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a b s t r a c t

We survey the results required to pass between full and reduced
coactions of locally compact groups on C∗-algebras, which say,
roughly speaking, that one can always do so without changing
the crossed-product C∗-algebra. Wherever possible we use defini-
tions and constructions that are well-documented and accessible to
non-experts, and otherwise we provide full details. We then give
a series of applications to illustrate the use of these techniques.
We obtain in particular a new version of Mansfield’s imprimitivity
theorem for full coactions, and prove that it gives a natural isomor-
phism between crossed-product functors defined on appropriate
categories.
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1. Introduction

Every locally compact group has two C∗-algebras: the full group C∗-algebra C∗(G), which is
generated by a universal unitary representation of G, and the reduced group C∗-algebra C∗

r (G),
which acts faithfully via the left-regular representation � on L2(G). These algebras carry canonical
comultiplications ıG and ırG . A full coaction of G on a C∗-algebra B is an injective homomorphism
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ı : B → M(B ⊗ C∗(G)), and satisfies the coaction identity (ı⊗ id) ◦ ı= (id ⊗ ıG) ◦ ı; a reduced coaction is
an injective homomorphism ı : B→M(B⊗ C∗

r (G)), and satisfies a similar identity with ıG replaced by
ırG . The key examples are the dual coaction ˆ̨ on a full crossed product A ×˛ G, which is a full coaction,
and the dual coaction ˆ̨ r on a reduced crossed product A ×˛,r G, which is a reduced coaction.

In the early papers about coactions on C∗-algebras, authors used reduced coactions and spatial
arguments (see, for example, [11–13]), and full coactions appeared rather later [16,15]. Full coactions
did not immediately catch on, and researchers continued to study reduced coactions throughout the
1990s. So those interested in full coactions have to be able to convert results about reduced coactions
into ones about full coactions. The cognoscenti generally agree that the results in [16,15] allow one
to do this, especially for questions about covariant representations and crossed products, but often
key pieces of the puzzle are not readily available. Our goal here is to provide a comprehensive set of
results that will allow researchers to pass as easily as possible between full and reduced coactions
(both ways). We have tried whenever possible to choose definitions and constructions that are
well-documented and accessible to non-experts.

In [16], Raeburn described a canonical procedure for passing from a full coaction (B, ı) to a reduced
coaction (Br, ır) on a quotient of B, and showed that this “reduction process” does not change the
crossed product ([16], Theorem 4.1). Subsequently, Quigg showed in [15] that the same thing could
be achieved in a two-step process: first “normalise” to get a full coaction ın on a quotient Bn of B,
and then reduce ın to get a reduced coaction on the same quotient Bn. Quigg’s approach has the
advantage that the second step is reversible: provided we restrict attention to Quigg’s class of normal
full coactions, we can pass to and fro freely. This is the content of our Section 3; most of the key
results already exist in [15,10], and we have merely gathered them together, tidied them up, and
filled in some minor gaps. To completely understand the reduction process, though, we also need to
understand Quigg’s normalisation process, and this is the content of our Section 4.

We are thinking of the results of Sections 3 and 4 as providing “boilerplates”, which can be
bolted to papers on one kind of coaction and thereby allow users to apply these results to the other
kinds. Each boilerplate consists of a Proposition describing the main properties of the construction
(Propositions 3.1 and 4.1), and a Theorem describing the functorial properties of the construction
(Theorems 3.4 and 4.3). We have tested these boilerplates by applying them to a variety of theorems
about crossed products (see Section 5).

We begin with a short section in which we discuss our conventions on crossed products. This is an
important issue in this paper: we want constructions which give concrete C∗-algebras so that we can
use them as the object maps in functors.2 For actions we define the crossed product as a completion,
and for a coaction (B, ı) we define B ×ı G to be a particular C∗-subalgebra of B⊗ K(L2(G)), and we call
this the standard crossed product.

As we discussed above, the boilerplates themselves are in Sections 3 and 4, and Section 5 contains
some applications. Our first application makes precise the assertion that “reducing and normalising do
not affect the crossed product” by constructing crossed-product functors and proving that the reduc-
tion and normalisation functors intertwine these crossed-product functors (Section 5.1). Next we
extend a uniqueness theorem for crossed products by coactions from the version for reduced crossed
products in [16] to full crossed products (see Section 5.2). We use this new “dual-invariant uniqueness
theorem” several times in our later applications. In Section 5.3, we formulate four alternative versions
of Landstad duality for actions. The original was proved in [12], and one of the other versions has
been previously used in [9], but we find it quite satisfying to see how the relationships between
the different formulations fall out from the boilerplate. In Section 5.4, we discuss the relationship
between the different versions of Mansfield’s imprimitivity theorem for full and reduced coactions;
we believe that our formulation of the theorem for full coactions is new. Our final application extends
the results in [10] on the naturality of Mansfield imprimitivity for reduced coactions to full coactions
(see Section 5.5).

2 There is an alternative view that one does not need to do this and therefore should not: one can instead define a crossed
product to be a C∗-algebra with certain universal properties, and then use some generalisation of the axiom of choice to choose
one crossed product for each system. This point of view is discussed in [9].
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Because coactions take values in multiplier algebras, the coaction identity

(ı⊗ id) ◦ ı = (id ⊗ ıG) ◦ ı (1.1)

implicitly involves the extensions of the homomorphisms ı⊗ id and id ⊗ ıG to the multiplier algebra
M(B ⊗ C∗(G) ⊗ C∗(G)). In early papers such as [13],3 the extension process was explicitly announced
by inserting bars, but people got bored with this and started leaving the bars off (see [16,15], for
example). This is okay so long as we remember that the process has its subtleties, and in particular
that ı⊗ id is not the usual tensor product of two homomorphisms. After a few scares, we have vowed
to be more careful in the future, and have included an appendix in which we discuss some of the
subtleties involved in barring tensor products.

Fans of the relatively new maximal coactions introduced in [1] will want yet another boilerplate.
Each full coaction has a maximalisation, which is a maximal coaction from which the given coaction
can be recovered as a quotient. It was shown in [9] that maximalisation can be made into a functor
that has properties which mirror those of normalisation. However, the object map in the functor
used in [9] is defined using the axiom of choice, and is not implemented by either of the known
constructions of a maximalisation. So there is considerable work to do before we can even begin to
forge a boilerplate for maximalisation.

1.1. Conventions

We denote the multiplier algebra of a C∗-algebra A by M(A), and the group of unitary elements of
M(A) by UM(A). By a unitary representation of a locally compact group G in a C∗-algebra A, we mean
a strictly continuous homomorphism u : G → UM(A). We say that a homomorphism ϕ : A → M(B) of a
C∗-algebra into a multiplier algebra is nondegenerate if span{ϕ(a)b} is dense in B. Every nondegen-
erate homomorphism ϕ : A → M(B) has a unique extension ϕ̄ :M(A) →M(B) (and we discuss some
properties of this extension in Appendix A). All tensor products of C∗-algebras in this paper are spatial.

Our conventions and notations for categories of C∗-algebras and dynamical systems are those of
[7]. These categories are mostly based on those used in [9,10], and we explained in [7] why we are
interested in these categories and in crossed-product functors defined on them.

Throughout, G will be a fixed locally compact group. When G acts on the right of a locally compact
space T, we write rt for the induced action of G on C0(T) defined by rts( f )(t) = f(t · s).

2. Crossed products

Suppose that ˛ : G → Aut A is an action of a locally compact group G on a C∗-algebra A. As in [3,21],
we view the crossed product A ×˛ G as the completion of Cc(G, A) in the universal norm, so that when
we write A ×˛ G we have a particular C∗-algebra in mind (as opposed to an isomorphism class of
C∗-algebras as in [17]). It is generated by a covariant representation (iA, iG) of (A, ˛) in M(A ×˛ G), in the
sense that every element f ∈ Cc(G, A) can be realised as a norm-convergent integral

∫
GiA( f (s))iG(s) ds

(see [21, Corollary 2.36]). The triple (A ×˛ G, iA, iG) is then universal for covariant representations: for
every covariant representation (�, u) of (A, ˛) in a multiplier algebra M(C), there is a unique nonde-
generate homomorphism �× u : A ×˛ G → M(C) (called the integrated form) such that � = � × u ◦ iA
and u = � × u ◦ iG (see [21, Proposition 2.39]). In particular (take A = C), the group C∗-algebra C∗(G) is
generated by a unitary representation kG : G → UM(C∗(G)), and every strictly continuous unitary repre-
sentation u : G → UM(C) gives a nondegenerate representation �u : C∗(G) → M(C) such that u = �u ◦ kG .

We view the reduced crossed product A ×˛,r G as the quotient of A ×˛ G by the kernel of the regular
representation induced by a faithful representation of A (see [21, Lemma 7.8], for example). We write
qr for the quotient map, (irA, i

r
G) for the canonical covariant representation of (A, ˛) in M(A ×˛,r G),

and �×r u for the representation of A ×˛,r G coming from a covariant representation (�, u) such that

3 Though not [12], where the coactions were defined by restricting coactions on von Neumann algebras, and hence arrived
extended.
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ker (�× u) ⊃ ker qr. Similarly, the reduced group algebra C∗
r (G) is generated by krG : G → UM(C∗

r (G)),
and a unitary representation u of G such that ker�u ⊃ ker��= ker qr gives a representation�ru of C∗

r (G).
Our conventions regarding full and reduced coactions are those of ([3], Appendix A). A crossed

product A ×˛ G carries a dual coaction ˆ̨ , which is the integrated form of the covariant representation
(iA ⊗ 1, iG ⊗ kG) of (A, ˛) in M((A ×˛ G) ⊗ C∗(G)). The reduced crossed product A ×˛,r G, on the other
hand, carries both a full dual coaction

ˆ̨ n := (irA ⊗ 1) ×r (irG ⊗ kG)

(see [3, Example A.27]) and a reduced dual coaction

ˆ̨ r := (irA ⊗ 1) ×r (irG ⊗ krG),

which was the dual coaction used in the early papers such as [11,13]. The notations ˆ̨ n and ˆ̨ r are
suggestive: these coactions are, respectively, the normalisation of ˆ̨ ([3], Proposition A.61) and the
reduction of ˆ̨ ([16], Proposition 3.2).

