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A new class of generative grammars called hypergrammars is introduced. They are 
described as a natural extension of Fischer's macrogrammars. Three modes of derivation, 
inside-out, outside-in, and unrestricted are considered, and the classes of languages so 
defined are compared with other known classes. It is shown that the outside-in hyper- 
languages are the same as the outside-in macrolanguages but that inside-out hyperlanguages 
are the same as Fischer's quoted languages. Various closure properties are considered as 
well as generalizations of the original definitions. Three new hierarchies of languages each 
embedded in the class of quoted languages are discovered. It is claimed that this new 
approach to Fischer's work is more understandable and also mathematically elegant. 

INTRODUCTION 

Generative grammars have been of interest to the computer  scientist and the mathe-  
matician since they were first introduced by Chomsky in 1956 [3]. The  languages of  
type 0, 1, 2, 3 (first classified by Chomsky in 1959 [4]) have been s tudied in detail resulting 
in a considerable literature. These  classes of languages are denoted by ~ 0 ,  -~ei, ~~ 
and ~~ 3 , respectively. But these are not the only classes of languages generated by gram- 
mars; indexed grammars [1], programmed grammars [8], and macrogrammars [5] are 
but  a few of the numerous new forms of generative grammar  recently studied. Macro-  
grammars are probably the most interesting of these; the motivation for the definition 
of these grammars is a generalization of the concept of a macro as met in programming.  
In this paper the productions of a macrogrammar are extended to operate on sets of 
strings instead of just  strings. This  simple idea clarifies much of Fischer 's  work, especially 
in regard to his extension of macrogrammars,  namely, quoted grammars.  

The  new classes of grammars and associated languages are called hypergrammars 
and hyperlanguages, respectively. As with macrogrammars,  there are various modes of 
derivation, namely IO, OI, and unrestricted. The  classes of languages generated by 
hypergrammars  under  these various modes are considered in this paper  and compared 
with the classes of languages defined by Fischer. In  particular, it is shown that the class 
of OI hyperlanguages is equal to the class of OI  macrolanguages and that the class of IO 
hyperlanguages is equal to the class of quoted languages. This  new approach to Fischer 's  
work results in the discovery of three new hierarchies of languages. The  description and 
proof of these hierarchies is given in Section 6 of the paper. 
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Throughout  this paper  considerable use is made of the notation and concepts of 
algebras. The  concept of a free algebra is especially important .  

DEFINITION 0.1. Let  N denote the set of nonnegative integers. A stratified alphabet 
is a set ~ with an associated function T: D --+ N called the  rank or arity. I f  o~ c D then 
the integer -r(eo) is called the rank or arity of co. 

DEFINITION 0.2. An algebra 5d is a pair  (A, ~ )  where A is a set of elements called 
the carrier of the algebra and D is a stratified alphabet  of operator symbols such that, 
for each w ~ D, there is an associated operation ~r d "(~) --~ A. I t  is common to denote 
the operation ~ ' w  simply by r when it is clear from the context which algebra is under  
consideration. With  operator symbols D, ~r is often called an Q-algebra. The  carrier of 
the algebra ~ / i s  denoted by I ~ / I .  

DEFINITION 0.3. A subalgebra of an D-algebra ~r is an Q-algebra 9] such that 

(1) 19] I_C I ~Z i; 

(2) 9]~o(x~ ..... G(,~)) = J~o(x~ ..... x~(~)), V x~ ..... x,(~) e I ~ I. 

DEFINITION 0.4. Let  d and 9 ]  he two Q-algebras, A function h : l ~ z J l - ~  ]9]  I 
defines a homomorphism from . ~  to 9] provided that Vco E D and Vxl ,..., x~(~) c [ ~r 1, 
~Jco(h(x~),..., h(x,(~)))- h(dco(xa .... , x~(~))). I f  h also has an inverse function h-~: 
1 9] [ --+ I ~ l which defines a homomorphism from 9] to ~r then h is called an isomorphism 
between ~ and 9]. 5ar and 9] are then said to be isomorphic. 

DEFINITION 0.5. Let  P denote the set of symbols {"(", ")" ,  ", "}, _d any set, and 
E2 an arbi trary stratified alphabet with arity funct ion T. f2(_d), the set of polynomials 
over s A, is the least set of strings over (A U D ~3 P)*  such that  

(1) aED(A),VacA; 

(2) if eo ~ D and t I ..... t~(~) ~ g2(d), then the string co(t~ ,..., t~(o~)) ~ D(A). 

The  free E2-algebra generated by A is the algebra d - -  (D(A), D) where the operation 
~' ,o,  for eo E D, is defined by 

~r ,..., t~(~)) = m(t 1 ,..., t~(o~)), for any t 1 ,..., t~(~) e D(A). 

The  free O-algebra generated by A is deno ted  by  ~ (2d) .  
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] .  DEFINITION AND EXAMPLES OF MACROGRAMMARS 

Before formally defining macrogrammars, consider two examples of such grammars. 

EXAMPLE l.  The macrogrammar G has productions 

S - +  f ( a ,  b, c), 

f ( X 1 ,  Xo. , X~)--,-  f ( a X ~  , bX2 , cX3), 

/ ( x ~  , x ~  , x ~ )  ~ x ~ x ~ x ~  , 

where S is the start symbol, f is a function symbol of arity 3, a. b, c are terminal symbols, 
and X 1 , X 2 , X 3 are variable symbols. The  following is a valid derivation in G: 

S ~ f ( a ,  b, c) 

f ( aa ,  bb, cc) 

f (aaa ,  bbb, ccc) 

a3b3c ~ 

(by application of the 1st production), 

(by application of the 2nd production), 

(by application of the 2nd production), 

(by application of the 3rd production). 

In  fact G will generate {a'~b~c '~ I n >~ 1}. 

EXAMPLE 2. The  macrogrammar G'  has productions 

s ~ f ( g ) ,  

f ( x )  ~ x x ,  

g - +  a, 

g--,- b, 

where S is the start symbol (which is regarded as a specially designated function symbol 
of arity 0), f is a function symbol of arity 1, and g is a function symbol of arity 0. a, b are 
terminal symbols and X is the only variable symbol. A valid unrestricted derivation is 
S ~ f ( g )  ~ - g g  ~ ag ~ ab. I f  no term involving a function symbol can be rewritten 
until all the arguments of the function symbol are terminal symbols, the derivation is 
called an inside-out derivation. The derivation of ab from S is not an inside-out derivation 
becausef(g)  ~ gg is not allowed. S ~ f ( g )  ~ f ( a )  ~ aa is a valid inside-out derivation. 
The  grammar generates {aa, ab, ba, bb} with unrestricted derivation, but only {aa, bb} 
with inside-out derivation. 

