/confocal-fluorescence micrographs of hPSC-CMs grown on various substrates for 14 days. Insets in (B): the
corresponding phase-contrast images of hPSC-CMs cultured on various substrates. The white arrow indicated the alignment of fiber/cells. Scale bar: 20 μm.

744 J. Han et al. / Stem Cell Research 16 (2016) 740–750
cells were α-actinin+ but without clear sarcomeric striations; Level II
displayed some striations but largely with dotted structure; Level III
showed patterned striations in more than half but not nearly the
whole cell area; Level IV exhibited high sarcomeric organization with
distinct paralleled bands in almost the whole cell area (Fig. 4A). The
hPSC-CMs on the aligned fibrous scaffolds exhibited significantly im-
proved levels of sarcomeric organization, comparing with those on the
TCPs (p b 0.05, Fig. 4B). Particularly, those cells exhibited the highest
proportions of cells in levels III and IV, reaching a total of 75%, comparing
to 63% as detected on TCPs (Fig. 4B). In terms of cell size, hPSC-CMs cul-
tured on the aligned fibrous scaffolds were significantly larger than
those on the random ones (864 ± 37 μm2 versus 745 ± 37 μm2,
p b 0.05, Fig. 4C, left), and cells on the two fibrous scaffolds were signif-
icantly smaller, compared with those on the TCPs (1053 ± 52 μm2,
p b 0.05, Fig. 4C, left). In addition, hPSC-CMs on the aligned fibrous
scaffolds were significantly more elongated than those on the random
(circularity 0.43 ± 0.01 versus 0.48 ± 0.01, p b 0.05, Fig. 4C, right).
Additionally, analysis of the sarcomere length of level IV cells revealed
no significant difference among all substrates (sarcomere length c.a.
1.4 μm, p N 0.05, Fig. 4C). Collectively, these data suggest that hPSC-
CMs cultured on the aligned fibrous scaffolds displayed a slightly more
mature structure than those on the random but not sufficiently more
structurally mature than cells on TCPs.

3.4. Cardiac gene expression

To examine the expression of CM-associated genes, we performed
qRT-PCR on cells grown on the three substrates. This analysis detected
genes encoding structural proteins such as troponin T type 2 (TNNT2),
troponin I type 3 (TNNI3), myosin light chain 7 (MYL7, also known as
MLC-2A), myosin heavy chain 6 (MYH6, also known asα-MHC), myosin
heavy chain 7 (MYH7, or β-MHC), the Z-disc and M-line anchor protein
titin (TTN) (Fig. 5A) aswell as ion channels or calciumhandling proteins
such as sarco/endoplasmic reticulum Ca2+ ATPase (ATP2A2 or SERCA2),
calsequestrin 2 (CASQ2), hyperpolarization activated cyclic nucleotide-
gated potassium channel 1 (HCN1), potassium inwardly rectifying
Kir2.1 channel (KCNJ2), voltage-gated potassium Kv1.4 channel
(KCNA4), and Na+-Ca2+ exchanger (SLC8A1 or NCX1) (Fig. 5B).
Among the 13 genes, 9 of them including TNNT2, MYL7, MYH6, and
TTN that encode structural proteins (1.9–2.4 folds, p b 0.05, Fig. 5A)
and ATP2A2, CASQ2, HCN1, KCNJ2 and KCNA4 that encode ion channels
or calcium handing proteins (1.8–2.8 fold, p b 0.05, Fig. 5B) were
detected at higher expression levels in cells on the aligned fibrous
scaffolds than those on TCP. In addition, expression levels of 6 genes
(MYH6, TTN, CASQ2, HCN1, KCNJ2 and KCNA4) were significantly
increased in cells on random fibrous scaffolds compared to those on
the TCPs (p b 0.05, Fig. 5). In contrast, only 2 genes (CASQ2 and KCNJ2)
were significantly upregulated in cells on the aligned fibrous scaffolds
compared to those on the random fibers (p b 0.05, Fig. 5). Together,
these data show that the expression of several CM-associated genes in
hPSC-CMs on aligned or random electrospun fibrous scaffolds signifi-
cantly increased comparedwith cells on TCPs; however, cells on aligned
fibrous scaffolds and random fibrous scaffolds had similar levels of
expression for the majority of genes examined.