Crossed products by coactions can be (and have been) defined in many different ways. The general
upshot is that all these definitions and/or constructions give effectively the same C∗-algebra, and
indeed that is one of the points which has to be made explicit in the various boilerplates. So we need
to be careful to set out which conventions we are using.

Suppose that ı : B → M(B ⊗ C∗(G)) is a full coaction of a locally compact group G on a C∗-algebra B.
A covariant representation of (B, ı) in a C∗-algebra C is a pair (�,�) of nondegenerate homomorphisms
� : B → M(C) and � : C0(G) → M(C) such that

� ⊗ id ◦ ı(b) = Ad�⊗ id(wG) (�(b) ⊗ 1) inM(B⊗ C∗(G)) for everyb∈B,

where wG is the multiplier of C0(G) ⊗ C∗(G) = C0(G, C∗(G)) defined by the function kG : G →M(C∗
r (G)).

A crossed product (A, �, �) for (B, ı) consists of a covariant representation (�, �) of (B, ı) in a C∗-algebra
A such that the elements �(b)�( f ) generate A and every covariant representation (�,�) : (B, ı) → M(C)
gives a nondegenerate representation �×� : A → M(C) satisfying � = � ×� ◦ � and � = � ×� ◦ �.
We sometimes call �×� the integrated form of (�, �), by analogy with the case of actions. If (A, �, �)
is a crossed product, then we have

A = span{�(b)�( f ) : b∈B, f ∈C0(G)}

(see [16, Lemma 2.10] or [3, Proposition A.36]). Any two crossed products (A1, �1, �1) and (A2, �2, �2)
for (B, ı) are canonically isomorphic: since (�2, �2) is a covariant representation of (B, ı) in A2, it
has an integrated form �2 ×�2 : A1 → M(A2), and this is an isomorphism of A1 onto A2 with inverse
�1 ×�1. Every crossed product (A, �, �) carries a dual action ı̂ : G → AutA, which is characterised
by ı̂s(�(b)�( f )) = �(b)�(rts( f )), and every canonical isomorphism between two crossed products is
equivariant for these dual actions.

When we deal with functors, it is helpful to have a specific construction of a crossed product
in mind, and we use the one described in ([3], Section A.5). For any full coaction (B, ı), the pair
( jB, jG) := (id ⊗ �� ◦ ı,1 ⊗M) is a covariant representation of (B, ı) in B⊗ K(L2(G)), and it is shown
in ([3], Theorem A.41), for example, that if B ×ı G is the C∗-subalgebra of M(B⊗ K(L2(G))) generated
by the elements { jB(b) jG( f ) : b ∈ B, f ∈ C0(G)}, then the triple (B ×ı G, jB, jG) is a crossed product for
(B, ı). We call it the standard crossed product, and we reserve the notation (B ×ı G, jB, jG) for this crossed
product. We write jBG for jG when there are several systems around.

We use analogous conventions for crossed products by reduced coactions. A pair � : B → M(C),
� : C0(G) → M(C) of nondegenerate homomorphisms is a covariant representation of a reduced
coaction (B, ı) if

� ⊗ id ◦ ı(b) = Ad�⊗ id(wrG) (�(b) ⊗ 1) inM(B⊗ C∗
r (G)) for everyb∈B,

where now wrG is the multiplier of C0(G) ⊗ C∗
r (G) = C0(G,C∗

r (G)) defined by the function krG . A crossed
product for (B, ı) is then a C∗-algebra generated by a universal covariant representation, and we
write (B ×ı G, jB, jG) for the standard crossed product generated by the covariant representation
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( jB, jG) := (id ⊗ �r
�

◦ ı,1 ⊗M) in B⊗ K(L2(G)). (We hope the similar notation for full and reduced does
not cause problems: each coaction of whatever sort has exactly one standard crossed product.)

3. The boilerplate for normal and reduced coactions

A full coaction (B, G, ı) is Quigg-normal, or just normal, if the canonical representation jB of B in
M(B ×ı G) is faithful. We consider the category C∗coactnd(G) whose objects are full coactions (B, ı),
and in which the morphisms from (B, ı) to (C, �) are nondegenerate homomorphisms ϕ : B → M(C)
such that ϕ⊗ id ◦ ı = �̄ ◦ ϕ. (This category was used in [9,10], and was discussed in detail in [7]; see
also Proposition A.5 below.) In this section, we consider the full subcategory C∗coactnnd(G) of normal
coactions, and give a boilerplate for the reduction process on C∗coactnnd(G).

The first part of our boilerplate sums up the main properties of reductions, and is taken mostly
from [15].

Proposition 3.1. Let (B, ı) be a normal coaction of a locally compact group G.

(a) The map ır := id ⊗ qr ◦ ı is a reduced coaction of G on B, called the reduction of ı. The map Red :
(B, ı) �→ (B, ır) is a bijection from the class of normal coactions onto the class of reduced coactions.
The inverse Red−1 takes a reduced coaction (B, �) to its Quiggification �Q : B → M(B ⊗ C∗(G)), which is
characterised by

� ⊗ id(�Q (b)) = Ad�⊗ id(wG) (�(b) ⊗ 1) (3.1)

for every covariant representation (�, �) of (B, �).
(b) Suppose that � : B → M(C), � : C0(G) → M(C) are nondegenerate representations. Then (�, �) is a

covariant representation of (B, ı) if and only (�, �) is a covariant representation of (B, ır).
(c) A triple (A, �, �) is a crossed product for (B, ı) if and only if it is a crossed product for (B, ır). The

standard crossed products B ×ı G and B×ır G are the same subalgebra ofM(B⊗ K(L2(G))).

Remark 3.2. If (B, �) is a reduced coaction of G, then applying (b) and (c) with ı := �Q gives analogues
of (b) and relating (B, �Q) to (B, �) (c).

Proof of Proposition 3.1. That ır is a reduced coaction is proved in Proposition 3.3 of [15]. It is
shown in the proof of ([15], Theorem 4.7) that if (B, �) is a reduced coaction, then there is a unique
coaction �Q on B satisfying

jrB ⊗ id(�Q (b)) = Ad jrG ⊗ id(wG) ( jrB(b) ⊗ 1), (3.2)

that �Q is normal, and that (�Q )
r = �. This immediately gives (3.1) for (�,�) = ( jrB, j

r
G), and for general

(�, �), we apply � ×r �⊗ id to both sides of (3.2) and use (A.7). This implies that Red is onto, and the
uniqueness assertion in ([15], Theorem 4.7) implies that Red is one-to-one. This gives (a).

Part (b) is proved in Proposition 3.7 of [15], but we can also deduce it from (a). If (�,�) is covariant
for (B, ı), then we have

id ⊗ qr ◦ � ⊗ id(ı(b)) = id ⊗ qr(Ad�⊗ id(wG) (�(b) ⊗ 1))

= Ad (id ⊗ qr ◦�⊗ id(wG))(�(b) ⊗ 1).
(3.3)

Using (A.8) to pull id ⊗ qr past �⊗ id shows that the left-hand side of (3.3) is � ⊗ id(ır(b)), and a
calculation in M(C0(G,C∗

r (G))) shows that id ⊗ qr(wG) = wrG , so (3.3) implies that (�, �) is covariant
for (B, ır).

Now suppose that (�, �) is covariant for (B, ır), and recall from (a) that ı = (ır)Q . Thus we can
deduce from (3.1) (with �= ır) that

� ⊗ id(ı(b)) = � ⊗ id((ır)Q (b)) = Ad�⊗ id(wG) (�(b) ⊗ 1),

which is the required covariance.
Suppose that (A, �, �) is a crossed product for (B, ı). Part (b) implies that (�, �) is covariant for

(B, ır). If (�, �) is a covariant representation for (B, ır), then the other half of part (b) implies that
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(�, �) is covariant for (B, ı), and hence there is a representation �×� of A such that � = � ×� ◦ �
and � = � ×� ◦ �. Thus (A, �, �) is a crossed product for (B, ır). A similar argument gives the other
direction. For the last comment in (c), we note that, using (A.5),

id ⊗ �r
�

◦ ır = id ⊗ �r
�

◦ id ⊗ qr ◦ ı = id ⊗ (�r
�

◦ qr) ◦ ı = id ⊗ �� ◦ ı,

so the two crossed products have exactly the same generators. �

We now want to form a category C∗coactrnd(G) of reduced coactions so that Red is a functor,
and then establish that Red is an isomorphism of categories. As before, the morphisms from one
reduced coaction (B, ı) to another (C, �) will be nondegenerate homomorphisms ϕ : B → M(C) such
that ϕ⊗ id ◦ ı = �̄ ◦ ϕ, though this time the equation holds in M(C ⊗ C∗

r (G)) rather than M(C ⊗ C∗(G)).
The composition of morphisms in C∗coactrnd(G) will be defined as in C∗

nd:  ◦ϕ is by definition the
usual composition  ̄ ◦ ϕ. There are some things to check before we can confidently assert that this
gives a category; the key to doing this is the following lemma, which is also the main step in proving
that Red is an isomorphism. It was proved by a different argument in ([10], Appendix A).

Lemma 3.3. Suppose that (B, ı) and (C, �) are objects in C∗coactnnd(G), and ϕ : B → M(C) is a nonde-
generate homomorphism. Then

ϕ⊗ id ◦ ı = �̄ ◦ ϕ⇐⇒ ϕ⊗ id ◦ ır = �r ◦ ϕ.