DEFINITION 1.1. Macrogrammars operate over structured strings called macroterms. 
Macroterms are built up from elements of 

(1) a finite set T of terminals; 

(2) a finite stratified alphabet (F, T) of  function symbols, i:e., a finite set F such that 
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for each f e F  there is a unique nonnegative integer r ( f ) ,  the arity of f .  The arity o f f  
determines the number of arguments taken by f ;  

(3) punctation symbols "(", " )"  and ", ". 

The  set of macroterms over T, F, % J~'(T, F, ~-), is the least set of strings over 
T u F u {"(", ")",  ", "} such that 

(1) the empty string �9 e J/Z(T, F, ~-); 

(2) Va ~ T, a E ./W(T, F, z); 

(3) i f f 6 F  and t, ,..., t~(~) E J//(T, F, ~-) t h e n f ( Q  ,..., t~b.)) 6 ~ ' ( T ,  F, z). 

Note that writing f ( t  1 ,..., t~(j)) does not imply that it is necessary that ~-(f) ~ 0. 
I f f ~ F  is of arity zero, f (  ) is abbreviated tof .  

DEFINITION 1.2. Let  t ~ ( T , F ,  ~). v is a subterm of t if v ~ d g ( T , F ,  T) and v is a 
substring of t. A subterm v of t is said to occur at the top level in t if there exist macroterms 
ta, t z such that t = t~vt 2 , i.e., if v does not appear in t within the argument list of some 
function symbol. 

DEFINITION 1.3. A macrogrammar structure (MGS) is a 6-tuple (N, T, F, ~-, P, S) 
where 

(1) 
(2) 

(3) 

(4) 

N is a finite set of variables; 

T is a finite set of terminals; 

(F, "r) is a stratified alphabet of function symbols; 

P is a finite set of (macro) productions of the form f(X" 1 .... , X,q)) --~ 7 where 
X i ~ N ,  i = I,. . . ,  r ( f ) ,  and 7 c ~ ( T u  {Xx ,..., X,(r)}, F, ~'); 

(5) S E F  is the start symbol where ~-(S) = 0. 

DEFINITION 1.4. Let  t l ,  t 2 ~ J { ( T ' ,  F,-r). Let G = (N, T, F, r, P, S) be an M G S  
such that T ' n F ~  ~ and T ' D  T. Wedefine 

unr t2 t 1 directly derives t 2 by an unrestricted step, if (1) tl ~ , 
(i) t 1 contains a sub te rmf(v  1 ,..., v,(t) ) w h e r e f 6 F a n d  v 1 .... , %(t) ~ . / / { (T ' ,F ,  T); 

(ii) P contains the rule f ( X  1 ,..., X , q ) )  -+ ~; 

(iii) t~ is obtained from t 1 by replacing a single occurrence of the subterm 
f ( v l  ..... %(I)) described in (i) by y '  where ),' is obtained from ), by substituting the 
maeroterms v 1 ,..., %(i~ for the corresponding occurrences of X 1 ,..., X,6, ) in ~. 

(2) t 1 =~la~ t~ , t 1 directly derives t 2 by an inside-out step, if 

(i) t~ ~ " '  t2 ; 

(ii) all the arguments of the rewritten function symbol are elements of T'*.  
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(3) tl ~ or t2 ' tz directly derives t 2 by an outside-in step, if 

unr t2 ; (i) q ~ 
(ii) the subterm of t 1 which is rewritten occurs at the top level in t 1 . 

=>unra , _~lao ' ~ox  are written as =>unr, =>IO, ~ o l  when it is clear which M G S  is under 
consideration. =~*, ~ i o . ,  and =>05. are defined as the reflexive, transitive closure of 
~unr,  ~ I o ,  and ~o I ,  respectively. 

DEFINITION 1.5. A macrogrammar G is a pair (G, ~ a )  where G is an M G S  and ~ c  is 
a mode of derivation, either =>gnr, =>IO ~ o I .  c , or An unrestricted maerogrammar (UMG)  
is a macrogrammar  (G, =~gnr). Similarly (G, ~Ia~ ) is an I 0  macrogrammar (IOMG) and 
(G, =>~I) is an OI  macrogrammar (OIMG). 

DEFINITION 1.6. Let  G = ((N, T, F, ~-, P, S), ~ c )  be any macrogrammar.  A term 
t ~ rid(T, F, r) is a sententialform of G if S ~G* t. The  language generated by the macro- 
grammar t3, L(G),  is the set of sentential forms of 13 which are terminal strings. 

L(G) = {w ~ T* I S --* w}. 

DEFINITION 1.7. T h e  class of languages generated by U M G s  is denoted by/Xunr. 
Such languages are called unrestricted macrolanguages (UMLs) .  

T h e  class of languages generated by I O M G s  is denoted by/*Io - Such languages are 
called inside-out macrolanguages ( IOMLs) .  

T h e  class of  languages generated by O I M G s  is denoted by/Xol .  Such languages are 
called outside-in macrolanguages (OIMLs) .  

Fischer [5] proves 

THEOREM 1.1. (1) For any ~/IGS, G, L((G, ~unr)) = L((G, =>~ ttence/*unr = / * o i -  

(2) ~ g m o g 4 .  

(3) ~ C t ~ o ~ g < .  
(4) /Zo~ is precisely the class of indexed languages as defined by Aho [1]. 

Fischer also produces Example 3 to.show that there is an element of/z m not in/Z~o , 
and Example 4 to show that there is an element of/z  m not in/~o~ - So tZto and/Zoi are 
incomparable. 

EXAMPLE 3. Define a homomorphism ~b: {a, b}*-+{a}* by ~ b ( a ) -  a, ~b(b)= ~. 
Let  L = {a s" [ n ~ 1}. L '  -= ~b-l(L) = {x ~{a, b}* ] ~b(x) eL}. L is generated by the 
macrogrammar  with productions 

S --,-f(a), 

f ( X )  --,- f ( X X ) ,  

f ( X )  --+ X X ,  
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under any mode of derivation. L '  is generated by the O I M G  with productions 

S --~ f (g) ,  

f ( x )  - ~ f ( x x ) ,  

f ( x )  -~ x x ,  
g - ~  bg, 

g -+  gb, 
g---->-a~ 

Fischer proves that L" ~ iXlo . 