3.5. Evaluation of pharmacological responses

To assess the pharmacological responses of the ensuing hPSC-CMs,
we treated the cells with several cardio-active compounds, including
α- or β- adrenergic receptor agonist, muscarinic agonist, and gap
junction uncoupler, and then evaluated the chronotropic responses
(changes in the beating frequency) (Table S3). In these studies, hPSC-
CMs from cultures on all substrates positively responded to isoprotere-
nol (a β-adrenergic receptor agonist, up to 1.6–1.7 fold, Fig. 6A) and
phenylephrine (an α-adrenergic receptor agonist, up to 1.4–1.5 fold,
Fig. 6B), while negatively responded to carbamylcholine (a muscarinic
agonist, up to 0.8–0.9 fold, Fig. 6C). In addition, upon the treatment
with a gap junction uncoupler heptanol, hPSC-CMs from cultures
on all three substrates displayed undetectable electrical activation
(Fig. 6D). These observations indicate that the α- and β-adrenergic
receptors, muscarinic receptors, and gap junction proteins were
appropriately expressed on cells cultured on all substrates. Moreover,
hPSC-CMs responded to each of these drugs similarly among three
substrates (p N 0.05, by two-way ANOVA post hoc Tukey test) (Fig. 6).
Overall, these data indicate that hPSC-CMs from cultures on all three
substrates exhibited appropriate pharmacological responses to α- and
β-adrenergic andmuscarinic receptor agonists aswell as a gap junction-
al uncoupler yet without significant differences among cells on all
three substrates.

3.6. Assessment of intracellular calcium transients

To evaluate the calcium handling properties, we replated the
ensuing hPSC-CMs onto Matrigel-coated glass coverslips, and



Fig. 3. Immunocytochemical analysis of hPSC-CMs. Cells cultured on TCPs, aligned and random fibrous scaffolds for 2weekswere harvested, replated onto 96-well culture plates, cultured
for 48 h and stained with antibodies against smooth muscle actin (SM actin, red, row 1), troponin T (green, row 1), myosin heavy chain (MHC, red, row 2), α-actinin (green, row 2),
troponin I (red, row 3), pan-cadherin (Pan-cad, green, row 3), myosin light chain 2A (red, row 4) and 2V (green, row 4), transcription factor NKX2.5 (red, row 5), Ki67 (green, row 5).
Cell nuclei were counterstained with Hoechst 33,258. Arrows in row 5 indicate the staining of Ki-67. Scale bar: 50 μm.
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assessed their intracellular calcium transients. Line-scan of the
time-lapse spontaneous calcium transient of CMs was performed
and the intracellular calcium transient was recorded (Fig. 7A–C).
As illustrated in Fig. 7D, the average beating rates of cells from
cultures on the two fibers were significantly lower (19 ± 10 bpm
for aligned fibers, 22 ± 14 bpm for random fibers) than those on
the TCPs (29 ± 1 bpm, p b 0.05,). And the times to 50% peak and
50% decay of hPSC-CMs from cultures on the two fibers were
significantly longer than cells on TCPs (p b 0.05, Fig. 7D). In contrast,
no statistically significant difference was observed in the peak
amplitude among cells on all three substrates (Fig. 7D). These data
indicate that hPSC-CMs from cultures on all three substrates exhibited
CM-specific calcium handling properties, albeit prolonged calcium
transient duration and slower beating rates were observed in cells
on the two types of fibrous scaffolds, suggesting not necessarily
enhanced cell maturation.



