
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 14, 1 3 0 - 1 4 9 (1977)

Hypergrammars: An Extension of Macrogrammars

V . J . R A Y W A R D - S M I T H

School of Computing Studies, University of East Anglia, Norwich, NR4 7T J, England

Received May 29, 1974; revised September 25, 1975

A new class of generative grammars called hypergrammars is introduced. They are
described as a natural extension of Fischer's macrogrammars. Three modes of derivation,
inside-out, outside-in, and unrestricted are considered, and the classes of languages so
defined are compared with other known classes. It is shown that the outside-in hyper-
languages are the same as the outside-in macrolanguages but that inside-out hyperlanguages
are the same as Fischer's quoted languages. Various closure properties are considered as
well as generalizations of the original definitions. Three new hierarchies of languages each
embedded in the class of quoted languages are discovered. It is claimed that this new
approach to Fischer's work is more understandable and also mathematically elegant.

INTRODUCTION

Generative grammars have been of interest to the computer scientist and the mathe-
matician since they were first introduced by Chomsky in 1956 [3]. The languages of
type 0, 1, 2, 3 (first classified by Chomsky in 1959 [4]) have been s tudied in detail resulting
in a considerable literature. These classes of languages are denoted by ~ 0 , -~ei, ~~
and ~~ 3 , respectively. But these are not the only classes of languages generated by gram-
mars; indexed grammars [1], programmed grammars [8], and macrogrammars [5] are
but a few of the numerous new forms of generative grammar recently studied. Macro-
grammars are probably the most interesting of these; the motivation for the definition
of these grammars is a generalization of the concept of a macro as met in programming.
In this paper the productions of a macrogrammar are extended to operate on sets of
strings instead of just strings. This simple idea clarifies much of Fischer 's work, especially
in regard to his extension of macrogrammars, namely, quoted grammars.

The new classes of grammars and associated languages are called hypergrammars
and hyperlanguages, respectively. As with macrogrammars, there are various modes of
derivation, namely IO, OI, and unrestricted. The classes of languages generated by
hypergrammars under these various modes are considered in this paper and compared
with the classes of languages defined by Fischer. In particular, it is shown that the class
of OI hyperlanguages is equal to the class of OI macrolanguages and that the class of IO
hyperlanguages is equal to the class of quoted languages. This new approach to Fischer 's
work results in the discovery of three new hierarchies of languages. The description and
proof of these hierarchies is given in Section 6 of the paper.

130
Copyright �9 1977 by Academic Press, Inc.
All rights of reproductioa in any form reserved. ISSN 0022-0000

ttYPERGRAMMARS 131

Throughout this paper considerable use is made of the notation and concepts of
algebras. The concept of a free algebra is especially important .

DEFINITION 0.1. Let N denote the set of nonnegative integers. A stratified alphabet
is a set ~ with an associated function T: D --+ N called the rank or arity. I f o~ c D then
the integer -r(eo) is called the rank or arity of co.

DEFINITION 0.2. An algebra 5d is a pair (A, ~) where A is a set of elements called
the carrier of the algebra and D is a stratified alphabet of operator symbols such that,
for each w ~ D, there is an associated operation ~r d "(~) --~ A. I t is common to denote
the operation ~ ' w simply by r when it is clear from the context which algebra is under
consideration. With operator symbols D, ~r is often called an Q-algebra. The carrier of
the algebra ~ / i s denoted by I ~ / I .

DEFINITION 0.3. A subalgebra of an D-algebra ~r is an Q-algebra 9] such that

(1) 19] I_C I ~Z i;

(2) 9]~o(x~ G(,~)) = J~o(x~ x~(~)), V x~ x,(~) e I ~ I.

DEFINITION 0.4. Let d and 9] he two Q-algebras, A function h : l ~ z J l - ~]9] I
defines a homomorphism from . ~ to 9] provided that Vco E D and Vxl ,..., x~(~) c [~r 1,
~Jco(h(x~),..., h(x,(~)))- h(dco(xa , x~(~))). I f h also has an inverse function h-~:
1 9] [--+ I ~ l which defines a homomorphism from 9] to ~r then h is called an isomorphism
between ~ and 9]. 5ar and 9] are then said to be isomorphic.

DEFINITION 0.5. Let P denote the set of symbols {"(", ")" , ", "}, _d any set, and
E2 an arbi trary stratified alphabet with arity funct ion T. f2(_d), the set of polynomials
over s A, is the least set of strings over (A U D ~3 P)* such that

(1) aED(A),VacA;

(2) if eo ~ D and t I t~(~) ~ g2(d), then the string co(t~ ,..., t~(o~)) ~ D(A).

The free E2-algebra generated by A is the algebra d - - (D(A), D) where the operation
~' ,o, for eo E D, is defined by

~r ,..., t~(~)) = m(t 1 ,..., t~(o~)), for any t 1 ,..., t~(~) e D(A).

The free O-algebra generated by A is deno ted by ~ (2d) .

132 v. 1- RAYWARD-SMITtt

] . DEFINITION AND EXAMPLES OF MACROGRAMMARS

Before formally defining macrogrammars, consider two examples of such grammars.

EXAMPLE l. The macrogrammar G has productions

S - + f (a , b, c),

f (X 1 , Xo. , X~)--,- f (a X ~ , bX2 , cX3),

/ (x ~ , x ~ , x ~) ~ x ~ x ~ x ~ ,

where S is the start symbol, f is a function symbol of arity 3, a. b, c are terminal symbols,
and X 1 , X 2 , X 3 are variable symbols. The following is a valid derivation in G:

S ~ f (a , b, c)

f (aa , bb, cc)

f (aaa , bbb, ccc)

a3b3c ~

(by application of the 1st production),

(by application of the 2nd production),

(by application of the 2nd production),

(by application of the 3rd production).

In fact G will generate {a'~b~c '~ I n >~ 1}.