EXAMPLE 4. The  language {Im(cl*~)~-I ] m ~ 1, n -= 2 ~} is generated by the I O M G  
with productions 

S - + f ( l ) ,  

f ( X )  --+ g( f (X1)) ,  

f ( X ) - , . g ( X ) ,  

g(X) -~ XcX. 

Fischer shows that this language ~_/Xol. 

THEOREM 1.2. IZol (and hence /*unr) are closed under union, concatenation, Kleene 
closure, intersection with regular sets, homomorphisms, and reversal. However, only k~ol 
(and hence/Zunr) is closed under inverse homomorphisms. 

Proof. [5]. 
The  proofs given by Fischer involve the use of results concerning normal forms for 

I O M G s  and OIMGs .  These are also detailed in [5]. 
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2. QUOTED GRAMMARS 

Quoted grammars were introduced by Fischer as an extension of I O M G s .  New 
symbols " ( "  and " ) " ,  called quotes, were used as a control in the derivation. Let  T, 
F, 7 be defined as for macrogrammars.  

DEFINITION 2.1. The  set of quoted terms over T, F, 7, .~(T,F,~-), is the least set 
of strings over T U F U {"(", ")" ,  " ,  ", " ( " ,  " ) "}  such that 

(1) ~ e ~ ( r , F ,  7); 
(2) Vae  T, a ~  ~ 7); 

(3) if tl , t~ e .~(T, F, 7), then tit 2 ~ ~(T ,  F, 7); 

(4) if f ~ F  and t 1 ,..., t,(s) e 3 (T ,  F, r), t h e n f ( t  1 ..... t,(I) ) e ~ (T ,  F, ~-); 

(5) if t e ~ (T ,  F, 7), then ( t )  ~ ~(T ,  F, 7). 



136 v . j .  RAYWARD-SMITH 

DEFINITION 2.2. A quoted grammar structure (QGS) is defined as for an M G S  except 
that  i f f ( X  1 ,..., X,(I) ) -+  7 is a production, then 7 may include quotes, since the restriction 
we impose on 7 is that y ~ ~ ( T  t3 {X 1 ,..., X,(j)}, F,  r). 

There  are two types of derivation step allowed: 

(1) Quote removal: This  can only occur when quotes occur at the top level, i.e., 
tile quotes do not appear within the argument list of some function symbol. The  quotes 
are removed in matched pairs, e.g., 

{(bf(b)) f ( ( g ) ) )  ~ (bf(b)) f ( (g ) )  

bf(b) f ( (g) ) .  

The  quotes surrounding g cannot be removed at present since they do not occur at the  
top level. 

(2) Function rewriting: A subterm may be transformed by a function rewriting step, 
as defined in Definition t.4, only if 

(i) it is a term of the form f ( t l  .... , t,(~) where each h is fully expanded, i.e., 
the t i are terminal strings or cannot be further expanded because of quotes. Such terms 
are called fully quoted. 

(ii) The  subterm is not contained within higher level quotes. 

Thus  the derivation is inside-out where a quoted term is considered as a terminal and 
quotes can only be removed at the top level. 

EXAMPLE 5. I f  a quoted grammar  has productions 

S --~ hf(b) f ( (g) ) ,  

f ( x )  ~ x c x ,  

g § g-+b, 

h--~b, 

then a valid derivation is 

S ~ hf(b) f ( (g))  

bf(b) f ( ( g ) )  

bbcbf((g)) 

bbcb(g) c{g) 

~. bbcbgc(g) 

bbcbac(g) 

=~ bbcbacg 

=> bbcbacb. 
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DEFINITION 2.3. The  language generated by a quoted grammar  G (i.e:, a QGS 
together with the above described mode of derivation) is defined by 

O(G) = { w e r * [ S ~ * w } .  

Such a language is called a quoted language and the class of all such languages is denoted 
by Q. 

THEOREM 2. t (Quoted normal form). For every quoted grammar G, there is a quoted 
grammar G' which generates the same language and such that every production of G' is of 
one of the following forms: 

(i) f ( X x  ,..., X,(i))--~g(h~(X~ ..... X~O~)) ..... hr(g)(X 1 , . . . ,  XT(i))) , 

(ii) f ( X  1 ..... X,(f)) ~ ~7, ~ ~ (N  u r )* ,  

(iii) f ( X x  ,..., X~O-))-*" (g(X~ .... , X~(I))). 

Proof. [5]. 

THEOREM 2.2. ( l)  Q D / q o  vo Uol.  

(2) O is closed under union, concatenation, Kleene closure, substitution, and arbitrary 
homomorphism. 

Proof. [5, 71. 
Closure under intersection with regular sets and under inverse homomorphism remains 

an open problem. The  solution of either of these problems will solve the other [6]. 

3. HYPERGRAMMARS 

In Example 2 the macrogrammar with productions 

S --+f(g), 
f ( x )  --. x x ,  

g---~ a, g--~ b, 

was considered. This  example clearly illustrated the difference between IO and OI  
modes of derivation. Now, if the concepts used so far are extended to sets of strings and 
not just individual strings, some interesting results are obtained. Consider the productions 

a - + f  (g), 
f ( x )  -+ x x ,  

g--+ {a, b}. 

Under IO or OI  derivation, S ~ f (g)  *=> {a, b}{a, b}. I f  the notion of concatenation of 
strings is extended to that of concatenation of sets, {a, b}{a, b} = {aa, ba, ab, bb}, i.e., the 
language obtained from Example 2 by OI derivation. 
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This simple idea is basically the principle behind hypergrammars. All terminals a ~ T 
are considered as singleton sets {a}; all concatenations are regarded as set concatenation 
and we also allow the empty set ~ and the use of union symbols on the right-hand sides 
of  productions. The modes of derivation for hypergrammars are the same as those for 
macrogrammars, namely, unr, IO, and OI. 

EXAMPLE 6. Consider the two hypergrammars with productions 

(A) (B) 

S - + f ( g )  S -+ f (g ) ,  

f ( X )  --7 X X ,  f ( X )  -*  X X ,  

g --+ {a) U (b}, g -+ {a), g -~  {b}. 