Fig. 4. Structural characterization of hPSC-CMs. (A) Representativefluorescent images of hPSC-CMs (arrows) indifferent levels (I–IV), evaluated by their degrees of sarcomeric striations as
indicated by α-actinin staining. Cells categorized in level I were α-actinin+ but without clear sarcomeric striations, and cells in levels II, III, IV had detectable sarcomeric striations at
increasing levels. Scale bar: 20 μm. (B) Percentages of cells categorized by their sarcomeric striation levels (n = 268–332). *: p b 0.05 via chi square test. (C) Quantification of cell size
and shape in CMs of all levels (n = 268–332, circularity: 0 = line, 1 = circle), and (D) sarcomere length of hPSC-CMs in level IV only (n = 79–103). Data represented cells from at
least 10 random fields per experiment of three independent experiments. *:p b 0.05 via Kruskal–Wallis one-wayANOVAon ranks usingDunn'smethod for pairwisemultiple comparisons.
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4. Discussion

The generation of bona fide mature hPSC-CMs is required for
accurate and robust disease modeling and drug screening. To this end,
increasing efforts have been applied to improve the maturation of
hPSC-CMs using various methods. Cell alignment has been suggested
as one of the approaches to improve the maturation of hPSC-CM.
However, it was unclear if cell alignment alone was sufficient to en-
hance robust maturation of hPSC-CMs. In this study, we synthesized
submicron fibrous scaffolds with aligned or random orientations, and
investigated the effect of these scaffolds on the cell alignment and
maturation of hPSC-CMs. As anticipated, hPSC-CMs on aligned fibrous
scaffolds preferentially elongated in the direction parallel to the fiber
alignment. Compared with cells on TCPs, the hPSC-CMs on aligned fi-
brous scaffolds had modest improvement on structural maturation,
similar levels of CM-associated proteins andpharmacological responses,
and increased levels of expression of several CM-associated genes.
However, their calcium transient kinetics were slower than that of
cells from cultures on TCPs, suggesting the limited effect of aligned
fibrous scaffolds in improving the hPSC-CMmaturation.

Comparing with cells on the TCPs, hPSC-CMs grown on the aligned
fibrous scaffolds had enhanced molecular maturation. For instance,
genes encoding ion channel or calcium handling proteins, such as
ATP2A2/SERCA2, CASQ2, HCN1, KCNJ2, and KCNA4, were universally
increased in cells on aligned fibrous scaffolds. Particularly, CASQ2 and
KCNJ2, encoding the most abundant, high-capacity but low-infinity
Ca2+-binding protein calsequestrin that stores and buffers Ca2+ in
the sarcoplasmic reticulum (Liu et al., 2009) and potassium inwardly
rectifying Kir2.1 channel, respectively, were also significantly upreg-
ulated when compared to the random. These upregulations are
consistent with the reported observations for hPSC-CMs subjected
to prolonged culture, electrical stimulation, mechanical stretch or



Fig. 5. Relative expression of genes encoding (A) structural proteins and (B) ion channels or calciumhanding proteins inhPSC-CMs cultured on the three substrates for 2weeks. n=9 from
three independent experiments. *: p b 0.05 by one-way ANOVA post hoc Tukey test.
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3-D tissue formation (Lieu et al., 2013; Lundy et al., 2013; Mihic et al.,
2014; Tulloch et al., 2011; Zhang et al., 2013) which were shown to
enhance CM maturation.