EXAMPLE 2. The macrogrammar G' has productions

s ~ f (g) ,

f (x) ~ x x ,

g - + a,

g--,- b,

where S is the start symbol (which is regarded as a specially designated function symbol
of arity 0), f is a function symbol of arity 1, and g is a function symbol of arity 0. a, b are
terminal symbols and X is the only variable symbol. A valid unrestricted derivation is
S ~ f (g) ~ - g g ~ ag ~ ab. I f no term involving a function symbol can be rewritten
until all the arguments of the function symbol are terminal symbols, the derivation is
called an inside-out derivation. The derivation of ab from S is not an inside-out derivation
becausef(g) ~ gg is not allowed. S ~ f (g) ~ f (a) ~ aa is a valid inside-out derivation.
The grammar generates {aa, ab, ba, bb} with unrestricted derivation, but only {aa, bb}
with inside-out derivation.

DEFINITION 1.1. Macrogrammars operate over structured strings called macroterms.
Macroterms are built up from elements of

(1) a finite set T of terminals;

(2) a finite stratified alphabet (F, T) of function symbols, i:e., a finite set F such that

HYPERGRAMMARS 133

for each f e F there is a unique nonnegative integer r (f) , the arity of f . The arity o f f
determines the number of arguments taken by f ;

(3) punctation symbols "(", ")" and ", ".

The set of macroterms over T, F, % J~'(T, F, ~-), is the least set of strings over
T u F u {"(", ")", ", "} such that

(1) the empty string �9 e J/Z(T, F, ~-);

(2) Va ~ T, a E ./W(T, F, z);

(3) i f f 6 F and t, ,..., t~(~) E J//(T, F, ~-) t h e n f (Q ,..., t~b.)) 6 ~ ' (T , F, z).

Note that writing f (t 1 ,..., t~(j)) does not imply that it is necessary that ~-(f) ~ 0.
I f f ~ F is of arity zero, f () is abbreviated tof .

DEFINITION 1.2. Let t ~ (T , F , ~). v is a subterm of t if v ~ d g (T , F , T) and v is a
substring of t. A subterm v of t is said to occur at the top level in t if there exist macroterms
ta, t z such that t = t~vt 2 , i.e., if v does not appear in t within the argument list of some
function symbol.

DEFINITION 1.3. A macrogrammar structure (MGS) is a 6-tuple (N, T, F, ~-, P, S)
where

(1)
(2)

(3)

(4)

N is a finite set of variables;

T is a finite set of terminals;

(F, "r) is a stratified alphabet of function symbols;

P is a finite set of (macro) productions of the form f(X" 1 , X,q)) --~ 7 where
X i ~ N , i = I,. . . , r (f) , and 7 c ~ (T u {Xx ,..., X,(r)}, F, ~');

(5) S E F is the start symbol where ~-(S) = 0.

DEFINITION 1.4. Let t l , t 2 ~ J { (T ' , F,-r). Let G = (N, T, F, r, P, S) be an M G S
such that T ' n F ~ ~ and T ' D T. Wedefine

unr t2 t 1 directly derives t 2 by an unrestricted step, if (1) tl ~ ,
(i) t 1 contains a sub te rmf(v 1 ,..., v,(t)) w h e r e f 6 F a n d v 1 , %(t) ~ . / / { (T ' ,F , T);

(ii) P contains the rule f (X 1 ,..., X , q)) -+ ~;

(iii) t~ is obtained from t 1 by replacing a single occurrence of the subterm
f (v l %(I)) described in (i) by y ' where),' is obtained from), by substituting the
maeroterms v 1 ,..., %(i~ for the corresponding occurrences of X 1 ,..., X,6,) in ~.

(2) t 1 =~la~ t~ , t 1 directly derives t 2 by an inside-out step, if

(i) t~ ~ " ' t2 ;

(ii) all the arguments of the rewritten function symbol are elements of T'*.

134 v . j . RAYWARD-SMITH

(3) tl ~ or t2 ' tz directly derives t 2 by an outside-in step, if

unr t2 ; (i) q ~
(ii) the subterm of t 1 which is rewritten occurs at the top level in t 1 .

=>unra , _~lao ' ~ox are written as =>unr, =>IO, ~ o l when it is clear which M G S is under
consideration. =~*, ~ i o . , and =>05. are defined as the reflexive, transitive closure of
~unr, ~ I o , and ~o I , respectively.

DEFINITION 1.5. A macrogrammar G is a pair (G, ~ a) where G is an M G S and ~ c is
a mode of derivation, either =>gnr, =>IO ~ o I . c , or An unrestricted maerogrammar (UMG)
is a macrogrammar (G, =~gnr). Similarly (G, ~Ia~) is an I 0 macrogrammar (IOMG) and
(G, =>~I) is an OI macrogrammar (OIMG).

DEFINITION 1.6. Let G = ((N, T, F, ~-, P, S), ~ c) be any macrogrammar. A term
t ~ rid(T, F, r) is a sententialform of G if S ~G* t. The language generated by the macro-
grammar t3, L(G), is the set of sentential forms of 13 which are terminal strings.

L(G) = {w ~ T* I S --* w}.

DEFINITION 1.7. T h e class of languages generated by U M G s is denoted by/Xunr.
Such languages are called unrestricted macrolanguages (UMLs) .

T h e class of languages generated by I O M G s is denoted by/*Io - Such languages are
called inside-out macrolanguages (IOMLs) .

T h e class of languages generated by O I M G s is denoted by/Xol . Such languages are
called outside-in macrolanguages (OIMLs) .

Fischer [5] proves

THEOREM 1.1. (1) For any ~/IGS, G, L((G, ~unr)) = L((G, =>~ ttence/*unr = / * o i -

(2) ~ g m o g 4 .

(3) ~ C t ~ o ~ g < .
(4) /Zo~ is precisely the class of indexed languages as defined by Aho [1].

Fischer also produces Example 3 to.show that there is an element of/z m not in/Z~o ,
and Example 4 to show that there is an element of/z m not in/~o~ - So tZto and/Zoi are
incomparable.