The  language generated by Example 6A under any mode of derivation is {aa, ba, ab, bb}. 
The language generated by Example 6B under IO derivation is {aa, bb}; under OI 
derivation it is {aa, ba, ab, bb}. 

It  appears that if sets of strings are allowed on the right-hand side, then IO derivation 
is all that is needed to reflect both the IO derivation and OI derivation used with macro- 
grammars. In this particular case there is no difference in Example 6A between the 
languages generated by the various modes of derivation, but there is a difference in 
Example 6B. 

EXAMPLE 7. Consider the hypergrammar with productions 

S --+f(g), 

f ( X )  --+ f ( X X )  u X X ,  f ( X )  -+ X X ,  

g -+ bg u gb w a, g - , -  bg, g--~ gb, g--+ a. 

Under  IO derivation this grammar generates the language L '  = ~b-l(L) of Example 3. 
Note that the vinculum parentheses "{", "}" have been dropped when writing singleton 

sets, e.g., a is written for {a}. This convention will be adopted henceforth. The formal 
definition of a hypergrammar can now be presented. 

DEFINITION 3.1. A hypergrammar structure (HGS) is a 6-tuple G = (N, T, F, ~-, P, S), 
where 

(1) 
(2) 
(3) 
(4) 

N is a finite set of variables; 

T is a finite set of terminals, T = T L; {E, ~}; 

(F, 7) is a finite stratified alphabet of function symbols; 

The operator set 27 is constructed f r o m F  by adding t o F  the two binary operators 
union and concat. Then  P is a finite set of productions of the form f ( X  1 ,..., X~(fl ) ---, y 
where y is an element of the free 27-algebra generated by 2rU {X 1 ,..., X,~/}; 

(5) S e F  is the start symbol and ~-(S) = 0. 
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DEFINITION 3.2. An element of ~z (T) ,  the free X-algebra over 2r, is called a hyperterm. 
Let  A ~ X t F  = {union, concat}, then ~ (~P)  denotes the free A-algebra over ~'. 
Concat ( t l ,  tz) is usually written (tit2) or (t 1 �9 t2) and union ( tx ,  tz) is usually writ ten 

(t 1 u t2). The  parentheses are dropped when no confusion can arise because of their  
omission. 

DEFINITION 3.3. I f  V, t ~ o~z(J') then v is a subterm of t if v is a substring of t. An 
occurrence of a subterm v of t is said to occur at the top level in t if that occurrence of v 
does not appear  in t within the argument  list of some function symbol in 2 7. 

I f f ~ F  occurs as a substr ing of t ~ o~(5~), then the scope of that occurrence o f f  in t 
is the least subterm of t containing that occurrence o f f ,  Thus  in g(af(a,  b), b) the scope 

o f f  is the s t r i ng f ( a ,  b). 

DEFINITION 3.4. Let  t l ,  tz ~ ~ z ( T )  and G = (N, W,F ,  r, P, S) be an H G S  such 
that T ~ F z  ;~ and T D  W. Then  

unr t I directly derives t 2 by an unrestricted step if (1) t ~  t~, 

(i) t 1 contains a subterm . f (v  1 ,:.., v,ce)) where f a F  and v 1 ,..., v,( t)~-~n(~') ;  

(ii) P contains the rule f ( X  1 ,..., X,(s)  ) --~ 7; 

(iii) t~ results from t~ by replacing a single occurrence of f ( v  I .... , v,(l) ) by y' ,  
constructed from 7 by replacing each Xi  by v i ,  i = 1,..., r ( f ) .  

(2) tx => ~o tz , t 1 directly derives t2 by an inside-out step if 

(i) ~1 =>F ~ t~ ; 

(ii) all the arguments of the rewritten function symbol are elements of ~ (2~) .  

(3) tl  =>or t~ , t 1 directly derives t 2 by an outside-in step if 

unr t2. (i) t l *  c , 

(ii) the subterm of t a which is rewritten occurs at the top level in t 1 . 

~unr* ~1o* and =>ol- e , a , ~ , are defined as the reflexive, transitive closures of =>unr =>IO 
and ~ o i ,  respectively. 

DEFINITION 3.5. A hypergrammar is an H G S  together ,with a defined mode of 
derivation, either unrestricted, inside-out, or outside-in, as defined above. According 
to the choice of mode of derivation, the hypergrammar is called an unrestricted hyper- 

grammar, an I 0  hypergrammar, or an O I  hypergrammar. 
Now, writing union (t 1 , t2) as (t l  ~ t2), concat (tl  , t2) as (tlt2) and inserting all paren-  

theses, a hypergrammar  is just  a macrogrammar with special terminal symbols {"(", ")" ,  
"~Y', " ~ " } .  The  interest in hypergrammars lies in the fact that these symbols have been 
defined as a convenient way of dealing with sets of strings. Given a hyper term which 
involves no function symbols, there is an evaluation map, eval, which produces a set of 

strings in T*. 
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DEFINITION 3.6. 2 r* denotes the A-algebra with carrier 2 r* and operations defined 
by 

union (A, B) = A t3 B (set theoretic union), and 

concat(A, B) = d �9 B (set concatenation) 

= { a b l a e A ,  b e B } .  

eval: o~(2P) --> 2 r* is defined as the A-algebra homomorphism defined by eval(~) = ;~, 
the empty set, and eval(a) = {a}, Va ~ T td {e}. 

I f  x is a sentential form of a hypergrammar G (with terminal set T) and x c ~ ( T ) ,  
then we say that x is a terminal term of the hypergrammar G. 

For the rest of this paper, it is assumed that unless otherwise specified all hyper- 
grammars operate over the same terminal set T. 

DEFINITION 3.7. The language generated by a hypergrammar G = (G, ~ c )  is defined 
to be the set of terminal strings H(G) H((G, ~G)) [.) {eVal(x)] S ~ * x  and 
x ~ ~ ( T ) } .  The set {x [ S ~ *  x and x ~ ~ ( T ) }  is denoted by L(G). L(G) is a macro- 
language and is called the unevaluated language generated by G. 