Proof. The forward implication follows from another application of (A.8). So suppose that
ϕ⊗ id ◦ ır = �r ◦ ϕ. We know from Proposition 3.1(c) that ( jC, jCG) is a covariant representation of

(C, �r), and a calculation using (A.7) shows that ( jC ◦ ϕ, jCG) is a covariant representation of (B, ır). Now

Proposition 3.1(b) implies that ( jC ◦ ϕ, jCG) is a covariant representation of (B, ı), and hence

jC ⊗ id(ϕ⊗ id ◦ ı(b)) = ( jC ◦ ϕ) ⊗ id ◦ ı(b) (using (A.7))

= Ad jCG ⊗ id(wG) ( jC (ϕ(b)) ⊗ 1).
(3.4)

The mapm �→ Ad jCG ⊗ id(wG) ( jC (m) ⊗ 1) is the strictly continuous extension of

c �→ Ad jCG ⊗ id(wG)( jC (c) ⊗ 1) = jC ⊗ id ◦ � (c),

and hence coincides with jC ⊗ id ◦ �̄. Thus (3.4) gives

jC ⊗ id(ϕ⊗ id ◦ ı(b)) = jC ⊗ id ◦ �̄(ϕ(b)),

which since � is normal implies that ϕ⊗ id ◦ ı = �̄ ◦ ϕ. �

Using Lemma 3.3 and the corresponding properties of morphisms in C∗coactnnd(G), we can see
that the composition of two morphisms in C∗coactrnd(G) is a morphism in C∗coactrnd(G). The other
necessary properties of composition follow from their counterparts in C∗

nd. Lemma 3.3 also tells
us that Red (ϕ) := ϕ maps morphisms in C∗coactnnd(G) to morphisms in C∗coactrnd(G), and because
composition is defined the same way in both categories, Red is a functor.

Theorem 3.4. Suppose that G is a locally compact group.

(a) The functor Red : C∗coactnnd(G) → C∗coactrnd(G) such that

Red (B, ı) := (B, ır) := (B, id ⊗ qr ◦ ı) and Red (ϕ) := ϕ

is an isomorphism of categories. The inverse Red−1 takes a reduced coaction (B, ı) to the normal
coaction (B, ıQ) characterised by (3.1), and Red−1(ϕ) =ϕ.

(b) The functor Red takes a full dual system (A×˛,r G, ˆ̨ n) to the reduced dual system (A×˛,r G, ˆ̨ r),
and the inverse Red−1 takes the reduced dual system back to the full dual system.
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Proof. Proposition 3.1 says that Red is a bijection on objects, with inverse as described. Now
Lemma 3.3 says that Red is surjective and injective on morphisms. This gives (a).

For (b), we compute the reduction using Lemma A.4:

( ˆ̨ n)r = ((irA ⊗ 1) ×r (irG ⊗ kG))r = id ⊗ qr ◦ ((irA ⊗ 1) ×r (irG ⊗ kG))

= (id ⊗ qr ◦ (irA ⊗ 1)) ×r (id ⊗ qr ◦ (irG ⊗ kG))

= (irA ⊗ 1) ×r (irG ⊗ krG) = ˆ̨ r .

That Red−1 does what is claimed is just the elementary property of inverses. �

4. The boilerplate for normalising

We begin by summing up the properties of the normalisation of a coaction (B, ı). We prefer to
view the normalisation as a coaction on a quotient Bn of B. This differs from the original description in
[15], where the normalisation acts on the canonical image jB(B) of B in M(B ×ı G); it also differs from
the more recent discussion in [9], where a normalisation is a normal system with a distinguished
morphism from (B, ı) that induces an isomorphism on crossed products.

Proposition 4.1. Suppose that (B, ı) is a full coaction of a locally compact group G. Let qn be the quotient
map from B to Bn := B/ker jB, and let jnB : Bn →M(B×ı G) be the injection such that jB = jnB ◦ qn.

(a) There is a unique homomorphism ın : Bn → M(Bn ⊗ C∗(G)) such that

ın ◦ qn = qn ⊗ id ◦ ı, (4.1)

and ın is a normal coaction of G on Bn, called the normalisation of ı.
(b) If (�, �) is a covariant representation of (Bn, ın), then (� ◦ qn, �) is a covariant representation of

(B, ı). Conversely, if (�, �) is a covariant representation of (B, ı), then ker�⊃ ker jB, and if �n is the
representation of Bn such that �=�n ◦ qn, then (�n, �) is a covariant representation of (Bn, ın).

(c) The triple (Bn ×ın G, jBn ◦ qn, jG) is a crossed product for (B, ı), and the triple (B×ı G, jnB, jG) is a crossed
product for (Bn, ın).

(d) Suppose that N is a closed normal subgroup of G, that q : G → G/N is the quotient map, and that�q

is the integrated form of kG/N ◦ q. Then ı| := id ⊗ �q ◦ ı is a coaction of G/N on B, called the restric-

tion of ı to G/N. Write jG| for the restriction of jG : Cb(G) →M(B×ı G) to C0(G/N). Then the pair
( jB, jG|) is a covariant representation of (B, ı|), and if jB × jG| : B ×ı|(G/N) → M(B ×ı G) is injective,
then normalisation commutes with restriction, in the sense that (ı|)n = (ın)|.

Remark 4.2. If we start with a normal coaction (B, ı), then jB is injective, B/ker jB = B and (Bn, ın) =
(B, ı), so that (B, ı) is its own normalisation.

Proof. Quigg proved in ([15], Propositions 2.3 and 2.5) that the formula

ı jG ( jB(b)) := Ad jG ⊗ id(wG) ( jB(b) ⊗ 1)

defines a normal coaction ı jG on jB (B). Since jnB is an isomorphism of Bn onto jB (B), we can pull ı jG

back to a normal coaction ın on Bn such that

jnB ⊗ id(ın(qn(b))) = Ad jG ⊗ id(wG) ( jB(b) ⊗ 1). (4.2)

Now we compute, using the covariance of ( jB, jG) and (A.7):

jnB ⊗ id(ın(qn(b))) = Ad jG ⊗ id(wG) ( jB(b) ⊗ 1) = jB ⊗ id(ı(b))

= ( jnB ◦ qn) ⊗ id(ı(b)) = jnB ⊗ id ◦ qn ⊗ id(ı(b));

since jnB ⊗ id is injective on Bn ⊗ C∗ (G), this implies that ın ◦ qn = qn ⊗ id ◦ ı. The uniqueness follows
from the surjectivity of qn, and we already know that ın is a normal coaction, so we have proved (a).
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For (b), suppose first that (�, �) is a covariant representation of (Bn, ın). Then the calculation

(� ◦ qn) ⊗ id ◦ ı(b) = � ⊗ id ◦ qn ⊗ id ◦ ı(b)

= � ⊗ id ◦ ın ◦ qn(b) (using (a))

= Ad�⊗ id(wG) (� ◦ qn(b) ⊗ 1)

shows that (� ◦ qn, �) is covariant for (B, ı). Now suppose that (�, �) is a covariant representation of
(B, ı). Then the identity � = � ×� ◦ jB implies that ker�⊃ ker jB, so we can factor �= �n ◦ qn and
compute:

�n ⊗ id ◦ ın(qn(b)) = �n ⊗ id ◦ qn ⊗ id ◦ ı(b) (using (a))

= (�n ◦ qn) ⊗ id ◦ ı(b) = �⊗ id ◦ ı(b)

= Ad�⊗ id(wG) (�(b) ⊗ 1)

= Ad�⊗ id(wG) (�n(qn(b)) ⊗ 1),

which since qn is surjective implies that (�n, �) is covariant for (Bn, ın).
The first assertion in part (c) is proved in ([15], Proposition 2.6). For the second, suppose that (�,�)

is a covariant representation of (Bn, ın). Part (b) implies, first, that ( jnB,�) is covariant for (Bn, ın), and,
second, that (� ◦ qn, �) is covariant for (B, ı). Then (� ◦ qn) ×� ◦ jG = � and (� ◦ qn) ×� ◦ jB = � ◦ qn,
which gives

(� ◦ qn) ×� ◦ jnB(qn(b)) = (� ◦ qn) ×� ◦ jB = �(qn(b)).

Thus (� ◦ qn) × � has the properties required of �×�.
The assertion that ı| is a coaction is discussed in ([3], Example A.28), and it follows from Lemma

A.3 that (jB, jG|) is covariant for (B, G/N, ı|).
Now we consider the standard crossed product (B×ı| (G/N), jG/NB , jG/N) for (B, ı|), and let qn

G/N
: B→

B/ker jG/NB be the quotient map. By Proposition 4.1(a), (ı|)n is the unique homomorphism such that

(ı|)n ◦ qnG/N = qn
G/N

⊗ id ◦ ı|. (4.3)

By assumption, jB × jG| is an isomorphism of B ×ı| (G/N) onto its range

B×ı,r (G/N) := span{ jB(b) jG|( f ) : b∈B, f ∈C0(G/N)} ⊂M(B×ı G).

(This is the crossed product of B by the homogeneous space G/N discussed in Section 5.4
below). So (B ×ı,r (G/N), jB, jG|) is a crossed product for (B, ı|), and hence ker jG/NB = ker jB and
qn
G/N

= qn : B→ B/ker jB. Now

(ın)| ◦ qn
G/N

= (ın)| ◦ qn = (id ⊗ �q ◦ ın) ◦ qn

= id ⊗ �q ◦ (ın ◦ qn) = id ⊗ �q ◦ qn ⊗ id ◦ ı
= qn ⊗ id ◦ id ⊗ �q ◦ ı = qn ⊗ id ◦ ı|
= qn

G/N
⊗ id ◦ ı| (sinceqn

G/N
= qn),

and comparing with (4.3) gives (ı|)n = (ın)|. �

We now state our result on the categorical properties of normalisation, which is taken mainly
from [9].

