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Qp Activation energy for particle coarsening 
Ts Solvus temperature 
ΔHs Thermodynamic parameter controlling dissolution of precipitate 
σ0m Friction stress of matrix in absence of precipitates 
C Model parameter governing the evolution of cavities & necking 
B Model parameter describing change dislocation density 
N Stress exponent for power law creep equation 
εf Rupture strain 
εs Strain at which steady state is attained 

1. Introduction 

Although 9CrMo steel has been in existence since long; it has not been as popular as 2.25CrMo steel for 
high temperature applications in power plants because of its inferior creep resistance. Addition of strong 
carbide formers to this grade to retain Mo in solid solution has been one of the most significant innovations to 
improve its creep resistance. This has lead to the development P91 grade steel which is now one of the most 
preferred materials for high temperature parts of modern power plants [1]. This being a relatively new material 
it does not have enough long term creep term data in open literature. Predictive power of empirical models 
based on short term data is limited. Therefore there have been considerable efforts in the development of 
constitutive models based on underlying principles of evolution of structural changes in the material [24,8]. 
The one by Hore et al [7] has used a set of equation suggested by Dyson et al [5,6] to estimate the material 
parameters for 2.25CrMo steel for which long term creep strain time data are available in open literature. They 
have shown that by changing only a few of the parameters based on the logic that particle coarsening in P91 
steel is much slower it is possible to predict creep behaviour of this relatively new grade of steel. However 
predictions in this case were not as good as those in the case of 2.25CrMo steel. One of reasons could be the 
major difference in their initial microstructures. P91 steel has tempered lath Martensite whereas 2.25CrMo steel 
has tempered Bainite. Therefore there is likely to be a large difference in their initial dislocation density. As a 
result of creep exposure dislocation density in P91 steel decreases significantly. This is possibly the reason why 
unlike 2.25CrMo steel it shows significant primary creep behaviour. This paper suggests a method of 
incorporating this in the model used by Hore et al as an additional damage parameter. The predicted creep 
strain time plots have been compared with experimental data. 

2. Model Description 

Hore et al in their model describing evolution of creep strain considered the effects of particle coarsening 
(Dp), stress transfer from the matrix to precipitates (H), dislocation softening (Dd) and increase in stress due to 
reduction in load bearing cross section. Unlike superalloy dislocation density in P91 steel decreases with time. 
The contribution of dislocation damage on initial creep rate is maximum at time t = 0. With time this keeps 
decreasing resulting in strengthening and a corresponding decrease in creep rate. This is why Dd has been 
defined as follows:   

  

In the above expression ρi denotes initial dislocation density. It is expected to decrease with time as follows 

  (1) 

It can be shown using the Orowan equation  relating mobile dislocation density (ρ), Burger’s vector 
(b) and velocity of dislocations (v) to strain rate ( ) that  
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   (2) 

In the above expression k is a constant. On substituting equation 2 in 1 one gets 

   (3) 

It is possible to arrive at a rough estimate of the magnitude of the constant B by integrating equation 3 and 
substituting the condition that at t= 0 Dd = 1 & ε = 0 whereas at large t; Dd = 1 & ε = εs.   Thus: 

   (4) 

The magnitude of εs which is a measure of strain after which there is little change in dislocation density. If 
this is taken as 0.02 to 0.05 then B is of the order of 800-5000. In other words the effect of dislocation density 
lasts over a relatively short time. However it is likely to affect creep strain rate significantly during the initial 
part of the strain time plot. 

The equation set used to model creep of this steel has thus been modified. The notations used are exactly 
same as those used by Hore et al. The nomenclature for ready reference has been included as a list of symbol. 

 (5) 

Incorporation of a multiplying factor 0.5 in the expression for creep rate becomes necessary to satisfy the 
initial condition. Both necking and cavitation lead to a reduction in effective load bearing area of the specimen. 
Following Dyson et al this has been incorporated as (Dn) where n is stress exponent. There is a considerable 
similarity between the expression for dislocation damage term used by Hore et al and the expression for (Dn) . 
Since stress exponent n for P91 steel is around 10 and the strain to rupture εf is approximately equal to 0.35 the 
constant C is likely to be around 30. No wonder Hore et al reported this to be 27.   

In addition to the equation set 5 we need to define temperature dependence of the term Kp, which denotes 
kinetic rate constant for the dissolution of load bearing precipitates and the friction stress σ0. Following Hore et 
al these have been represented as follows:

  

   (6) 

  (7)

 

Therefore in order to represent the creep behaviour of this steel we need only one additional parameter apart 
from those used by Hore et al. Table 1 gives the parameter set used in the present work.  
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Table 1: Mate

Alloy  Qd om 
s-1 KJmol-1 MPa KJm

P91 3.0E08 300 30 1

 

3. Results and discussions 
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4. Conclusions 

A constitutive equation for considering the effect of decreasing dislocation density on the evolution of creep 
strain has been developed and it has been incorporated in the equation used by Hore et al to simulate creep 
behaviour of CrMo steel. The predictions of creep life appear to be consistent with the experimental data. 
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