EXAMPLE 3. Define a homomorphism ~b: {a, b}*-+{a}* by ~ b (a) - a, ~b(b)= ~.
Let L = {a s" [n ~ 1}. L ' -= ~b-l(L) = {x ~{a, b}*] ~b(x) eL}. L is generated by the
macrogrammar with productions

S --,-f(a),

f (X) --,- f (X X) ,

f (X) --+ X X ,

HYPERGRAMMARS

under any mode of derivation. L ' is generated by the O I M G with productions

S --~ f (g) ,

f (x) - ~ f (x x) ,

f (x) -~ x x ,
g - ~ bg,

g -+ gb,
g---->-a~

Fischer proves that L" ~ iXlo .

EXAMPLE 4. The language {Im(cl*~)~-I] m ~ 1, n -= 2 ~} is generated by the I O M G
with productions

S - + f (l) ,

f (X) --+ g(f (X1)) ,

f (X) - , . g (X) ,

g(X) -~ XcX.

Fischer shows that this language ~_/Xol.

THEOREM 1.2. IZol (and hence /*unr) are closed under union, concatenation, Kleene
closure, intersection with regular sets, homomorphisms, and reversal. However, only k~ol
(and hence/Zunr) is closed under inverse homomorphisms.

Proof. [5].
The proofs given by Fischer involve the use of results concerning normal forms for

I O M G s and OIMGs . These are also detailed in [5].

135

2. QUOTED GRAMMARS

Quoted grammars were introduced by Fischer as an extension of I O M G s . New
symbols " (" and ") " , called quotes, were used as a control in the derivation. Let T,
F, 7 be defined as for macrogrammars.

DEFINITION 2.1. The set of quoted terms over T, F, 7, .~(T,F,~-), is the least set
of strings over T U F U {"(", ")" , " , ", " (" , ") "} such that

(1) ~ e ~ (r , F , 7);
(2) Vae T, a ~ ~ 7);

(3) if tl , t~ e .~(T, F, 7), then tit 2 ~ ~(T , F, 7);

(4) if f ~ F and t 1 ,..., t,(s) e 3 (T , F, r), t h e n f (t 1 t,(I)) e ~ (T , F, ~-);

(5) if t e ~ (T , F, 7), then (t) ~ ~(T , F, 7).

136 v . j . RAYWARD-SMITH

DEFINITION 2.2. A quoted grammar structure (QGS) is defined as for an M G S except
that i f f (X 1 ,..., X,(I)) -+ 7 is a production, then 7 may include quotes, since the restriction
we impose on 7 is that y ~ ~ (T t3 {X 1 ,..., X,(j)}, F, r).

There are two types of derivation step allowed:

(1) Quote removal: This can only occur when quotes occur at the top level, i.e.,
tile quotes do not appear within the argument list of some function symbol. The quotes
are removed in matched pairs, e.g.,

{(bf(b)) f ((g))) ~ (bf(b)) f ((g))

bf(b) f ((g)) .

The quotes surrounding g cannot be removed at present since they do not occur at the
top level.

(2) Function rewriting: A subterm may be transformed by a function rewriting step,
as defined in Definition t.4, only if

(i) it is a term of the form f (t l , t,(~) where each h is fully expanded, i.e.,
the t i are terminal strings or cannot be further expanded because of quotes. Such terms
are called fully quoted.

(ii) The subterm is not contained within higher level quotes.

Thus the derivation is inside-out where a quoted term is considered as a terminal and
quotes can only be removed at the top level.

EXAMPLE 5. I f a quoted grammar has productions

S --~ hf(b) f ((g)) ,

f (x) ~ x c x ,

g § g-+b,

h--~b,

then a valid derivation is

S ~ hf(b) f ((g))

bf(b) f ((g))

bbcbf((g))

bbcb(g) c{g)

~. bbcbgc(g)

bbcbac(g)

=~ bbcbacg

=> bbcbacb.

HYPERGRAMMARS 137

DEFINITION 2.3. The language generated by a quoted grammar G (i.e:, a QGS
together with the above described mode of derivation) is defined by

O(G) = { w e r * [S ~ * w } .

Such a language is called a quoted language and the class of all such languages is denoted
by Q.

THEOREM 2. t (Quoted normal form). For every quoted grammar G, there is a quoted
grammar G' which generates the same language and such that every production of G' is of
one of the following forms:

(i) f (X x ,..., X,(i))--~g(h~(X~ X~O~)) hr(g)(X 1 , . . . , XT(i))) ,

(ii) f (X 1 X,(f)) ~ ~7, ~ ~ (N u r)* ,

(iii) f (X x ,..., X~O-))-*" (g(X~ , X~(I))).

Proof. [5].

THEOREM 2.2. (l) Q D / q o vo Uol.

(2) O is closed under union, concatenation, Kleene closure, substitution, and arbitrary
homomorphism.

Proof. [5, 71.
Closure under intersection with regular sets and under inverse homomorphism remains

an open problem. The solution of either of these problems will solve the other [6].

3. HYPERGRAMMARS

In Example 2 the macrogrammar with productions

S --+f(g),
f (x) --. x x ,

g---~ a, g--~ b,

was considered. This example clearly illustrated the difference between IO and OI
modes of derivation. Now, if the concepts used so far are extended to sets of strings and
not just individual strings, some interesting results are obtained. Consider the productions

a - + f (g),
f (x) -+ x x ,

g--+ {a, b}.

Under IO or OI derivation, S ~ f (g) *=> {a, b}{a, b}. I f the notion of concatenation of
strings is extended to that of concatenation of sets, {a, b}{a, b} = {aa, ba, ab, bb}, i.e., the
language obtained from Example 2 by OI derivation.

I38 v . J . RAYWARD-SMITH

This simple idea is basically the principle behind hypergrammars. All terminals a ~ T
are considered as singleton sets {a}; all concatenations are regarded as set concatenation
and we also allow the empty set ~ and the use of union symbols on the right-hand sides
of productions. The modes of derivation for hypergrammars are the same as those for
macrogrammars, namely, unr, IO, and OI.

EXAMPLE 6. Consider the two hypergrammars with productions

(A) (B)

S - + f (g) S -+ f (g) ,

f (X) --7 X X , f (X) -* X X ,

g --+ {a) U (b}, g -+ {a), g -~ {b}.

The language generated by Example 6A under any mode of derivation is {aa, ba, ab, bb}.
The language generated by Example 6B under IO derivation is {aa, bb}; under OI
derivation it is {aa, ba, ab, bb}.