Theorem 4.3. Suppose that G is a locally compact group.

(a) If ϕ : (B, ı) → (C, �) is a morphism in C∗coactnd (G) there is a unique morphism ϕn : (Bn, ın) → (Cn, �n)
such that ϕn ◦ qn = qn ◦ ϕ, and then the assignments

(B, ı) �→ (Bn, ın) and ϕ �→ ϕn

constitute a functor Nor : C∗coactnd(G) → C∗coactnnd(G).
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(b) Let Inc : C∗coactnnd(G) → C∗coactnd(G) be the inclusion functor. Then Nor ◦ Inc is the identity functor
Id on C∗coactnnd(G). If (B, ı) is an object in C∗Coactnd (G) and (C, �) is an object in C∗coactnnd(G), then
the map ϕ �→ϕn is a bijection from Mor((B, ı), (C, �)) to Mor((Bn, ın), (C, �)), and these bijections are
natural in both variables.

(c) Every full dual system (A×˛,r G, ˆ̨ n) is normal, and is the normalisation of the dual system (A×˛ G, ˆ̨ ).

As pointed out in [9], everything hinges on a universal property of normalising maps. We’ll begin
by looking carefully at this universal property. The next lemma is similar to Lemma 2.1 of [1], and
was stated in ([9], item (ii), page 430).

Lemma 4.4. Suppose that (B, G, ı) is a full coaction. Then the quotient map qn : B → Bn = B/ker jB is a mor-
phism in C∗coactnd (G) from (B, ı) to (Bn, ın), and if  : (B, ı) → (C, �) is a morphism to a normal coaction,
then there is a unique morphism 	 : (Bn, ın) → (C, �) such that  = 	 ◦ qn.

Proof. Equation (4.1) says that qn is a morphism. Since the equation = 	 ◦ qn determines the value
of 	(qn (b)), there is at most one homomorphism 	 with the required property. We need to show
that ker contains ker qn = ker jB. Since (C, �) is normal, ker = ker jC ◦ . Now we compute, using
Proposition A.1 and the equivariance of  :

( jC ◦ ) ⊗ id ◦ ı(b) = jC ⊗ id ◦ ⊗ id ◦ ı(b)

= jC ⊗ id ◦ �̄ ◦ (b)

= jC ⊗ id ◦ � ◦ (b)

= Ad jG ⊗ id(wG) ( jC ( (b)) ⊗ 1),

where at the last step we again used strict continuity to extend the covariance relation to M(C). Thus
( jC ◦ , jCG) is a covariant representation of (B, ı) in M(C ×ı G), and in particular jC ◦ factors through jB.

Thus ker = ker jC ⊃ ker jB, and there is a homomorphism 	 : Bn → M(C) such that  = 	 ◦ qn.
To see that 	 is a morphism in C∗Coactnd (G), we use that  and qn are:

�̄(	(qn(b))) = �̄( (b)) =  ⊗ id(ı(b))

= (	 ◦ qn) ⊗ id(ı(b)) = 	 ⊗ id ◦ qn ⊗ id(ı(b))

= 	 ⊗ id ◦ ın(qn(b)). �

Proof of Theorem 4.3. Applying Lemma 4.4 to  = qn ◦ ϕ shows that there is such a morphism ϕn,
and it follows from the uniqueness in Lemma 4.4 that ϕ �→ϕn is functorial. This gives (a). The first
assertion in (b) amounts to the observations that normalisation leaves a normal system unchanged,
and that if ϕ is a morphism between normal systems, then ϕn =ϕ. Since the quotient map qn for the
normal system (C, �) is the identity, Lemma 4.4 says that ϕ �→ϕn is a bijection with inverse �→ ◦ qn.
The functoriality of ϕ �→ϕn implies that the bijections are natural in (B, ı), and straightforward
applications of the uniqueness in Lemma 4.4 show that they are natural in (C, �).

Since normalisations are normal, it suffices to prove the second assertion in (c), and this is
Proposition A.61 of [3]. The crucial ingredient in the proof of that proposition is Theorem 4.1 of [16],
which says that if �× U is a faithful representation of A ×˛ G on H, then the regular representation

(((� × U) ⊗ �) ◦ ˆ̨ ,1 ⊗M) = ((� ⊗ 1) × (U ⊗ �),1 ⊗M)

gives a faithful representation of (A×˛ G) × ˆ̨ G on H ⊗ L2(G) = L2(G,H). This implies that ker
jA×˛ G = ker ((� ⊗ 1) × (U ⊗ �)), and since the operator W defined by (W
) (s) = U∗

s (
(s)) intertwines
(�⊗ 1) × (U ⊗�) and the regular representation �̃ × (1 ⊗ �) induced from the faithful representation
� of A, we deduce that (A×˛ G)n = (A ×˛ G)/ker jA×˛ G is the reduced crossed product. This implies
(c). �

Our definition of normalisation is, as we pointed out at the start of the section, not quite the same
as the one used in [15]: we replace the C∗-algebra jB (B) by the isomorphic algebra Bn = B/ker jB. On
the other hand, it looks nothing like the concept of normalisation used in [9] (see [9, page 423]).
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The connection is the universal property described in Lemma 4.4, which says that the pair ((Bn, ın),
qn) is an initial object in the comma category (B, ı) ↓ C∗coactnnd(G). In fact, these initial objects are the
normalisations studied in [9]:

Proposition 4.5. Suppose that (B, ı) is a full coaction, (D, �) is a normal coaction, andϕ : (B, ı) → (D, �)
is a morphism. Suppose that for every morphism  : (B, ı) → (C, �) to a normal coaction, there is a unique
morphism 	 : (D, �) → (C, �) such that  = 	 ◦ϕ. Then ϕ (B) = D, and the mapϕ× G (described in Pro-
position 5.1 below) is an isomorphism of B ×ı G onto D ×� G.

Proof. We know from Lemma 4.4 that there is a morphism 	 : (Bn, ın) → (D, �) such that 	 ◦ qn =ϕ,
and by hypothesis that there is a unique morphism � : (D, �) → (Bn, ın) such that � ◦ϕ= qn. Then the
uniqueness in Lemma 4.4 implies that � ◦ 	 is the identity on Bn, and the uniqueness in the hypothesis
that 	 ◦ � is the identity on D. Since the isomorphisms in C∗

nd are the isomorphisms of C∗-algebras
(see Proposition 1 of [7], for example), we deduce that 	 is an isomorphism, and is in particular
surjective. Now the equation 	 ◦ qn =ϕ and the surjectivity of qn imply that ϕ (B) = D.

Since ϕ (B) = D, every generator of D ×� G is in the range of ϕ× G, and ϕ× G is surjective. To see
that ϕ× G is injective, we let (�, �) be a covariant representation of (B, ı), and prove that there is a
representation � of D ×� G such that �×�=� ◦ (ϕ× G).

Recall from ([15], Proposition 2.3) that the system (�(B), ı�) (in which ı� is conjugation by
�⊗ id(wG)) is normal. The covariance of (�, �) says that � : B →�(B) is ı− ı� equivariant, and hence
is a morphism from (B, ı) to (�(B), ı�). Since ((D, �), ϕ) is an initial object, there is a morphism
� : (D, �) → (�(B), ı�) such that �= � ◦ϕ. Then (�, �) is a covariant representation of (D, �):

� ⊗ id ◦ �(ϕ(b)) = � ⊗ id ◦ ϕ⊗ id ◦ ı(b)

= (� ◦ ϕ) ⊗ id ◦ ı(b) (using (A.7))

= � ⊗ id ◦ ı(b)
= Ad�⊗ id(wG) (�(b) ⊗ 1)
= Ad�⊗ id(wG) (�(ϕ(b)) ⊗ 1).

Now � := �×� satisfies

� ◦ (ϕ × G) ◦ jB = � ×� ◦ ϕ × G ◦ jB = � ×� ◦ jD ◦ ϕ = � ◦ ϕ = �,

and (similarly) � ◦ (ϕ × G) ◦ jG = �, so � has the required property. �

Corollary 4.6. For every full coaction (B, ı), the map qn × G is an isomorphism of B ×ı G onto Bn ×ın G.

Proof. Lemma 4.4 says that we can apply Proposition 4.5 to qn. �

5. Applications

5.1. Crossed-product functors

We now want to define crossed-product functors on our various categories of coactions. With our
conventions, there is an obvious way to define CP on objects: we send a coaction (B, ı) to the standard
crossed product B×ı G ⊂M(B⊗ K(L2(G))). So the problem is to decide what to do with morphisms.
The next result tells us how to do this for full coactions.

Proposition 5.1. Suppose that ϕ : (B, ı) → (C, �) is a morphism in C∗coactnd (G). Then there is a unique
nondegenerate homomorphism ϕ× G : B ×ı G → M(C ×� G) such that ϕ × G ◦ jB = jC ◦ ϕ and ϕ × G ◦ jBG =
jCG . The assignments (B, ı) �→ B ×ı G and ϕ �→ϕ× G define a functor CP : C∗coactnd(G) → C∗

nd.

Proof. The existence of ϕ × G := (ϕ̄ ◦ jB) × jCG is proved in ([3], Lemma A.46), and it is unique because
the elements jB (b) jG ( f ) span a dense subspace of B ×ı G.

Suppose that ϕ : (B, ı) → (C, �) and  : (C, �) → (D, �) are morphisms in C∗coactnd (G). Then
the composition in C∗

nd of  × G and ϕ× G is the nondegenerate homomorphism  × G ◦ (ϕ × G),
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which satisfies

 × G ◦ (ϕ × G) ◦ jB =  × G ◦ ϕ × G ◦ jB =  × G ◦ jC ◦ ϕ

=  × G ◦ jC ◦ ϕ = jD ◦ ◦ ϕ = jD ◦ ( ̄ ◦ ϕ),

and similarly  × G ◦ (ϕ × G) ◦ jBG = jDG . Thus  × G ◦ (ϕ × G) has the property that characterises

( ̄ ◦ ϕ) × G, and uniqueness gives

 × G ◦ (ϕ × G) = ( ̄ ◦ ϕ) × G.