A higher proportion of hPSC-CMs on aligned fibrous scaffolds had
increased levels of sarcomeric striations than cells on TCPs, albeit the
average length of sarcomeres was similar and the average cell size of
hPSC-CMs from cultures on the scaffolds was significantly smaller. The
observation of reduced cell area for cells on the fibrous scaffolds is
consistent with the published literatures (Bashur et al., 2006; Han
et al., 2013), where reduced sizes of human aortic endothelial cells
and 3T3 fibroblasts were observed in cells on the random electrospun
fibrous scaffolds, comparing with those on the natural protein-coated
glass coverslips or TCPs. It was reported that for substrata with uniform
ridges and grooves, cells tended to reduce their sizeswhen theywere on
surfaces with either over-narrowed or over-wide scales, because of the
limited cell penetration into over-narrowed grooves, or the loss of the
extra cell-substratum contact on surfaces with the over-wide grooves
(Kim et al., 2010). We surmise that our submicron electrospun fibers,
in a 3-D scaffolding environment, may confine the penetration of the
cells therefore reduced the cell spatial organization. Future studies
with an optimal fiber size/scaffold topology which can be modulated
by the electrospinning parameters (Kuroda et al., 2014) may increase
the cell spreading and improve cell maturation (Han et al., 2013). In
addition, a stage-specific and dynamic design of the fiber size/scaffold
topology may be more beneficial, as the size of hPSC-CMs constantly
enlarges during maturing.

The chronotropic responses of the hPSC-CMs to various cardio-
active drugs in our study are well in line with the published results
(Mandel et al., 2012; Pillekamp et al., 2009; Pillekamp et al., 2012; Xu
et al., 2002), in which the beating rates of CMs were increased in re-
sponse to isoproterenol and phenylephrine, and decreased in response
to carbamylcholine. While the pharmacological responsiveness of the
cells was similar, the calcium cycling of hPSC-CMs from cultures on
the two types of fibrous scaffolds were significantly prolonged. Lundy
et al. found that late stage hPSC-CMs (differentiation day 80+) exhibit-
ed faster spontaneous Ca2+ transient kinetics, i.e., significant reduction
in time to peak and time to 50% decay, while the transient peak ampli-
tude remained unchanged, comparing with early stage cells (differenti-
ation day 20–40) (Lundy et al., 2013). Similarly, we found statistically
unchanged peak amplitude in spontaneous Ca2+ transients. However,
the increases in 50% rise to peak time and peak to 50% decay time sug-
gest unimproved maturation for cells on fibrous scaffolds, comparing
with cells on TCPs.

A potential limitation of our studies is that someof the analyseswere
conducted after the cells were lifted from fibrous scaffolds with trypsin,
replated ontoMatrigel-coated surface, and then cultured in the absence
of topographic cues for a few days. Although the experimental design
was to facilitate imaging and recordings for the analyses of the effect
of fibrous scaffolds on the maturation of hPSC-CMs, replating could
have disrupted the nascent extracellular matrix and cell–cell contacts,
and the removal of topographic features could have affected the resul-
tantmorphological, biochemical and functional properties of hPSC-CMs.

There are several challenges and considerations in promoting the
maturation of hPSC-CMs in vitro. First, hPSC-CMs are dramatically dif-
ferent from human adult ventricular cardiomyocytes. For example,
human adult ventricular cardiomyocytes in culture have a surface area
of approximately 12,000 μm2 (Li et al., 1996), which is at least 11 fold
larger than hPSC-CMsexamined in the current study, and the sarcomere
length of relaxed human cardiac muscle cell is approximately 2.2 μm
(Bird et al., 2003), which is about 1.5 fold of the value in hPSC-CMs
observed in this study. In vivo, it can take 6–7 years for human CMs to
reach certain features of adult CMs (Peters et al., 1994), suggesting
the necessity of expedited maturation for hPSC-CMs differentiated
in vitro. Second, most studies to date including our present study
used hPSC-CM population with heterogeneous maturation levels of
immature embryonic or neonatal-like CMs, as reflected in different
levels of maturation in sarcomeric organizations and electrophysio-
logical properties (Veerman et al., 2015; Yang et al., 2014). Third,