It appears that if sets of strings are allowed on the right-hand side, then IO derivation
is all that is needed to reflect both the IO derivation and OI derivation used with macro-
grammars. In this particular case there is no difference in Example 6A between the
languages generated by the various modes of derivation, but there is a difference in
Example 6B.

EXAMPLE 7. Consider the hypergrammar with productions

S --+f(g),

f (X) --+ f (X X) u X X , f (X) -+ X X ,

g -+ bg u gb w a, g - , - bg, g--~ gb, g--+ a.

Under IO derivation this grammar generates the language L ' = ~b-l(L) of Example 3.
Note that the vinculum parentheses "{", "}" have been dropped when writing singleton

sets, e.g., a is written for {a}. This convention will be adopted henceforth. The formal
definition of a hypergrammar can now be presented.

DEFINITION 3.1. A hypergrammar structure (HGS) is a 6-tuple G = (N, T, F, ~-, P, S),
where

(1)
(2)
(3)
(4)

N is a finite set of variables;

T is a finite set of terminals, T = T L; {E, ~};

(F, 7) is a finite stratified alphabet of function symbols;

The operator set 27 is constructed f r o m F by adding t o F the two binary operators
union and concat. Then P is a finite set of productions of the form f (X 1 ,..., X~(fl) ---, y
where y is an element of the free 27-algebra generated by 2rU {X 1 ,..., X,~/};

(5) S e F is the start symbol and ~-(S) = 0.

HYPERGRAMMARS 139

DEFINITION 3.2. An element of ~z (T) , the free X-algebra over 2r, is called a hyperterm.
Let A ~ X t F = {union, concat}, then ~ (~P) denotes the free A-algebra over ~'.
Concat (t l , tz) is usually written (tit2) or (t 1 �9 t2) and union (tx , tz) is usually writ ten

(t 1 u t2). The parentheses are dropped when no confusion can arise because of their
omission.

DEFINITION 3.3. I f V, t ~ o~z(J') then v is a subterm of t if v is a substring of t. An
occurrence of a subterm v of t is said to occur at the top level in t if that occurrence of v
does not appear in t within the argument list of some function symbol in 2 7.

I f f ~ F occurs as a substr ing of t ~ o~(5~), then the scope of that occurrence o f f in t
is the least subterm of t containing that occurrence o f f , Thus in g(af(a, b), b) the scope

o f f is the s t r i ng f (a , b).

DEFINITION 3.4. Let t l , tz ~ ~ z (T) and G = (N, W,F , r, P, S) be an H G S such
that T ~ F z ;~ and T D W. Then

unr t I directly derives t 2 by an unrestricted step if (1) t ~ t~,

(i) t 1 contains a subterm . f (v 1 ,:.., v,ce)) where f a F and v 1 ,..., v,(t)~-~n(~') ;

(ii) P contains the rule f (X 1 ,..., X,(s)) --~ 7;

(iii) t~ results from t~ by replacing a single occurrence of f (v I , v,(l)) by y' ,
constructed from 7 by replacing each Xi by v i , i = 1,..., r (f) .

(2) tx => ~o tz , t 1 directly derives t2 by an inside-out step if

(i) ~1 =>F ~ t~ ;

(ii) all the arguments of the rewritten function symbol are elements of ~ (2~) .

(3) tl =>or t~ , t 1 directly derives t 2 by an outside-in step if

unr t2. (i) t l * c ,

(ii) the subterm of t a which is rewritten occurs at the top level in t 1 .

~unr* ~1o* and =>ol- e , a , ~ , are defined as the reflexive, transitive closures of =>unr =>IO
and ~ o i , respectively.

DEFINITION 3.5. A hypergrammar is an H G S together ,with a defined mode of
derivation, either unrestricted, inside-out, or outside-in, as defined above. According
to the choice of mode of derivation, the hypergrammar is called an unrestricted hyper-

grammar, an I 0 hypergrammar, or an O I hypergrammar.
Now, writing union (t 1 , t2) as (t l ~ t2), concat (tl , t2) as (tlt2) and inserting all paren-

theses, a hypergrammar is just a macrogrammar with special terminal symbols {"(", ")" ,
"~Y', " ~ " } . The interest in hypergrammars lies in the fact that these symbols have been
defined as a convenient way of dealing with sets of strings. Given a hyper term which
involves no function symbols, there is an evaluation map, eval, which produces a set of

strings in T*.

140 v . J . RAYWARD-SMITH

DEFINITION 3.6. 2 r* denotes the A-algebra with carrier 2 r* and operations defined
by

union (A, B) = A t3 B (set theoretic union), and

concat(A, B) = d �9 B (set concatenation)

= { a b l a e A , b e B } .

eval: o~(2P) --> 2 r* is defined as the A-algebra homomorphism defined by eval(~) = ;~,
the empty set, and eval(a) = {a}, Va ~ T td {e}.

I f x is a sentential form of a hypergrammar G (with terminal set T) and x c ~ (T) ,
then we say that x is a terminal term of the hypergrammar G.

For the rest of this paper, it is assumed that unless otherwise specified all hyper-
grammars operate over the same terminal set T.

DEFINITION 3.7. The language generated by a hypergrammar G = (G, ~ c) is defined
to be the set of terminal strings H(G) H((G, ~G)) [.) {eVal(x)] S ~ * x and
x ~ ~ (T) } . The set {x [S ~ * x and x ~ ~ (T) } is denoted by L(G). L(G) is a macro-
language and is called the unevaluated language generated by G.

Note that eval((t t k) t2) u t3) = eval(t 1 k3 (t 2 t_) tz)) and eval((tlt2)tz) = eval(tl(tst3)).
Hence ((t 1 u t2) t3 t3) is often written as (t 1 k3 t 2 k3 t3) and ((tlt2)ts) as (tlt2tz) without fear
of confusion. In fact, in general, parentheses are omitted where omission can cause no
confusion. When parenthese are omitted, a representation of an element of ~ (2P) is
obtained. In particular, the set of terminal terms consists of elements of o~(T). Dropping
palenthese only produces representations of terminal terms.