The other necessary properties of composition follow from their counterparts in C∗
nd. So CP :

C∗coactnd(G) → C∗
nd is a functor. �

We define CPn to be the restriction of CP to the subcategory C∗coactnnd(G). We can then use our
boilerplate and CPn to get a crossed-product functor on the category C∗coactrnd(G) of reduced coactions
defined preceding Theorem 3.4. (The existence of this functor was asserted without proof in Theorem
4.2 and in the proof of Proposition 6.1 in [10].)

Corollary 5.2. Suppose that ϕ : (B, ı) → (C, �) is a morphism in C∗coactrnd(G). Then there is a unique
nondegenerate homomorphism ϕ× G : B ×ı G → M(C ×� G) such that ϕ × G ◦ jB = jC ◦ ϕ and ϕ × G ◦ jBG =
jCG . The assignments (B, ı) �→ B ×ı G and ϕ �→ϕ× G define a functor CPr : C∗coactrnd(G) → C∗

nd.

Proof. The functor CPr := CPn ◦ Red−1 has the required properties. �

The way we have defined CPr it trivially satisfies CPn = CPr ◦ Red. The analogous statement for
normalisations is a little more subtle.

Proposition 5.3. The maps

{qn × G : B×ı G → Bn ×ın G : (B, ı) ∈ C∗coactnd(G)}

implement a natural isomorphism between CP and CPn ◦ Nor.

Proof. We know from Corollary 4.6 that qn × G is an isomorphism. To see that the isomorphism is
natural we need to check that if ϕ is a morphism then

qn × G ◦ (ϕ × G) = ϕn × G ◦ (qn × G).

This is straightforward: for example,

qn × G ◦ (ϕ × G) ◦ jB = jCn ◦ (qn ◦ ϕ) = jCn ◦ (ϕn ◦ qn)

= ϕn × G ◦ (qn × G) ◦ jB,

and we similarly have

qn × G ◦ (ϕ × G) ◦ jBG = ϕn × G ◦ (qn × G) ◦ jBG. �

5.2. The dual-invariant uniqueness theorem.

Proposition 5.4. Suppose that (B, ı) is a full coaction and (�,�) is a covariant representation of (B, ı) in
M(C) such that ker� coincides with the kernel of the canonical map jB of B into M(B ×ı G). Suppose that
there is an action ˇ : G → Aut C such that

ˇs(�(b)) = �(b) for b∈B and ˇs(�( f )) = �(rts( f )) for f ∈C0(G).

Then�×� : B ×ı G → M(C) is injective.

Proposition 5.4 differs from Corollary 4.3 of [16] in two respects: it is about full coactions rather
than reduced ones, and it is about representations with values in C∗-algebras rather than
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representations on Hilbert space. The second change is intended to make the result look more
like the familiar gauge-invariant uniqueness theorems, and we begin with a similar rephrasing of the
result in [16].

Lemma 5.5. Suppose that (B, �) is a reduced coaction and (�, �) is a covariant representation of (B, �)
in M(C) such that � is injective. Suppose that there is an action ˇ : G → Aut C such that

ˇs(�(b)) = �(b) for b∈B and ˇs(�( f )) = �(rts( f )) for f ∈C0(G). (5.1)

Then�×� is injective.

Proof. Choose a covariant representation (�, U) of (C, ˇ) on a Hilbert space H such that � is faithful.
(For example, (�, U) could be the regular representation induced from a faithful representation of C.)
Then the conditions (5.1) imply that each Us commutes with each �̄ ◦ �(b) and that (�̄ ◦�,U) is a
covariant representation of the system (C0 (G), rt), or equivalently that (�̄ ◦ (� ×�),U) is a covari-
ant representation of (B×� G, �̂). Since � and � are faithful, so is �̄ ◦ � ×� ◦ jB = �̄ ◦ �. Now ([16],
Corollary 4.3) implies that (�̄ ◦ �) × (�̄ ◦�) is faithful, and since (�̄ ◦ �) × (�̄ ◦�) = �̄ ◦ (� ×�) by
Lemma A.4, it follows that �×� is faithful. �

Proof of Proposition 5.4. Since ker�= ker jB, � factors through an injective homomorphism
�n : Bn := B/ker jB → M(C), and Proposition 4.1(b) implies that (�n, �) is a covariant representation
of (Bn, ın). Proposition 3.1(b) implies that (�n, �) is also a covariant representation of the reduc-
tion (Bnr, ınr). The automorphisms ˇs leave everything in �n (Bn) =�(B) fixed, and we still have
ˇs(�( f )) = �(rts( f )). Since ın is normal, ınr is a reduced coaction on the same algebra Bn. Thus Lemma
5.5 implies that �n ×� is injective on Bn ×ınr G. Proposition 3.1(c) implies that (Bn ×ınr G, jBn , jG) is a
crossed product for (Bn, ın), and Proposition 4.1(c) that (Bn ×ınr G, jBn ◦ qn, jG) is a crossed product for
(B, ı). Since

�n ×�( jBn ◦ qn(b) jG( f )) = �n(qn(b))�( f ) = �(b)�( f ) = � ×�( jB(b)�( f )),

the representation of B ×ı G corresponding to the representation �n ×� of Bn ×ınr G is �×�. Thus
�×� is injective, as required. �

From Proposition 5.4 we can deduce the following converse of Proposition 4.1(d).

Corollary 5.6. Suppose that (B, ı) is a full coaction and N is a closed normal subgroup of G such that
(ı|)n = (ın)|. Then jB × jG| is injective.

Proof. Let ( jG/NB , jG/N) and ( jGB , jG) denote the universal covariant representations in M(B ×ı| (G/N))

and M(B ×ı G). Observe straightaway that since ı|n is a coaction on B/ker jG/NB and ın| is a coaction on

B/ker jGB , we must have ker jGB = ker jG/NB .
Next, we apply Lemma A.3 to ( jGB , jG), obtaining a covariant representation ( jGB , jG|) of (B, G/N, ı|)

in M(B ×ı G). The integrated form jGB × jG| has range

C := span{ jGB (b) jG|( f ) : b∈B, f ∈C0(G/N)}.

The dual automorphisms ı̂s extend to automorphisms ı̂s of M(B ×ı G), and these automorphisms
map C into C. Since the action of G by right translation on C0 (G/N) is strongly continuous, so is

s �→ ı̂s : G → AutC. For n ∈ N, ı̂n is the identity on C, and thus there is an action ˇ : G/N → Aut C such

that ˇsN = ı̂s|C . This action satisfies ˇsN( jGB (b)) = jGB (b) and

ˇsN( jG|( f )) = ı̂s( jG|( f )) = ı̂s( jG( f )) = jG(rts( f )) = jG|(rtsN( f )).

Since ker jGB = ker jG/NB , applying Lemma 5.5 to ( jGB , jG|) shows that jGB × jG| is injective. �

5.3. The different versions of Landstad’s theorem

The statement in part (a) of the following Proposition is Landstad’s criterion for identifying
reduced crossed products from [12], and (d) is the one used in [9].
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Proposition 5.7. Suppose that B is a C∗-algebra and G is a locally compact group. Then the following
statements are equivalent:

(a) there is a reduced coaction ı of G on B and a strictly continuous homomorphism u : G → UM(B) such
that ı̄(us) = us ⊗ krG(s) for s ∈ G;

(b) there is an object (B, ı, ϕ) in the comma category (C∗
r (G), ırG) ↓ C∗coactrnd(G);

(c) there is an object (B, �,  ) in (C∗
r (G), ınG) ↓ C∗coactnnd(G);

(d) there is an object (B, �, 	) in (C∗(G), ıG) ↓ C∗coactnnd(G).

Remark 5.8. Notice that in (d), the system (C∗ (G),ıG) is not itself an object in the categoryC∗coactnnd(G)
unless G is amenable (because the normalisation is the dual coaction on the reduced C∗-algebra
[3, Proposition A.61]). However, it is an object in the larger category C∗coactnd (G) of full coactions,
and this is enough for the comma category to make sense.

Proof. For (b) ⇒ (a), let (B, ı, ϕ) be an object in (C∗
r (G), ırG) ↓ C∗coactrnd(G). Take u := ϕ̄ ◦ krG , which is

strictly continuous because ϕ̄ is. Since ϕ is ır − ı equivariant, that is, ϕ⊗ id ◦ ırG = ı̄ ◦ ϕ, we have

ı̄(us) = ı̄(ϕ̄(krG(s))) = ı̄ ◦ ϕ(krG(s)) = ϕ⊗ id ◦ ırG(krG(s))

= ϕ⊗ id ◦ ırG(krG(s)) = ϕ⊗ id(krG(s) ⊗ krG(s))

= ϕ̄(krG(s)) ⊗ id(krG(s)) (using (A.4))
= us ⊗ krG(s).

For (a) ⇒ (b), suppose that we have u as in (a). We have

ı̄ ◦ �u(kG(s)) = ı̄ ◦ �u(kG(s)) = ı̄(us) = us ⊗ krG(s),

so ı̄ ◦ �u = �u⊗kr
G

. We now choose a faithful nondegenerate representation � of B on a Hilbert space H.

Since the integrated form �� of the regular representation � : G → U(L2 (G)) factors through a faithful
representation �r

�
of C∗

r (G), we have a faithful nondegenerate representation � ⊗ �r
�

of B⊗ C∗
r (G) on

H ⊗ L2 (G). Applications of (A.5) and (A.4) show that the composition � ⊗ �r
�

◦ �u⊗kr
G

is the integrated

form of (�̄ ◦ u) ⊗ �. Since every representation of the form V ⊗� is unitarily equivalent to 1 ⊗�, we have

ker(�u⊗kr
G

) = ker(� ⊗ �r
�

◦ �u⊗kr
G

) = ker�1⊗� = ker��.