Note that eval((t t k) t2) u t3) = eval(t 1 k3 (t 2 t_) tz)) and eval((tlt2)tz) = eval(tl(tst3) ). 
Hence ((t 1 u t2) t3 t3) is often written as (t 1 k3 t 2 k3 t3) and ((tlt2)ts) as (tlt2tz) without fear 
of confusion. In  fact, in general, parentheses are omitted where omission can cause no 
confusion. When parenthese are omitted, a representation of an element of ~ (2P)  is 
obtained. In  particular, the set of terminal terms consists of elements of o~(T). Dropping 
palenthese only produces representations of terminal terms. 

I t  is assumed, without loss of generality, that when considering an IO derivation of a 
terminal term the scope of the rightmost function symbol is always rewritten as the 
next step in the derivation. Similarly, for the OI derivation of a terminal term, the scope 
of the leftmost function symbol is always rewritten. 

EXAMPLE 8. Consider the hypergrammar G with productions 

S ~ f ( a ,  b, c), 

f ( X 1 ,  X ~ ,  X3) --~ f ( a X 1 ,  bX2 , cX3) u X 1 X ~ ( 3 ,  

f ( X l  , X 2 ,  Xa)--* ~ .  

Under any mode of derivation, G generates the same language {anbnc n I n >/1}. This 
language is well kmown not to be context free. 

DEFINITION 3.8. I f  there exists a hypergrammar G generating a language H, then H 
is called a hyperlanguage. Tile hyperlanguage is called unrestricted, IO, or OI depending 
upon the mode of derivation of the grammar G. 

#~unr, ~ ,J~Ol denote the classes of unrestricted, IO, and OI  hyperplanguages, 
respectively. 
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DEFINITION 3.9. A hypergrammar G = (G, ~ c )  is in standard form if every pro-  
duction of G is of one of the forms 

( l )  ~ f (X1  ..... X.(f))- - ) -g(X 1 ..... X~(I) ) u h (X 1 ..... X~(j)), 

(2) f ( X ~  ,..., X~(,)) -~ g ( h l ( X  1 . . . . .  X ~ . ( D ) , . . .  , h~.(g)(_)~_ 1 , . . . ,  X.r( . f ))) ,  

(3) f ( X  1 . . . .  , X~_r ~ V, 7] ~ (IV ~ T ) * ,  

(4) f (X~ ,..., &(~))--> ~ .  

THEOa~M 3.1 (Standard Form Theorem).  For every hypergrammar G = (G, ~G),  
there exists a hypergrammar G '  = (G',  =>~) in standard form such that H(G)  = H(G ' ) .  

Proof. [7]. 
Stronger normal form theorems are available for hypergrammars for any given mode 

of derivation. These  theorems are given in [7] but  for this paper  the standard form will 
suffice. One interesting result, though, is that  productions involving ~ are not necessary, 
i.e., for any hypergrammar  t3 - -  (G, ~G)  there is a hypergrammar  G '  = (G' ,  ~'G) with 
no productions involving ~ ,  such that H ( G ' )  = H(G).  

THEOmZM 3.2. ~ = "~foI - - / Z o l .  

Proof. O~un r = og/'oi : H ~ u n  r iff H = H( (G,  ~unr)) for some hypergrammar 
(G, ~unr)  iff H = eval(L((G, ~uur))) iff H = eval(L((G, ~o l ) ) )  (Theorem 1.1(I)) iff 
H = H((G, ~ o i ) )  iff H ~ geo, .  

~ o l  = /~o I  : I t  can be shown that i f f ( X  i ..... X,(t)  ) -~  g(X1,..., X~(e)) w h ( X  1 ..... X,(I)  ) 
is a production of an OI hypergrammar G then H((G,  =>oI)) is unchanged either if this 
production is removed completely or if this production is replaced b y f ( X  1 .... , X~q)) 
g ( X  x .... , X~(I) ) and f ( X  1 .... , X~(I) ) -+ h ( X  1 ,..., X~(I) ). An easy induction argument  can 
now be used to produce an OI macrogrammar producing the same language as the 
standard form Oi  hypergrammar generating H((G,  ~o~)). 

I t  is interesting to compare IO hyperlanguages with quoted languages. Consider a 
derivation in a quoted grammar of a terminal  string x from a quoted term t. Such a deriva 
tion is inside-out  except that  quoted terms are treated like terminal  symbols. I f  there are 
no quotes in t then all such IO derivations can be ordered so that  the scope of the right- 
most function symbol is always that  involved in the next expansion. I f  a subterm v of t is 
quoted then v is treated like a terminal  string until it occurs at the top level; there the 
quotes are removed and the derivation continues. The  one occurrence of v in t can lead 
to several occurrences of v in later sentential forms. Each of these occurrences may 
generate different strings of teminals. For  example, if a quoted grammar has productions 

S - + f ( ( g ) ) ,  

g --* a, 

g--~ b, 

f ( X ) - - +  X c X d ,  
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then a derivation is S ~ - f ( ( g ) )  ~ ( g )  c (g )d  *=> gcgd. Each occurrence o f g  can generate 
one of a or b. I f  it was deemed necessary to expand g before f then it would be essential 
to keep the option of either a or b open. Hence, the IO hypergrammar with productions 

s-~f(e) ,  

g--+ a k) b, 

f ( X )  --~ XcXd ,  

is constructed. 
In  general, when a term v is quoted, the corresponding term in an IO hypergrammar 

must contribute the same set of terminal strings as generated by v. There is a clear link 
between "quoting" and "unioning." 

Consider the quoted grammar with productions 

s ~f((g)),  

f (x ) -+ a, f(x)--~ x .  

This grammar generates the language {a}. g itself can generate no terminal string but 
f ( ( g ) )  can generate a terminal string by having a derivation in which the quoted g is 
dropped. In  the hypergrammar, the symbol ~ acts in a similar way. Its occurrence will 
enable the derivation to continue but it contributes nothing to the language generated 
by the grammar. Thus  from the example above, the IO hypergrammar with productions 

S -~ f (g ) ,  

g---~ N, 

f ( X )  ~ a, f ( X )  --+ X 

is constructed. 
The  above gives the motivation for the constructions used to prove the following 

theorem. 

THZOaEM 3.3. ~ o  = Q. 