I t is assumed, without loss of generality, that when considering an IO derivation of a
terminal term the scope of the rightmost function symbol is always rewritten as the
next step in the derivation. Similarly, for the OI derivation of a terminal term, the scope
of the leftmost function symbol is always rewritten.

EXAMPLE 8. Consider the hypergrammar G with productions

S ~ f (a , b, c),

f (X 1 , X ~ , X3) --~ f (a X 1 , bX2 , cX3) u X 1 X ~ (3 ,

f (X l , X 2 , Xa)--* ~ .

Under any mode of derivation, G generates the same language {anbnc n I n >/1}. This
language is well kmown not to be context free.

DEFINITION 3.8. I f there exists a hypergrammar G generating a language H, then H
is called a hyperlanguage. Tile hyperlanguage is called unrestricted, IO, or OI depending
upon the mode of derivation of the grammar G.

#~unr, ~ ,J~Ol denote the classes of unrestricted, IO, and OI hyperplanguages,
respectively.

HYPERGRAMMARS 141

DEFINITION 3.9. A hypergrammar G = (G, ~ c) is in standard form if every pro-
duction of G is of one of the forms

(l) ~ f (X1 X.(f))- -) -g(X 1 X~(I)) u h (X 1 X~(j)),

(2) f (X ~ ,..., X~(,)) -~ g (h l (X 1 X ~ . (D) , . . . , h~.(g)(_)~_ 1 , . . . , X.r(. f))) ,

(3) f (X 1 , X~_r ~ V, 7] ~ (IV ~ T) * ,

(4) f (X~ ,..., &(~))--> ~ .

THEOa~M 3.1 (Standard Form Theorem). For every hypergrammar G = (G, ~G),
there exists a hypergrammar G ' = (G', =>~) in standard form such that H(G) = H(G ') .

Proof. [7].
Stronger normal form theorems are available for hypergrammars for any given mode

of derivation. These theorems are given in [7] but for this paper the standard form will
suffice. One interesting result, though, is that productions involving ~ are not necessary,
i.e., for any hypergrammar t3 - - (G, ~G) there is a hypergrammar G ' = (G' , ~'G) with
no productions involving ~ , such that H (G ') = H(G).

THEOmZM 3.2. ~ = "~foI - - / Z o l .

Proof. O~un r = og/'oi : H ~ u n r iff H = H((G, ~unr)) for some hypergrammar
(G, ~unr) iff H = eval(L((G, ~uur))) iff H = eval(L((G, ~o l))) (Theorem 1.1(I)) iff
H = H((G, ~ o i)) iff H ~ geo, .

~ o l = /~o I : I t can be shown that i f f (X i X,(t)) -~ g(X1,..., X~(e)) w h (X 1 X,(I))
is a production of an OI hypergrammar G then H((G, =>oI)) is unchanged either if this
production is removed completely or if this production is replaced b y f (X 1 , X~q))
g (X x , X~(I)) and f (X 1 , X~(I)) -+ h (X 1 ,..., X~(I)). An easy induction argument can
now be used to produce an OI macrogrammar producing the same language as the
standard form Oi hypergrammar generating H((G, ~o~)).

I t is interesting to compare IO hyperlanguages with quoted languages. Consider a
derivation in a quoted grammar of a terminal string x from a quoted term t. Such a deriva
tion is inside-out except that quoted terms are treated like terminal symbols. I f there are
no quotes in t then all such IO derivations can be ordered so that the scope of the right-
most function symbol is always that involved in the next expansion. I f a subterm v of t is
quoted then v is treated like a terminal string until it occurs at the top level; there the
quotes are removed and the derivation continues. The one occurrence of v in t can lead
to several occurrences of v in later sentential forms. Each of these occurrences may
generate different strings of teminals. For example, if a quoted grammar has productions

S - + f ((g)) ,

g --* a,

g--~ b,

f (X) - - + X c X d ,

142 v . j . RAYWARD-SMITH

then a derivation is S ~ - f ((g)) ~ (g) c (g)d *=> gcgd. Each occurrence o f g can generate
one of a or b. I f it was deemed necessary to expand g before f then it would be essential
to keep the option of either a or b open. Hence, the IO hypergrammar with productions

s-~f(e) ,

g--+ a k) b,

f (X) --~ XcXd ,

is constructed.
In general, when a term v is quoted, the corresponding term in an IO hypergrammar

must contribute the same set of terminal strings as generated by v. There is a clear link
between "quoting" and "unioning."

Consider the quoted grammar with productions

s ~f((g)),

f (x) -+ a, f(x)--~ x .

This grammar generates the language {a}. g itself can generate no terminal string but
f ((g)) can generate a terminal string by having a derivation in which the quoted g is
dropped. In the hypergrammar, the symbol ~ acts in a similar way. Its occurrence will
enable the derivation to continue but it contributes nothing to the language generated
by the grammar. Thus from the example above, the IO hypergrammar with productions

S -~ f (g) ,

g---~ N,

f (X) ~ a, f (X) --+ X

is constructed.
The above gives the motivation for the constructions used to prove the following

theorem.

THZOaEM 3.3. ~ o = Q.

Proof. (1) Jt~lo C Q. I f H e ~f~Io then there is a standard form IO hypergrammar
G = ((N, T ,F, ~-, P, S), ~ to)) generating H. Construct a quoted grammar structure
G' = (N, T, F ' , r ' , P ' , S) where

F ' = F u {p, q} where p, q are new function symbols ~ F U 71,

T ' (f) = ~-(f) if f e F ,

~-'(p) = 0 and , '(q) = 2,

and P ' is constructed from P as follows.

HYPERGRAMMARS 143

I f O ~ P involves neither union nor ~-symbols on the right-hand side, then p ~ P ' .
I f p e P is of the form f (X 1 , X,(I)) ---~g(X 1 ,..., X~C,)) t3 h (X 1 X,(I)), then

P ' contains the productions

/ (x ~ & (,)) - ~ q (g (& ,..., x,(,) , h(Xl X,~))) ,

q(Xl , X~)~ < q (& , X2)),

q (X l , Ah)-+ &, q(&, &)-+ X2.