Since ı and ı̄ are injective, we have

ker�u = ker(ı̄ ◦ �u) = ker(�u⊗kr
G

) = ker��,

and there is a homomorphism �ru : C∗
r (G) →M(B) such that �u = �ru ◦ qr; it is nondegenerate because

it has the same range as �u. Now the calculation

�ru ⊗ id ◦ ırG(krG(s)) = �ru ⊗ id ◦ ırG(krG(s)) (using (A.1))

= �ru ⊗ id(krG(s) ⊗ krG(s))

= �ru(krG(s)) ⊗ id(krG(s)) (using (A.4))
= us ⊗ krG(s)

= ı̄(us)

= ı̄ ◦ �ru(krG(s))

= ı̄ ◦ �ru(krG(s))

implies that �ru ⊗ id ◦ ırG = ı̄ ◦ �ru, which says that (B, ı,�ru) is an element of the comma category.
For (b) ⇒ (c), suppose that (B, ı, ϕ) belongs to the comma category in (b). Then Theorem 3.4(a)

says that applying Red−1 to the reduced system (B, ı) and the morphism ϕ gives a normal system
(B, ıQ) and a morphism ϕ from Red−1(C∗

r (G), ırG) to (B, ıQ). Part (b) of Theorem 3.4 implies that
Red−1(C∗

r (G), ırG) = (C∗
r (G), ınG), so (B, ıQ, ϕ) has the properties required of (B, �,  ) in (c).

A. an Huef et al. / Expositiones Mathematicae 29 (2011) 3–23 15



To establish the implication (c) ⇒ (b), we apply Red to the system (B, �,  ) in (c), and use the
properties of Red established in Theorem 3.4.

For (c)⇐⇒ (d), note that Theorem 4.3(c) implies that the normalisation (ıG)n of the comultiplication
on C∗ (G) is the full dual coaction �kr

G
⊗kG on the reduced group algebra C∗

r (G) (which because of this

is usually denoted ınG). In particular, we have qn = qr. If (B, �, 	) is as in (d), then 	n is a morphism from
Nor(C∗(G), ıG) = (C∗

r (G), ınG) to Nor(B, �) = (B, �), and (B, �, 	n) is an element of the comma category in
(c). On the other hand, if (B, �,  ) is as in (c), then (B, �,  ◦ qr) = (B, �,  ◦ qn) belongs to the comma
category in (d). �

5.4. Mansfield’s imprimitivity theorem

Mansfield’s imprimitivity theorem [14] is the analogue for crossed products by coactions of the
imprimitivity theorem of Rieffel and Green for ordinary crossed products. As in [6] and [10], we will
approach Mansfield’s theorem via Rieffel’s general theory of proper actions [19,20].

The version of Rieffel’s theory used in [6] and [10] starts with a free and proper right action of
G on a locally compact space T, and the induced action rt of G on C0 (T). We then consider triples
(A, ˛, ϕ) in which ˛ is an action of G on a C∗-algebra A and ϕ : C0 (T) → M(A) is a homomorphism such
that ˛s ◦ϕ=ϕ ◦ rts (so that (A, ˛, ϕ) is an object in the comma category (C0 (T), rt) ↓ C∗actnd (G)). Rieffel
proved in ([20], Theorem 5.7) that ˛ is proper and saturated in the sense of [19] with respect to the
subalgebra

A0 := ϕ(Cc(T))Aϕ(Cc(T)) := {ϕ( f )aϕ(g) : f, g ∈Cc(G), a∈A},

which implies that A0 completes to give a Morita equivalence Z(A, ˛, ϕ) between A ×˛,r G and a
generalised fixed-point algebra Fix(A, ˛, ϕ) sitting in M(A).

To get Mansfield’s theorem for a reduced coaction (B, ı) and a closed subgroup H of G, we apply
Rieffel’s results with A = B ×ı G, ˛ = ı̂|H , (T, G) = (G, H) and ϕ= jG : C0 (G) → M(B ×ı G). The crucial point
is that Rieffel’s fixed-point algebra turns out to be the crossed product by the homogeneous space
G/H considered in [4,6,5] which is the C∗-subalgebra

B×ı,r (G/H) := span{ jB(b) jG|( f ) : b∈B, f ∈C0(G/H)}

of M(B ×ı G). (The equality of Fix(B×ı G, ı̂|, jG) and B ×ı,r (G/H) follows from Theorem 3.1 of [6] by an
argument given at the beginning of ([10], Section 6). We stress that this equality is highly nontrivial,
and its proof relies heavily on intricate calculations in Mansfield’s original paper [14]. Indeed, even
the assertion that B ×ı,r (G/H) is a C∗-subalgebra appears to be deep.)

We want to apply our boilerplate to Mansfield’s imprimitivity theorem, and we need to define
crossed products by homogeneous spaces for full coactions. For a normal coaction (C, �), there is no
problem: with our conventions, (C ×� G, jC, jB) is exactly the same as (C ×�r G, jC, jB), so we can define
C ×�,r (G/H) to be C ×�r ,r (G/H). Note that C ×�,r (G/H) is a C∗-subalgebra of M(C ×� G).

Lemma 5.9. Let H be a closed subgroup of a locally compact group G, and suppose that (D, �) is a
full coaction of G. Then the extension to the multiplier algebra of the isomorphism qn × G : D×� G →
Dn ×�n G of Corollary 4.6 maps span{ jD(d)jG|( f ) : b∈B, f ∈C0(G/H)} onto Dn ×�n,r (G/H).

Proof. Recall that qn × G is by definition ( jDn ◦ qn) × jG , so we have

qn × G( jD(d)jG|( f )) = jDn (qn(d))jD
n

G |( f )

and the result follows because qn × G is an isomorphism. �

It follows from Lemma 5.9 that span{ jD(d) jG|( f ) : b∈B, f ∈C0(G/H)} is a C∗-subalgebra of
M(D ×� G), and it makes sense to define the crossed product by

D×�,r (G/H) := span{ jD(d) jG|( f ) : b∈B, f ∈C0(G/H)}.

Then Lemma 5.9 says that qn × G restricts to an isomorphism qn ×r (G/H) of D ×�,r (G/H) onto
Dn ×�n,r (G/H).
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Theorem 5.10. Let H be a closed subgroup of a locally compact group G.

(a) For every reduced coaction (B, ı), Z(B×ı G, ı̂|, jG) is a (B×ı G) ×
ı̂|,r H − B×ı,r (G/H) imprimitivity

bimodule.
(b) For every normal coaction (C, �),Z(C ×� G, �̂|, jG) is a (C ×� G) ×

ı̂|,r H − C ×ı,r (G/H) imprimitivity bim-

odule that coincides with Z(C ×�r G, �̂r |, jG).
(c) Suppose that (D, �) is a full coaction. Then the isomorphism qn × G : D×� G → Dn ×�n G of Corollary

4.6 maps

A0 := jG(Cc(G)) (D×� G)jG(Cc(G)) onto B0 := jG(Cc(G)) (Dn ×�n G)jG(Cc(G)),

and extends to an isometric map of Z(D×� G, �̂, jG) onto Z(Dn ×�n G, �̂n, jG) such that ((qn × G) ×rH,
 , qn ×r (G/H)) is an isomorphism of imprimitivity bimodules.

Remark 5.11. When the subgroup H is normal, a coaction (B, ı) of G restricts to a coaction ı| of the
quotient G/H, and one would prefer a version of Mansfield’s theorem that uses the crossed product
B ×ı| (G/H) by this coaction (as opposed to the crossed product B ×ı,r (G/H) by the homogeneous space
appearing in Theorem 5.10).

For a full coaction, ı| := id ⊗ �q ◦ ı, and the crossed products B ×ı| (G/H) and B ×ı,r (G/H) may differ.
If the map jB × jG| : B ×ı| (G/H) → M(B ×ı G) is injective (which is automatic if ı is normal [8, Lemma
3.2]), then it is an isomorphism of B ×ı| (G/H) onto B ×ı,r (G/H), and we obtain the Morita equivalence
between (B×ı G) ×

ı̂
H and B ×ı| (G/H) established in ([8], Corollary 3.4). For a reduced coaction (B, ı),

the restriction ı| is by definition the restriction ıQ| of the Quiggification; since ıQ is normal, we
again get an isomorphism of B ×ı| (G/H) onto B ×ı,r (G/H). The resulting Morita equivalence was first
obtained in ([6], Proposition 4.2) and is a direct generalisation of Mansfield’s original theorem [14].
See ([6], Section 4) for further details.

However, we believe that Theorem 5.10(c) itself is new.

Proof of Theorem 5.10. As we observed above, part (a) was deduced in [10] from ([6], Theorem 3.1).
Part (b) is now easy: with the definition of C ×�,r (G/H) we have given and the conventions for crossed
products we are using, the coefficient algebras are exactly the same, and hence so is the bimodule.
Part (c) follows from Lemma 5.12 below by taking A = D ×� G, ˛ = �̂|, ϕA = jDG , B = Dn ×�n G, ˇ = �̂n|,
ϕB = jDnG , (T, G) = (G, H) and �= qn × G. �

Lemma 5.12. Let G be a locally compact group and let � : (A, ˛, ϕA) → (B, ˇ, ϕB) be an isomorphism
in the comma category (C0 (T), rt) ↓ C∗actnd (G). Then� maps A0 := ϕA (Cc (T))AϕA (Cc (T)) onto B0 :=
ϕB (Cc (T))BϕB (Cc (T)) and extends to an isometric map of Z(A, ˛, ϕA) onto Z(B, ˇ, ϕB) such that (�×r G,
 , �|) is an isomorphism of imprimitivity bimodules.