Proof. (1) Jt~lo C Q. I f  H e  ~f~Io then there is a standard form IO hypergrammar 
G = ((N, T ,F,  ~-, P, S), ~ to) )  generating H. Construct a quoted grammar structure 
G'  = (N, T, F ' ,  r ' ,  P ' ,  S) where 

F '  = F u {p, q} where p, q are new function symbols ~ F U 71, 

T ' ( f )  = ~-(f) if f e F ,  

~-'(p) = 0 and , '(q) = 2, 

and P '  is constructed from P as follows. 
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I f  O ~ P involves neither union nor ~-symbols  on the right-hand side, then p ~ P ' .  
I f  p e P is of the form f ( X  1 .... , X,(I)  ) ---~g(X 1 ,..., X~C,)) t3 h ( X  1 ..... X,(I)), then 

P '  contains the productions 

/ ( x ~  ..... & ( , ) ) - ~  q ( g ( &  ,..., x,(,) ,  h(Xl  ..... X,~))) ,  

q(Xl  , X~)~  < q ( &  , X2)),  

q ( X l ,  Ah)-+ &,  q(&, &)-+ X2. 

If  p ~ P is of the form f(X1 ,..., X,(j)) -+  ~ ,  then f ( X  1 ..... X ,  ce)) --+ {p)  is in P ' .  
Then  it can be shown that the quoted language generated by G' ,  Q(G'), is equal to 

the IO hyperlanguage H((G, ~m)) .  The  detailed proof is given in [7]. 

(2) (2 C J~1o. I f  L E O then there is a normal form quoted grammar structure 
G = (N,  T, F,  r, P,  S )  generating L. The productions of G are of one of the following 
three forms: 

(t) f ( X  1 ,..., .Jt~(,))--+ g(hx(X  1 ,..., X,(I)),. . .  , h~(~)(X 1 ,..., X,(r 

(2) f ( X  1 ,..., X~(1) ) --+ ~7, r] e (N L) r )* ,  

(3) / ( x ~  .... , x , ( , )  -~  <g(x~ ,..., x,(,))>. 

Construct an IO hypergrammar with H G S  G ' =  (N,  T , F ' ,  r', P ' ,  S )  from G as 
follows: 

F '  = F u {fq ] / ~ F} where {f,  I f E F} c3 F = N, 

r ' ( f )  = r ( f )  and r ' ( f  q) = r ( f ) ,  V f ~ F.  

If  p E P is a production of type (1), (2) above then p e P ' .  I f  p e P is a production of 
type (3), say 

f ( X 1  ,..., X,(D ) --~ < g ( X  1 ,..., X,0"))>, 

then P '  contains the productions 

f ( X 1  ..... Xr(y)) ~ gq(X  1 ,..., X~(D), 

g~(X~ ..... x , ( , ) ) - - ,  & ( x l  ,..., x~(,)) va g~(X~ ..... x , ( , ) ) ,  

gq(X 1 ,..., Xr ( l ) ) -+  g ( X  1 ,..., Xr(f)), 

& ( &  ,..., x ~ ( , ) - ~  ~ .  

I t  can be shown that the quoted language generated by G, 0(G),  is equal to the IO 
hyperlanguage, H((G' ,  ~m)) .  Again, details are found in [7]. 

I f  every function symbol in a quoted grammar is quoted then the language generated 
is an OI  macrolanguage. Bearing in mind the association between "quoting" and 
"unioning," it seems natural to ask if the class of OI macrolanguages is the subset of 
the languages defined by the IO hypergrammars where, for each function symbol f ,  
there is only one production w i t h f  on the left-hand side. In  particular, if the productions 
in some I 0  hypergrammar with f on the left-hand side are f ( X  1 ,..., X,( , ) )--+ 7, z ..... 

f ( X  1 ..... X,(f)) --~ y~,  it is interesting to consider what happens if these productions are 
replaced by a single production f ( X  1 ..... X,(I))  --" 71 U "" ~3 Y,*. Of course one thing 

57I/I4/I-Io 
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that could happen is that some Yi might contain the function symbol]', i.e., the production 
is self-recursive. I f  this were the case, then any hyperterm involvingf could never generate 
any hyperterm which itself did not involve f. To avoid this situation, the production 
f ( X ,  ,..., XTq)) --+ 25 is also allowed. 

DEFINITION 3.10. I f  for every function symbol f in a hypergrammar there is only 
one production with f ( X ,  ,..., X,(r) ) on the left-hand side and a term other than 25 on 
the right-hand side, then the hypergrammar is said to have unique productions. 

The following theorem is then a not unexpected result. 

THEOREM 3.4. H E  ~,'/foi = tZoi if[ there exists an OI hypergrammar with unique 
productions generating H if{ there exists an IO hypergrammar with unique productions 
generating 11. 

Proof. [7]. 

4. CLOSURE PROPERTIES 

THEOREM 4.1. ~ u n r ,  ~162 and ~ o  are all closed under union, concatenation, Kleene 
closure, arbitrary homomorphisms, reversal, and substitution. 

Proof. The proof of this theorem is based on simple constructions which are in- 
dependent of the mode of derivation. 

Let  G = (N, T, F, r, P, S) and G' = (N',  T' ,  F ' ,  r ' ,  P ' ,  S')  be two hypergrammar 
structures which under the same mode of derivation, ~ a ,  generate hyperlanguages 
H and H' .  I t  is assumed, without loss of generality, that F n F '  = 25, F '  n T = ~ ,  
a n d F n  T '  = ~ .  

Let  ~q be a new symbol not in F t3 F '  u T k3 T '  and define ~ by 

~(S) = 0, 

t~-(f), if f e F ,  
e ( f )  = t , ' ( f ) ,  otherwise. 

The required constructions are 

Union. H u H '  is generated by  the H G S G = ( N U N ' ,  T ~ A T ' ,  F u F ' t A { S } ,  
.~,/5, ~,) under =>a where 15 = p u P '  u {S--~ S tA S'}. 

Concatenation. H H '  is generated by the H G S  G = ( N  t3 N ' ,  T u T', F tA F'  ~A {S}, 
e, if, g)  under ~ a ,  where 15 _ p u P '  tA {S'---~ SS'}.  

Kleene closure. H* is generated by the H G S  G* = (N, T, F, -c, P*, S) under ~ a ,  
where P* = P tA {S --+ SS}  tA {S -+ e}. 