If p ~ P is of the form f(X1 ,..., X,(j)) -+ ~ , then f (X 1 X , ce)) --+ {p) is in P ' .
Then it can be shown that the quoted language generated by G' , Q(G'), is equal to

the IO hyperlanguage H((G, ~m)) . The detailed proof is given in [7].

(2) (2 C J~1o. I f L E O then there is a normal form quoted grammar structure
G = (N, T, F, r, P, S) generating L. The productions of G are of one of the following
three forms:

(t) f (X 1 ,..., .Jt~(,))--+ g(hx(X 1 ,..., X,(I)),. . . , h~(~)(X 1 ,..., X,(r

(2) f (X 1 ,..., X~(1)) --+ ~7, r] e (N L) r)* ,

(3) / (x ~ , x , (,) -~ <g(x~ ,..., x,(,))>.

Construct an IO hypergrammar with H G S G ' = (N, T , F ' , r', P ' , S) from G as
follows:

F ' = F u {fq] / ~ F} where {f, I f E F} c3 F = N,

r ' (f) = r (f) and r ' (f q) = r (f) , V f ~ F.

If p E P is a production of type (1), (2) above then p e P ' . I f p e P is a production of
type (3), say

f (X 1 ,..., X,(D) --~ < g (X 1 ,..., X,0"))>,

then P ' contains the productions

f (X 1 Xr(y)) ~ gq(X 1 ,..., X~(D),

g~(X~ x , (,)) - - , & (x l ,..., x~(,)) va g~(X~ x , (,)) ,

gq(X 1 ,..., Xr (l)) -+ g (X 1 ,..., Xr(f)),

& (& ,..., x ~ (,) - ~ ~ .

I t can be shown that the quoted language generated by G, 0(G), is equal to the IO
hyperlanguage, H((G' , ~m)) . Again, details are found in [7].

I f every function symbol in a quoted grammar is quoted then the language generated
is an OI macrolanguage. Bearing in mind the association between "quoting" and
"unioning," it seems natural to ask if the class of OI macrolanguages is the subset of
the languages defined by the IO hypergrammars where, for each function symbol f ,
there is only one production w i t h f on the left-hand side. In particular, if the productions
in some I 0 hypergrammar with f on the left-hand side are f (X 1 ,..., X,(,))--+ 7, z

f (X 1 X,(f)) --~ y~, it is interesting to consider what happens if these productions are
replaced by a single production f (X 1 X,(I)) --" 71 U "" ~3 Y,*. Of course one thing

57I/I4/I-Io

144 v . j . RAYWARD-SMITH

that could happen is that some Yi might contain the function symbol]', i.e., the production
is self-recursive. I f this were the case, then any hyperterm involvingf could never generate
any hyperterm which itself did not involve f. To avoid this situation, the production
f (X , ,..., XTq)) --+ 25 is also allowed.

DEFINITION 3.10. I f for every function symbol f in a hypergrammar there is only
one production with f (X , ,..., X,(r)) on the left-hand side and a term other than 25 on
the right-hand side, then the hypergrammar is said to have unique productions.

The following theorem is then a not unexpected result.

THEOREM 3.4. H E ~,'/foi = tZoi if[there exists an OI hypergrammar with unique
productions generating H if{ there exists an IO hypergrammar with unique productions
generating 11.

Proof. [7].

4. CLOSURE PROPERTIES

THEOREM 4.1. ~ u n r , ~162 and ~ o are all closed under union, concatenation, Kleene
closure, arbitrary homomorphisms, reversal, and substitution.

Proof. The proof of this theorem is based on simple constructions which are in-
dependent of the mode of derivation.

Let G = (N, T, F, r, P, S) and G' = (N', T' , F ' , r ' , P ' , S') be two hypergrammar
structures which under the same mode of derivation, ~ a , generate hyperlanguages
H and H' . I t is assumed, without loss of generality, that F n F ' = 25, F ' n T = ~ ,
a n d F n T ' = ~ .

Let ~q be a new symbol not in F t3 F ' u T k3 T ' and define ~ by

~(S) = 0,

t~-(f), if f e F ,
e (f) = t , ' (f) , otherwise.

The required constructions are

Union. H u H ' is generated by the H G S G = (N U N ' , T ~ A T ' , F u F ' t A { S } ,
.~,/5, ~,) under =>a where 15 = p u P ' u {S--~ S tA S'}.

Concatenation. H H ' is generated by the H G S G = (N t3 N ' , T u T', F tA F' ~A {S},
e, if, g) under ~ a , where 15 _ p u P ' tA {S'---~ SS'}.

Kleene closure. H* is generated by the H G S G* = (N, T, F, -c, P*, S) under ~ a ,
where P* = P tA {S --+ SS} tA {S -+ e}.

Arbitrary homomorphism, o~: T--+ W. c~(H) is generated by (N, W, F, r, P L S) under
~ a , where P~ is constructed from P by replacing every occurrence of a terminal
symbol, a, in a production of P by a(a).

HYPERGRAMMARS 145

Reversal. Let r .-~s(Tu N) - * - o ~ z (T t d N) be the reversal function defined by

(1) r ~ ,

(2) r = a, Va E N t 3 T U {E},

(3) r = r r and r W t~) - - r w r , Vtl, tz ~ ~ (7 ' w N),

(4) r t~)) = f(r r Vt,, t~ ,..., t,, e o~x(7" w N).

r is then generated by the H G S G ~ = (N, T, F, r, P~, S) under ~ e , where Pc is
constructed from P by replacing each p roduc t ion f (X x ,..., X,(I)) -+ y byf(Xa,. . . , X~(I))
~b(y). r = {~b(x) i x e H} is the reversal of H.

Substitution. Let ~ be any substitution and let T {al ,..., a~}. It can be assumed
that a(al) is generated by the H G S Gi = (N i , T~, F i , r i , P , , Si) under ~ a , where
F icSF~ = ;~ and F ~ n T~- = ~ for i % j and F i n F = 2J, F ic~{az , . . . , a ,~} = ~ ,
Ti ~ F = ~ for all i 1,..., n. I f o~(al) ~ , then assume that Pi consists of the
single production Si -+ ~ .