Fig. 6. Pharmacological responses of hPSC-CMs to cardio-active compounds, (A) isoproterenol, (B) phenylephrine, (C) carbamylcholine, and (D) heptanol. For hPSC-CMs from cultures on
all substrates, isoproterenol and phenylephrine increased the beating rates whereas carbamylcholine decreased the beating rates, and heptanol stopped the CM electrical activity. (A–C)
Left, representative image of hPSC-CMs in a multielectrode array (MEA) chamber. Scale bar: 200 μm. Middle, representative MEA recordings in the beating rates of hPSC-CMs before and
after incubationwith various compounds. Right, normalized beating rates of hPSC-CMs in response to various drugs at a dose-dependentmanner. Data represented hPSC-CMs on2–6MEA
chambers in three independent experiments. Black dot: p b 0.05 versus white dot by two-way ANOVA post hoc Tukey test. (D) Representative images of the field potentials in hPSC-CMs
plated in the MEA chambers (top) and the beating rates in hPSC-CMs (bottom) before and after incubation with 10 mM heptanol.
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the hPSC-CMs generated so far are mixed populations of nodal-,
atrial-, or ventricular-like cells (Veerman et al., 2015; Yang et al.,
2014). Distinct profiles in their gene expression as well as the
electrophysiological properties will undoubtedly lead inaccurate
evaluation in CM maturation. Yet with subtype specification, we
can precisely gauge and evaluate the maturation stage of hPSC-
CMs, which in turn, will contribute to the homogeneity of the cell
maturation. Forth, the molecular, structural, and functional pheno-
types of CMs change constantly during development. Thus using
stage-specific human CMs, like the fetal, neonatal, postnatal, or adult
CMs as the references to gauge the maturation level, will provide a
more accurate characterization (Ribeiro et al., 2015). Last but not the
least, in native 3-D cardiac environment, the underlying ECM, the
neighboring non-CMs, together with the surrounding biochemical,
mechanical, and electrical signals act synergistically to modulate the
maturation of CMs (Ma et al., 2014; Veerman et al., 2015; Yang et al.,
2014). Combinatorial methods by applying 3-D culturingwith electrical
stimulation, mechanical stretch and co-culture with vascular cells,



Fig. 7. Calcium transient analysis of hPSC-CMs from cultures on the three substrates. (A) Representative line-scan of time-lapse calcium imaging in hPSC-CMs loadedwith the intracellular
calcium indicator Fluo-4 AM where increased calcium activity was indicated by the color change from blue to green, to red. The red line indicated the location where line-scan was
performed. Scale bar: 20 μm. (B) Representative recording of spontaneous calcium transient. (C) Schematic illustration of the measurements of calcium transient parameters.
(D) Summary of calcium transient frequency (beats per min), peak amplitude, half rise to decay time, and peak to half decay time among hPSC-CMs cultured on TCPs (n = 52),
aligned (n = 62) and random fibrous scaffolds (n = 58) from three independent experiments. *: p b 0.05 via Kruskal–Wallis one-way ANOVA on ranks using Dunn's method for
pairwise multiple comparisons.
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or microgroove alignment and biochemical treatment, have thus far
achieved promising results (Nunes et al., 2013; Ribeiro et al., 2015;
Tulloch et al., 2011). Therefore, the enhanced and expedited matura-
tion of hPSC-CMsmay be significantly advanced by addressing the pres-
ent challenges in CMpurification (subtype specification/differentiation),
heterogeneity and variability in cell maturity, using the stage-relevant
human CMs as the references, as well as the combinatorial use of multi-
ple microenvironment factors.

5. Conclusions

We show that using a physiologically relevant aligned fibrous scaf-
fold as a single approach has limited ability in improving thematuration
of hPSC-CMs. Nevertheless, this work provides a proof-of-concept for
the use of electrospun aligned fibrous scaffold in inducing efficient
alignment of hPSC-CMs and highlights the need for a combination of
the cell alignmentwith othermethods to create physiologically relevant
microenvironment for improving the maturation of hPSC-CMs.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scr.2016.04.014.
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