Proof. That � is an isomorphism in the comma category means that it is an ˛−ˇ equivariant iso-
morphism of A onto B satisfying �̄ ◦ ϕA = ϕB. Thus �(A0) = B0. The right inner product 〈a, b〉R of a, b ∈ A0
is the multiplier of A such that

c · 〈a, b〉R =
∫

G

c˛s(a∗b)ds for every c ∈A0,

and since � is ˛−ˇ equivariant, the multiplier �̄(〈a, b〉R) of B has the property that characterises
the inner product 〈�(a), �(b)〉R. Thus � is inner-product preserving, and extends to an isometry  of
the completion Z(A, ˛, ϕA) of A0 onto Z(B,ˇ,ϕB) = B0.

For a, b, c ∈ A0 we have

 (a) · �̄(〈b, c〉R) = �(a)�̄(〈b, c〉R) = �(a〈b, c〉R) =  (a〈b, c〉R) =  (a · 〈b, c〉R),
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so is a right-module homomorphism. Since�×r G acts pointwise, for f ∈ Cc (G, A0) and a ∈ A0 we have

 (f · a) =  

(∫
f (s)˛s(a)(s)1/2 ds

)
= �

(∫
f (s)˛s(a)(s)1/2 ds

)

=
∫
�( f (s))ˇs(�(a))(s)1/2 ds =

∫
� ×r G( f ) (s)ˇs(�(a))(s)1/2 ds

= � ×r G( f ) · (a),

so  is a left-module homomorphism. A standard calculation now shows that  preserves the left
inner product, and hence is an isomorphism of imprimitivity bimodules. �

5.5. Naturality of Mansfield imprimitivity

There is a second category C∗ of C∗-algebras in which the imprimitivity bimodules are the
isomorphisms, and if we view the various crossed product functors as taking values in C∗, then it
makes sense to ask whether the imprimitivity bimodules in Mansfield’s theorem give a natural
isomorphism. This was proved for reduced coactions in Theorem 6.2 of [10].

Just to be precise: the objects in C∗ are C∗-algebras, and the morphisms from one C∗-algebra A to
another B are isomorphism classes [AXB] of full right-Hilbert A–B bimodules. It was shown in ([2],
Section 2) that C∗ is a category with composition defined by [BYC ][AXB] = [A(X⊗BY)C ], and that [AXB] is
an isomorphism if and only if X is an imprimitivity bimodule. Every nondegenerate homomorphism
� : A → M(B) gives a morphism [�] with underlying right Hilbert module BB.

To see what the naturality result in [10] says, consider a morphism � : (B, ı) → (C, �) in
C∗coactrnd(G). This induces nondegenerate morphisms � × G := ( jC ◦ �) × jCG from B ×ı G to M(C ×� G)
and (� × G) ×r H = (iC×G ◦ (� × G)) × iC×G

G . Then Theorem 6.2 of [10] says that the diagram

(5.2)

commutes in C∗, or in other words that the right-Hilbert bimodule

Z(B×ı G, ı̂|, jBG)⊗B×ı,r (G/H)(C ×�,r (G/H))

is isomorphic to

((C ×� G) ×�̂|,r H)⊗(C×�G)×�̂|,rHZ(C ×� G, �̂|, jCG).

We can now formulate our naturality result.

Theorem 5.13. Let H be a closed subgroup of a locally compact group G. Then Rieffel’s bimodules
Z(B×ı G, ı̂|, jG) implement a natural isomorphism between the functors (B, ı) �→ B ×ı,r (G/H) and (B, ı) �→
(B×ı G) ×

ı̂|,r H from (a) C∗coactrnd(G) to C∗, (b) C∗coactnnd(G) to C∗ and (c) C∗coactnd (G) to C∗.

Proof of Theorem 5.13. As mentioned above, (a) is Theorem 6.2 of [10]. Part (b) follows immediately
from (a) because, with our conventions, all the algebras, homomorphisms and bimodules for (B, ı) are
exactly the same as they are for (B, ır).
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For (c) we fix a morphism � : (B, ı) → (C, �), and let �n be the unique morphism from (Bn, ın) to
(Cn, �n) such that qn ◦ � = �n ◦ qn (which we know exists by Lemma 4.4). Now we consider the
following diagram.

In this diagram, we know from (b) that the outside square commutes, and we want to prove that
the inside square commutes. If (ϕ, 	,  ) : AXB → CYD is an isomorphism of imprimitivity bimodules,
then x ⊗ d �→ 	(x) · d is an isomorphism of A(X⊗BD)D onto A(C⊗CY)D = AYD, and hence Theorem
5.10(c) implies that the top and bottom rectangles commute. The compositions in the right-hand
quadrilateral are the restrictions of �n × G ◦ qn × G and qn × G ◦ � × G, so to see that that quadrilateral
commutes it suffices for us to see that (�n × G) ◦ (qn × G) = qn × G ◦ (� × G), which follows immedi-
ately from the functoriality of the crossed-product construction. A similar argument shows that the
left-hand quadrilateral commutes. Since the arrows connecting the inside and outside squares are
isomorphisms, it follows that the inside square commutes. �

Appendix A. Barring and tensor products

For every nondegenerate homomorphism ϕ : A → M(B), there is a unital homomorphism
ϕ̄ : M(A) →M(B) such that ϕ̄|A = ϕ (see [18, Corollary 2.51], for example). The extension ϕ̄ has to
satisfy ϕ̄(m) (ϕ(a)b) = ϕ(ma)b for m ∈ M(A), a ∈ A and b ∈ B; this equation implies that there is exactly
one such extension, and that ϕ̄ is strictly continuous. The uniqueness implies the identity

ϕ̄ ◦ = ϕ̄ ◦  ̄, (A.1)

which is often used but seldom mentioned.
Suppose that ϕ : A → M(B) and  : C → M(D) are nondegenerate homomorphisms. Then there

is a unique homomorphism ϕ⊗ from the spatial tensor product A ⊗ C to the spatial tensor
product M(B) ⊗ M(D) such that ϕ⊗ (a ⊗ c) =ϕ (a) ⊗ (c) (see [18, Proposition B.13], for example).
Although this homomorphism ϕ⊗ takes values in a unital algebra, and hence in a multiplier
algebra, it need not be nondegenerate (think of C0 (X) ⊗ C0 (X) going into Cb (X) ⊗ Cb (X)), and hence
cannot obviously be extended to M(A ⊗ C). To get round this, we compose ϕ⊗ with the inclu-
sion � : M(B) ⊗ M(D) → M(B ⊗ D) characterised by �(m ⊗ n) (b ⊗ d) = (mb) ⊗ (nd). (If � : B→ B(H) and
� : D→ B(K) are faithful, then the representation �̄ ⊗ �̄ is a faithful representation of M(B) ⊗ M(D) with
range contained in� ⊗ �(M(B⊗ D)) (using [18, B.11 and 2.53]), so the homomorphism � is well-defined
and injective.) Now one can easily check (see the next proposition) that � ◦ (ϕ⊗ ) : A ⊗ C → M(B ⊗ D)
is nondegenerate, and therefore has a unique extension to M(A ⊗ C). The extension ¯ϕ⊗ that appears
in the coaction literature, either explicitly or implicitly, is really � ◦ (ϕ⊗ ); the � itself never appears.
(We use the same symbol � for any pair of C∗-algebras because we are just trying to emphasize that
these maps are there.)

The properties of these extensions established in the next proposition are used without comment
in the literature.
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Proposition A.1.

(a) Suppose thatϕ : A → M(B) and : C → M(D) are nondegenerate homomorphisms. Then the composition

� ◦ (ϕ⊗ ) : A⊗ C →M(B) ⊗M(D) →M(B⊗ D)

is a nondegenerate homomorphism, and its extension to M(A ⊗ C) satisfies

� ◦ (ϕ⊗ )(�(m⊗ n)) = �(ϕ̄(m) ⊗  ̄(n)) for m∈M(A), n∈M(C). (A.2)

(b) Suppose that ϕi : Ai → M(Bi) and i : Bi → M(Ci) are nondegenerate homomorphisms for i = 1 and i = 2.
Then

� ◦ (( 1 ◦ ϕ1) ⊗ ( 2 ◦ ϕ2)) = � ◦ ( 1 ⊗ 2) ◦ (� ◦ (ϕ1 ⊗ ϕ2)). (A.3)

(c) Suppose thatϕ : A→M(B) is a nondegenerate homomorphism, C is another C∗-algebra and define (ϕ⊗ 1)
(a) := ϕ (a) ⊗ 1. Then � ◦ (ϕ⊗ 1) is nondegenerate and

� ◦ (ϕ⊗ 1) = � ◦ (ϕ̄⊗ 1).