Define a new HGS, G ~ = (N ~, T% F% r% P% S), where

N~ = N L J N 1 u - . . w N ~ ,

T ~ = T ~ U ... v3 T ~ ,

F ~ - - F ~ 3 F ~ W u F ~ ,

t r (f) , if f e e ,
r " (f) = t ry(f) , if f e F ~ , i = 1 n.

Now, define a function h: ~ (7 " u N) ~ ~ , (N w {e, 2~}) where 2J = F t_) {concat, union}
and 27' = 27 u {Si [i = 1,..., n}, by

(1) h (~) = & , i = ~,..., ~,

(2) l , (e) = ~ , h(O = ~,

(3) h(X-) = X, VX e N,

(4) h(tlt~) = h(t~) h(t~) and h(t~ u t~) = h(t~) k) h(t~), Vt~ , t~ ~ ~ (T t.) N) ,

(5) h (f (t I , t,(r = f(h(tx) , . . . , h(t~(t))) , V f e F and Vtl,..., tr(f) @ o~ k.) N).

P~ is then defined to contain /)1 u Pz L) ... U P~ and also productions constructed
from P as follows:

i f f (X 1 X~)--+ y is in P then f (X 1 ,..., X,)- -+ h(y) is in P~.

Also P~ contains the productions Si- -~ S i t3 S i for i = 1, 2,..., n. These productions
enable any Si in P~ to generate subsets of ~(ai).

Then it is clear that the language generated by G ~ under ~ a is precisely a(H). An
interesting corollary is

THrOReM 4.2. ~ n r =/- ~ ; ~'~IO & ~ ; Jd'ox :~ ~ 1 .

146 v. 3- RAYWARD-SMITH

Proof. ~ , the class of context sensitive languages, is not closed under substi tut ion
but only under e-free substitution.

eval: ~ (7 ") - + 2 T* has been defined as the A-algebra homomorphism defined by
eval(a) = {a}. I f -Y- is the subset of the carrier of ~ (T) generated by a hypergrammar
then [.)~j- evaI (x) is a hyperlanguage. I t is interesting to try and generalize this definition.

DEFIN~TION 4.1. L C T* is a generalized hyperlanguage if there exists a A-algebra
homomorphism ~b: o~(~P) --+ 2 T• and a subset 3" of the carrier of o~(2P), which is exactly
the set of all terminal terms generated by a hypergrammar, such that L = ~ x ~ r

I f the A-algebra homomorphism cc 2 T* --> 2 r* is defined by

Then the diagram

commutes. Thus,

.({a}) = r Va E T v {E},

~({ax}) = r �9 $(x), Va ~ T,

~(A) = U ~'({~}), vA ~ 2T*.
X~ A

x ~ T*,

%(t}

2T* . 2 T"

U r U ~(eval(x))
x~J xc3"

So a generalized hyperlanguage is a homomorphic image o f a hyperlanguage and so is
a hyperlanguage.

5. THE EVALUATION OF SENTENTIAL FORMS

The evaluation of terminal terms generated by a hypergrammar has been defined
using a map eval: ~ (i P) ~ 2 r*. This map can be extended in a natural way to produce
an evaluation eval: o~z(2P) --+ 2 r* on all sentential forms o f the hypergrammar.

2 r* has been regarded as a A-aigebra. Z = zl U F , so if we define the action of the
operators F on 2 r*, 2 T* can be regarded as a Z-algebra. Define f (A 1 , A~(t)) = ~ ,
VA 1 ,..., A , (I) ~ 2 r* and VfcF. eval is then the S-algebra homomorphism defined by
eval (~) ~ and eval(a) = {a}, Va c T u (~}.

HYPERGRAMMAt~S 1 4 7

DEYINITION 5.1. I f G = (G, ~) is a hypeigrammar, then the extended hyperlanguage
generated by G, E(G) is defined by

~(G) = U {eval(x) I s =>* x}.

The extended language differs from the previous definition of language since all
sentential forms are evaluated and not just terminal terms. Clearly E(G)D H(G).

The extended unrestricted hyperlanguages, extended IO hyperlanguages, and extended
OI hyperlanguages are defined according to the mode of derivation of the hypergrammar.
The classes of languages so defined are denoted, respectively, by Eun r , 6"~ , ~o~ -

EXAMPLE 9. If a hypergrammar structure G has productions

S--~ f (a , b, c),

f (X 1 , X2 , A%) -+ f (a X l , bX2, cXs) k3 X IN2X 3 ,

then H((G, ~unr)) = H((G, ~ o)) = H((G, =>o~)) = ~ , and E((G, ~unr)) =
E((G, =>1o)) = E((G, =>ol)) = {a,~b~cn] n >/1}. Note, however, that if G' has productions

S--+ f (a , b, c),

f (X~ , X2 , X3) --+.f(aX1, bX2 , cXa) u X t X z X a ,

f (& , A~ , x~) ~ ~ ,

then H((G', ~.unr)) __ H((G', ~ ,o)) = H((G', ~ol)) = {a~b.c~ln >~ l}, and
E((G', ~)) = E((a' , ~ ,o)) = E((C', ~o ,)) = {,*~b"c"ln >~ 1}.

This example shows that if G and G' are hypergrammars then E(G) = E(G') does
not necessarily imply that H(G) = H(G'). Also there are hypergrammars G and G'
such that H(G) = H(G') but E(G) =~ E(G'), for consider the HGS G with only one
production, S - + S w a and the HGS G' also with only one production, S - + S t9 b,
then under any mode of derivation the extended hyperlanguages generated by G and G'
are {a} and {b}, respectively, although H((G, - ~)) = H((G', = a)) -- ~ .

THEOREM 5.1 . 8"~ --- ~';~'unr = '8"~ - - ~ O 1 ; ~ = ~ O .

Proof. [71.
Thus for any class of hypergrammars, the class of languages defined is unchanged

if the evaluaticn is defined on all sentential forms and not just on terminal terms.