Arbitrary homomorphism, o~: T--+ W.  c~(H) is generated by (N, W, F, r, P L  S) under 
~ a ,  where P~ is constructed from P by replacing every occurrence of a terminal 
symbol, a, in a production of P by a(a). 
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Reversal. Let r  .-~s(Tu N ) - * - o ~ z ( T t d N )  be the reversal function defined by 

(1) r  ~ ,  

(2) r = a, Va E N t 3  T U  {E}, 

(3) r = r r and r  W t~) - -  r w r , Vtl, tz ~ ~ ( 7 '  w N), 

(4) r  ..... t~)) = f(r  r Vt,,  t~ ,..., t,, e o~x(7" w N).  

r  is then generated by the H G S  G ~ = (N, T, F, r, P~, S) under ~ e ,  where Pc  is 
constructed from P by replacing each p roduc t ion f (X x ,..., X,(I) ) -+ y byf(Xa,. . . ,  X~(I) ) 
~b(y). r  = {~b(x) i x e H} is the reversal of H. 

Substitution. Let ~ be any substitution and let T {al ,..., a~}. It  can be assumed 
that a(al) is generated by the H G S  Gi = ( N i ,  T~,  F i ,  r i ,  P , ,  Si)  under ~ a ,  where 
F icSF~ = ;~ and F ~ n  T~- = ~ for i % j  and F i n F =  2J, F ic~{az , . . . , a ,~}  = ~ ,  
Ti ~ F  = ~ for all i 1,..., n. I f  o~(al) ~ ,  then assume that Pi consists of the 
single production Si -+  ~ .  

Define a new HGS, G ~ = ( N  ~, T% F% r% P% S),  where 

N~ = N L J  N 1 u  - . . w  N ~ ,  

T ~ = T ~ U  ... v3 T ~ ,  

F ~ - - F ~ 3 F ~ W  .... u F ~ ,  

t r ( f ) ,  if f e e ,  
r " ( f )  = t ry( f ) ,  if f e F ~ ,  i = 1 ..... n. 

Now, define a function h: ~ ( 7 "  u N)  ~ ~ , ( N w  {e, 2~}) where 2J = F t_) {concat, union} 
and 27' = 27 u {Si [ i = 1,..., n}, by 

(1) h ( ~ )  = & ,  i = ~,..., ~, 

(2) l , ( e )  = ~ ,  h(O = ~, 

(3) h(X-) = X, VX e N, 

(4) h(tlt~) = h(t~) h(t~) and h(t~ u t~) = h(t~) k) h(t~), Vt~ , t~ ~ ~ ( T  t.) N ) ,  

(5) h ( f ( t  I .... , t,(r = f(h( tx) , . . . ,  h(t~(t))) , V f e F  and Vtl,..., tr(f) @ o~ k.) N). 

P~ is then defined to contain /)1 u Pz L) ... U P~ and also productions constructed 
from P as follows: 

i f f ( X  1 ..... X~)--+ y is in P then f ( X  1 ,..., X,)- -+ h(y) is in P~. 

Also P~ contains the productions Si- -~  S i  t3 S i  for i = 1, 2,..., n. These productions 
enable any Si  in P~ to generate subsets of ~(ai). 

Then it is clear that the language generated by G ~ under ~ a  is precisely a(H). An 
interesting corollary is 

THrOReM 4.2. ~ n r  =/- ~ ; ~'~IO & ~ ; Jd'ox :~ ~ 1 .  
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Proof. ~ ,  the class of context sensitive languages, is not  closed under substi tut ion 
but  only under  e-free substitution. 

eval: ~ ( 7 " ) - + 2  T* has been defined as the A-algebra homomorphism defined by  
eval(a) = {a}. I f  -Y- is the subset of the carrier of ~ ( T )  generated by a hypergrammar  
then [ .)~j-  evaI (x) is a hyperlanguage.  I t  is interesting to try and generalize this definition. 

DEFIN~TION 4.1. L C T* is a generalized hyperlanguage if there exists a A-algebra 
homomorphism ~b: o~(~P) --+ 2 T• and a subset 3"  of the carrier of o~(2P), which is exactly 
the set of all terminal  terms generated by a hypergrammar,  such that L = ~ x ~  r 

I f  the A-algebra homomorphism cc 2 T* --> 2 r* is defined by 

Then  the diagram 

commutes.  Thus,  

.({a}) = r Va E T v {E}, 

~({ax}) = r �9 $(x), Va ~ T, 

~(A) = U ~'({~}), vA ~ 2T*. 
X~ A 

x ~ T*, 

%(t} 

2T* . 2 T" 

U r  U ~(eval(x)) 
x~J xc3" 

So a generalized hyperlanguage is a homomorphic  image o f a  hyperlanguage and so is 
a hyperlanguage. 

5. THE EVALUATION OF SENTENTIAL FORMS 

The  evaluation of terminal  terms generated by  a hypergrammar  has been defined 
using a map eval: ~ ( i P )  ~ 2 r*. This  map can be extended in a natural way to produce 
an evaluation eval: o~z(2P) --+ 2 r* on all sentential forms o f  the hypergrammar.  

2 r* has been regarded as a A-aigebra. Z = zl U F ,  so if we define the action of the 
operators F on 2 r*, 2 T* can be regarded as a Z-algebra.  Define f ( A  1 .... , A~(t) ) = ~ ,  
VA 1 ,..., A , ( I ) ~ 2  r* and VfcF. eval is then the S-algebra  homomorphism defined by 
eval (~)  ~ and eval(a) = {a}, Va c T u (~}. 
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DEYINITION 5.1. I f G  = (G, ~ )  is a hypeigrammar, then the extended hyperlanguage 
generated by G, E(G) is defined by 

~(G) = U {eval(x) I s =>* x}. 

The extended language differs from the previous definition of language since all 
sentential forms are evaluated and not just terminal terms. Clearly E(G)D H(G). 

The extended unrestricted hyperlanguages, extended IO hyperlanguages, and extended 
OI hyperlanguages are defined according to the mode of derivation of the hypergrammar. 
The classes of languages so defined are denoted, respectively, by Eun r , 6"~ , ~o~ - 

EXAMPLE 9. If  a hypergrammar structure G has productions 

S--~ f (a ,  b, c), 

f ( X 1 ,  X2 ,  A%) -+ f ( a X l  , bX2,  cXs) k3 X IN2X 3 ,  

then H((G, ~unr)) = H((G, ~ o ) )  = H((G, =>o~)) = ~ ,  and E((G, ~unr)) = 
E((G, =>1o)) = E((G, =>ol)) = {a,~b~cn ] n >/1}. Note, however, that if G' has productions 

S--+ f (a ,  b, c), 

f (X~  , X2 ,  X3) --+.f(aX1, bX2 , cXa) u X t X z X a ,  

f ( &  , A~ , x~) ~ ~ ,  

then H((G', ~.unr)) __ H((G', ~ ,o) )  = H((G',  ~ol) )  = {a~b.c~ln  >~ l}, and 
E((G', ~ ) )  = E((a' ,  ~ ,o) )  = E((C', ~o , ) )  = {,*~b"c"ln >~ 1}. 