Proof. The nondegeneracy of ϕ and  and the Cohen factorisation theorem imply that every ele-
mentary tensor in B ⊗ D has the form

ϕ(a)b⊗ (c)d = �(ϕ(a) ⊗ (c)) (b⊗ d) = (� ◦ (ϕ⊗ ) (a⊗ c)) (b⊗ d),

so � ◦ (ϕ⊗ ) is nondegenerate. To establish (A.2), we consider the effect of the multipliers on an
elementary tensor ϕ (a)b ⊗ (c)d. We have:

� ◦ (ϕ⊗ )(�(m⊗ n)) (ϕ(a)b⊗ (c)d) = � ◦ (ϕ⊗ )(�(m⊗ n)) (� ◦ (ϕ⊗ ) (a⊗ c)) (b⊗ d)
= � ◦ (ϕ⊗ ) (�(m⊗ n) (a⊗ c)) (b⊗ d)
= � ◦ (ϕ⊗ ) (ma⊗ nc) (b⊗ d)
= �(ϕ(ma) ⊗ (nc)) (b⊗ d)
= ϕ(ma)b⊗ (nc)d
= ϕ̄(m)ϕ(a)b⊗  ̄(n) (c)d
= �(ϕ̄(m) ⊗  ̄(n)) (ϕ(a)b⊗ (c)d),

and this gives (A.2). For (A.3), we plug an elementary tensor a1 ⊗ a2 into the left-hand side and apply
it to an elementary tensor  1 (b1)c1 ⊗ 2 (b2)c2:

� ◦ (( 1 ◦ ϕ1) ⊗ ( 2 ◦ ϕ2)) (a1 ⊗ a2) ( 1(b1)c1 ⊗ 2(b2)c2)
= �( 1 ◦ ϕ1(a1) ⊗ 2 ◦ ϕ2(a2)) ( 1(b1)c1 ⊗ 2(b2)c2)
= ( 1 ◦ ϕ1(a1) 1(b1)c1) ⊗ ( 2 ◦ ϕ2(a2) 2(b2)c2)
=  1(ϕ1(a1)b1)c1 ⊗ 2(ϕ2(a2)b2)c2
= � ◦ ( 1 ⊗ 2) (ϕ1(a1)b1 ⊗ ϕ2(a2)b2) (c1 ⊗ c2)
= � ◦ ( 1 ⊗ 2) (� ◦ (ϕ1 ⊗ ϕ2) (a1 ⊗ a2) (b1 ⊗ b2)) (c1 ⊗ c2)
= � ◦ ( 1 ⊗ 2)(� ◦ (ϕ1 ⊗ ϕ2) (a1 ⊗ a2)) (� ◦ ( 1 ⊗ 2) (b1 ⊗ b2) (c1 ⊗ c2))
= � ◦ ( 1 ⊗ 2)(� ◦ (ϕ1 ⊗ ϕ2) (a1 ⊗ a2)) ( 1(b1)c1 ⊗ 2(b2)c2),

which does what we want. For (c), we note that nondegeneracy is easy, let m ∈ M(A), a ∈ A, and
compute:

� ◦ (ϕ⊗ 1)(m) (� ◦ (ϕ⊗ 1) (a)) = � ◦ (ϕ⊗ 1) (ma) = �(ϕ(ma) ⊗ 1)
= �(ϕ̄(m)ϕ(a) ⊗ 1) = �(ϕ̄(m) ⊗ 1)�(ϕ(a) ⊗ 1)
= � ◦ (ϕ̄⊗ 1) (m)� ◦ (ϕ⊗ 1) (a). �

Convention. Using ¯ϕ⊗ to denote � ◦ (ϕ⊗ ) is not too dangerous, since there is nothing else that
¯ϕ⊗ could mean. When we drop the bar altogether, though, we introduce ambiguities: ϕ⊗ could

mean ϕ̄⊗  ̄ or ϕ⊗  ̄ or ¯ϕ⊗ or many other things. Worse, there are calculations in the literature
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where we need to switch meanings. Since ambiguity is the enemy, and since deciding exactly how to
make our calculations precise seems to be a rather slippery matter, we think it best to explicitly use
the bar and apply Proposition A.1 as we go.

So below and in the main sections of this paper, the inclusions � of M(C) ⊗ M(D) in M(C ⊗ D) are
silent, but we try to make the extensions to multiplier algebras explicit.

Corollary A.2. Suppose that ϕi : Ai → M(Bi) and  i : Bi → M(Ci) are nondegenerate homomorphisms
for i = 1 and i = 2. Then

¯ϕ1 ⊗ ϕ2(m⊗ n) = ϕ̄1(m) ⊗ ϕ̄2(n) for m∈M(A1), n∈M(A2), (A.4)

( 1 ◦ ϕ1) ⊗ ( 2 ◦ ϕ2) =  1 ⊗ 2 ◦ (ϕ1 ⊗ ϕ2), (A.5)

¯ϕ1 ⊗ 1 = ϕ̄1 ⊗ 1, (A.6)

( 1 ◦ ϕ1) ⊗ ( 2 ◦ ϕ2) =  1 ⊗ 2 ◦ ¯ϕ1 ⊗ ϕ2, and (A.7)

 1 ⊗ id ◦ id ⊗ ϕ2 = id ⊗ ϕ2 ◦ 1 ⊗ id. (A.8)

Proof. The first three equations are just the results in Proposition A.1 with our new convention. To
establish (A.7), we use (A.1) and then (A.5):

 1 ⊗ 2 ◦ ¯ϕ1 ⊗ ϕ2 =  1 ⊗ 2 ◦ (ϕ1 ⊗ ϕ2) = ( 1 ◦ ϕ1) ⊗ ( 2 ◦ ϕ2).

Now taking  2 = id and ϕ1 = id in (A.7) gives

 1 ⊗ id ◦ id ⊗ ϕ2 = ( 1 ◦ ϕ1) ⊗ (id ◦ ϕ2) =  1 ⊗ ϕ2.

Similarly id ⊗ ϕ2 ◦ 1 ⊗ id =  1 ⊗ ϕ2, and we have proved (A.8). �

We now illustrate how these formulas are used by proving three standard results which are
needed in the main text.

Lemma A.3. Suppose that (B, G, ı) is a full coaction and N is a closed normal subgroup of G. If (�, �) is a
covariant representation of (B, G, ı) in M(C), then (�, �|) is a covariant representation of (B, G/N, ı|).

Proof. We write �N for the nondegenerate embedding of C0 (G/N) in M(C0 (G)), so that �| := �̄ ◦ �N .
For f ∈ C0 (G, C∗ (G/N)) = C0 (G) ⊗ C∗ (G/N),

id ⊗ �q(wG) (id ⊗ �q) ( f ) = (id ⊗ �q) (wG f )

is the function s �→ �q(wG(s) f (s)) = wG/N(sN)�q(f (s)). Thus, viewed as a multiplier of C0 (G, C∗ (G/N)),

id ⊗ �q(wG) is multiplication by the function s �→ wG/N(sN). This function is the image under �N ⊗ id
of the function wG/N ∈M(C0(G/N,C∗(G/N))), and thus we have

�⊗ id ◦ id ⊗ �q(wG) = �⊗ id ◦ �N ⊗ id(wG/N)

= (�̄ ◦ �N) ⊗ id(wG/N) (using (A.7))

= �| ⊗ id(wG/N).

(A.9)

Now we take b ∈ B and compute, obtaining

� ⊗ id(ı|(b)) = � ⊗ id ◦ id ⊗ �q(ı(b))

= id ⊗ �q ◦ � ⊗ id(ı(b)) (using (A.8))

= id ⊗ �q ◦ Ad�⊗ id(wG) (�(b) ⊗ 1C∗(G))

= Ad (id ⊗ �q ◦�⊗ id(wG)) (�(b) ⊗ 1C∗(G/N))

= Ad (�⊗ id ◦ id ⊗ �q(wG)) (�(b) ⊗ 1C∗(G/N)) (using (A.8))

= Ad (�| ⊗ id(wG/N)) (�(b) ⊗ 1C∗(G/N)) (using (A.9)),

which is the required covariance. �
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Lemma A.4. Suppose that ˛ : G → Aut A is an action, that (�, u) is a covariant representation of (A, ˛)
in M(B) such that �× u factors through a representation �×r u of A ×˛,r G, and that 	 : B → M(C) is a
nondegenerate homomorphism. Then 	̄ ◦ (� × u) also factors through a representation (	̄ ◦ �) ×r (	̄ ◦ u)
of A ×˛,r G, and we have 	̄ ◦ (� ×r u) = (	̄ ◦ �) ×r (	̄ ◦ u).

Proof. Using (A.1), we have

	̄ ◦ (� × u) ◦ iA = 	̄ ◦ � × u ◦ iA = 	̄ ◦ �

and 	̄ ◦ (� × u) ◦ iG = 	̄ ◦ u. Hence 	̄ ◦ (� × u) = (	̄ ◦ �) × (	̄ ◦ u). Now we compute:

	̄◦(� ×r u) ◦ qr = 	̄ ◦ (� × u) = (	̄ ◦ �) × (	̄ ◦ u).

Since the left-hand side factors through qr, so does the right-hand side, and then by definition of ×r

the right-hand side is ((	̄ ◦ �) ×r (	̄ ◦ u)) ◦ qr . �

The next proposition was implicitly asserted on page 420 of [9].

Proposition A.5. Let G be a locally compact group. There is a category C∗coactnd (G) in which the
objects are full coactions of G on C∗-algebras, the morphisms from (A, ı) to (B, �) are the nondegenerate
homomorphismsϕ : A → M(B) such that ¯ϕ⊗ id ◦ ı = �̄ ◦ ϕ, and ◦ϕ is by definition  ̄ ◦ ϕ.

Proof. We know from Proposition 1 of [7] that there is a category C∗
nd of C∗-algebras and

nondegenerate homomorphisms in which composition is defined by ◦ ϕ :=  ̄ ◦ ϕ. So we need to
prove that if ϕ : A → M(B) is ı− � equivariant  : B → M(C) is ı−� equivariant, then

( ̄ ◦ ϕ) ⊗ id ◦ ı = �̄ ◦ ( ̄ ◦ ϕ). (A.10)

Applying (A.5) with ϕ1 =ϕ2 the identity on C∗ (G), we find that

( ̄ ◦ ϕ) ⊗ id =  ⊗ id ◦ (ϕ⊗ id).

We now plug this into the left-hand side of (A.10), and use (A.7) and (A.1):

( ̄ ◦ ϕ) ⊗ id ◦ ı = ( ⊗ id ◦ ϕ⊗ id) ◦ ı =  ⊗ id ◦ (ϕ⊗ id ◦ ı)
=  ⊗ id ◦ �̄ ◦ ϕ =  ⊗ id ◦ � ◦ ϕ
= �̄ ◦ ◦ ϕ = �̄ ◦  ̄ ◦ ϕ. �
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