6. THREE HIERARCHIES OF LANGUAGES

By placing restrictions upon the arities of the function symbols of hypergrammars
three new hierarchies of languages are found, each embedded in the class of IO hyper-
languages. These hierarchies are hardly surprising but nevertheless are interesting
because they can give a measure of the "complexity" of a given language.

148 v . J . RAYWARD-SMITH

DEFINITION 6.1. Let G = (N, T ,F , ~, P, S) be a hypergrammar structure. Then
(F, ~-) is a stratified alphabet of function symbols. M = max{r(f) [f E F } is defined to be
the arity of G. Jt]m.n, ;'~oL~, t~Jo,~, and /Zol,, ~ denote, respectively, the classes of
languages generated by IO hypergrammars, OI hypergrammars, IO macrogrammars, and
OI macrogrammars of arity n.

T.EORE { 6.1. (1) U . \ o N o . . = ; U . \ 0 = ; U L 0 = , , o ;
U,~0 ,~o,.~ = ,~o~.

(2) ~'}o,0 = "~r =/~Io.0 = V'oi.0 = 0L'r the class of context-free languages.

(3) For all n ~ O, a~f~m,n , '~'ol,n, ~Io,,~,/zm,,, are closed under union, concatenation,
Kleene closure, arbitrary homomorphism, and reversal.

(4) For all n >/O, ~t~ -- /~oI,n �9

(5) For all n ~ O, ~llO,n ~ ffO,n+l ; J~/~OI,n C ~Ol,n+l ; /zlO,n C ~IO,n+l ;

~Ol,n ~/Zol,nel "

(6) For all n ~ 1, there exists L a /Zlo.n such that L r for any m and there

exists L ' ~ tZo1,~ such that L ' r iXlo.m for any m.

(7) /qo, . W/~oL. C ~ o . . .

Proof. (1) and (2) follow immediately from the definitions.

(3) and (4) require proofs following identical lines as those of Theorems 3.2 and 4.t .

(5) The proof of containment is trivial but the proof of the inequality is not so
easy. I t is shown in [7] that the language Lr = {alia2 i "'" a~ i I i >~ 1} is an element of any
one of the classes of languages ~ i o . ~ , ~r /xm,,, t~oI.~ if and only if r ~< 2n -1- 2.

(6) The language L' of Example 3 ~/~oL1 and hence ~ t~oL, Vn/> 1 but L ' r m .

The language of Example 4 E/~m.1 and hence E/~o,~ Vn >~ 1 but ~/~ol -

(7) /Xio,~ C Jt~io. ~ and /~oi,~ C 3r162 follows since a macrogrammar is just a
hypergrammar with no union or ~ symbols. Let L e/Xio.~ and L ' e/Zo1., be the languages
defined in (6) above. L C{1, c}* and L ' C{a, b}*. Define [~ -- L u L ' . Then by part (3),

= / 2 0 I , 2 , 2

dio,, [
!

Fmuaz 1

HYPERGRAMMARS 149

L e-2/~o. , . L r for {a, b}* is a regular set and i f / , c/ . io, ,~, then since/*in is closed
under intersection with regular sets, this would imply L, ~ {a, b}* c /* io , i.e., L ' ~ /*Io--
a contradiction. Also, L q}/*oI.~ for {1, c}* is a regular set and if L c/*oL,, then since/*oi
is closed under intersection with regular sets, this would imply L n {1, c}* E/*oi , i.e.,
L e /*o i - -aga in a contradiction.

The hierarchies of languages are described in Fig. 1. A line denotes proper containment,
i.e., the class of languages at the upper end of the line strictly includes the class of languages
at the lower end of the line.

7. A LATTICE THEORETIC APPROACH

The fact that any context-free language L C T* can be expressed as a fixed point of a
set of equations over the lattice og ~ = 2 r* is well known. Blikle [2] has produced some
interesting generalized results from this lattice theoretic approach. Dana Scott 's work
in the theory of computat ion [9] has resulted in the study of lattices of continuous functions
from one lattice to another. I f ~n is defined to be the lattice of continuous functions
(2r*)'~--+ 2 T* then any OI hyperlanguage of order n C T* can be expressed as a fixed
point of some set of equations over the lattice ~ . Furthermore, any IO hyperlanguage
of order n C T* can be expressed as a fixed point of a set of equations over the lattice 2 %.
Many of the theorems obtained by Blikle [2] can now be used to produce interesting
corollaries. A generalized normal form theorem is produced in [7] and overall the founda-
tions of a theory of formal languages based on lattices appear to have been laid. Many
questions still remain open; for instance, can other previously studied formal languages
be expressed as fixed points of equation sets over lattices ? What other theorems can be
proved in terms of lattices ? What type of languages are defined by fixed points of equation
sets over other particular lattices ?

REFERENCES

1. A. V. AHO, Indexed grammars: An Extension of context-free grammars, J. Assoc. Comput. Mach.
15 (1968), 647-671.

2. A. BUKLE, Equational language, Inform Contr. 21 (1972), 134-147.
3. N. CVlOMSKY, Three models for the description of language, P G I T 2 (1956), 113-124.
4. N. CHOMSKY, On certain formal properties of grammars, Inform. Contr. 2 (1959), 137-167.
5. M. J. FISCHER, Grammars with macro-like productions, Doctoral Dissertation, Harvard Uni-

versity, May, 1968. Reprinted in Mathematical linguistics and automatic translation, Harvard
University Computation Laboratory Report, NSF-22.

6. S. GREIBACH AND J. E. HOPCROFT, Independence of AFL operations, in "Studies in Abstract
Families of Languages," Memoirs Vol. 87, pp. 33-40, Amer. Math. Soc., Providence, R.I.,
1969.

7. V. J. RAYWARD-SMITH, From languages to equation sets on lattices, Doctoral Dissertation,
University of London, November, 1973.

S. D. J. ROSENKRANTZ, Programmed grammars and classes of formal languages, J. Assoc. Comput.
Mach. 16 (1969), 107-131.

9. D. SCOTT, Outline of a mathematical theory of computation, in "Proc. 4th Annual Princeton
Conference on Information Sciences and Systems (1970)," pp. 169-176.