This example shows that if G and G'  are hypergrammars then E(G) = E(G') does 
not necessarily imply that H(G) = H(G'). Also there are hypergrammars G and G'  
such that H(G) = H(G')  but E(G) =~ E(G'), for consider the HGS G with only one 
production, S - +  S w a and the HGS G' also with only one production, S - +  S t9 b, 
then under any mode of derivation the extended hyperlanguages generated by G and G' 
are {a} and {b}, respectively, although H((G, - ~ ) )  = H((G', = a)) --  ~ .  

THEOREM 5.1 .  8"~ --- ~';~'unr = '8"~ - -  ~ O 1  ; ~ = ~ O  . 

Proof. [71. 
Thus for any class of hypergrammars, the class of languages defined is unchanged 

if the evaluaticn is defined on all sentential forms and not just on terminal terms. 

6. THREE HIERARCHIES OF LANGUAGES 

By placing restrictions upon the arities of the function symbols of hypergrammars 
three new hierarchies of languages are found, each embedded in the class of IO hyper- 
languages. These hierarchies are hardly surprising but nevertheless are interesting 
because they can give a measure of the "complexity" of a given language. 
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DEFINITION 6.1. Let  G = (N, T ,F ,  ~, P, S)  be a hypergrammar structure. Then  
(F, ~-) is a stratified alphabet of function symbols. M = max{r(f)  [ f E F }  is defined to be 
the arity of G. Jt]m.n, ;'~oL~, t~Jo,~, and /Zol,, ~ denote, respectively, the classes of 
languages generated by IO hypergrammars, OI  hypergrammars, IO macrogrammars, and 
OI macrogrammars of arity n. 

T.EORE { 6.1. (1) U . \ o  N o . .  = ; U . \ 0  = ; U L 0  = , , o  ; 
U,~0  ,~o,.~ = ,~o~. 

(2) ~'}o,0 = "~r =/~Io.0 = V'oi.0 = 0L'r the class of  context-free languages. 

(3) For all n ~ O, a~f~m,n , '~'ol,n, ~Io,,~,/zm,,, are closed under union, concatenation, 
Kleene closure, arbitrary homomorphism, and reversal. 

(4) For all n >/O, ~t~ --  /~oI,n �9 

(5) For all n ~ O, ~llO,n ~ ffO,n+l ; J~/~OI,n C ~Ol,n+l ; /zlO,n C ~IO,n+l ; 

~Ol,n ~/Zol,nel " 

(6) For all n ~ 1, there exists L a /Zlo.n such that L r for  any m and there 

exists L '  ~ tZo1,~ such that L '  r iXlo.m for  any m. 

(7) /qo, .  W/~oL. C ~ o . . .  

Proof. (1) and (2) follow immediately from the definitions. 

(3) and (4) require proofs following identical lines as those of Theorems 3.2 and 4.t .  

(5) The  proof of containment is trivial but the proof of the inequality is not so 
easy. I t  is shown in [7] that the language Lr = {alia2 i "'" a~ i I i >~ 1} is an element of any 
one of the classes of languages ~ i o . ~ ,  ~r /xm,,,  t~oI.~ if and only if r ~< 2n -1- 2. 

(6) The language L'  of Example 3 ~/~oL1 and hence ~ t~oL, Vn/> 1 but L '  r  m . 

The  language of Example 4 E/~m.1 and hence E/~o,~ Vn >~ 1 but ~/~ol - 

(7) /Xio,~ C Jt~io. ~ and /~oi,~ C 3r162 follows since a macrogrammar is just a 
hypergrammar with no union or ~ symbols. Let L e/Xio.~ and L '  e/Zo1., be the languages 
defined in (6) above. L C{1, c}* and L '  C{a, b}*. Define [~ --  L u L ' .  Then by part (3), 

= / 2 0 I ,  2 , 2 

dio,,  [ 
! 

Fmuaz 1 
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L e-2/~o. , .  L r for {a, b}* is a regular set and i f / ,  c/ . io, ,~,  then since/*in is closed 
under intersection with regular sets, this would imply L, ~ {a, b}* c /* io ,  i.e., L '  ~ /*Io--  
a contradiction. Also, L q}/*oI.~ for {1, c}* is a regular set and if L c/*oL,, then since/*oi 
is closed under  intersection with regular sets, this would imply L n {1, c}* E/*oi ,  i.e., 
L e /*o i - -aga in  a contradiction. 

The  hierarchies of languages are described in Fig. 1. A line denotes proper  containment,  
i.e., the class of languages at the upper  end of the line strictly includes the class of languages 
at the lower end of the line. 

7. A LATTICE THEORETIC APPROACH 

The  fact that any context-free language L C T* can be expressed as a fixed point of a 
set of equations over the lattice og ~ = 2 r* is well known. Blikle [2] has produced some 
interesting generalized results from this lattice theoretic approach. Dana Scott 's  work 
in the theory of computat ion [9] has resulted in the study of lattices of continuous functions 
from one lattice to another. I f  ~n  is defined to be the lattice of continuous functions 
(2r*)'~--+ 2 T* then any OI hyperlanguage of order n C T* can be expressed as a fixed 
point of some set of equations over the lattice ~ .  Furthermore,  any IO hyperlanguage 
of order n C T* can be expressed as a fixed point of a set of equations over the lattice 2 %. 
Many of the theorems obtained by Blikle [2] can now be used to produce interesting 
corollaries. A generalized normal form theorem is produced in [7] and overall the founda- 
tions of a theory of formal languages based on lattices appear to have been laid. Many  
questions still remain open; for instance, can other previously studied formal languages 
be expressed as fixed points of equation sets over lattices ? What  other theorems can be 
proved in terms of lattices ? What  type of languages are defined by fixed points of equation 
sets over other particular lattices ? 
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