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a b s t r a c t

The general theory of the scattering of electromagnetic radiation in atomic plasmas and metals, in the
non-relativistic regime, in which account is taken of the KramerseHeisenberg polarization terms in the
Hamiltonian, is described from a quantum mechanical viewpoint. As well as deriving the general formula
for the double differential Thomson scattering cross section in an isotropic finite temperature multi-
component system, this work also considers closely related phenomena such as absorption, refraction,
Raman scattering, resonant (Rayleigh) scattering and Bragg scattering, and derives many essential re-
lationships between these quantities. In particular, the work introduces the concept of scattering
strength and the strength-density field which replaces the normal particle density field in the standard
treatment of scattering by a collection of similar particles and it is the decomposition of the strength-
density correlation function into more familiar-looking components that leads to the final result. Com-
parisons are made with previous work, in particular that of Chihara [1].
© 2014 Crown Owned Copyright/AWE PLC. Published by Elsevier B.V. This is an open access article under

the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

Thomson scattering is the scattering of electromagnetic radia-
tion by electrons in matter, in the non-relativistic or near-
relativistic regime. Two key features of Thomson scattering are
that it is sensitive to correlations between electrons and that the
polarization of the scattered radiation is entirely determined by the
initial polarization and the scattering geometry. This is unlike
Compton scattering, which is incoherent scattering by individual
electrons and which contains a polarization-independent contri-
bution. Nevertheless Compton and Thomson scattering are de-
scriptions of the same phenomenon to the extent that incoherent
Thomson scattering and Compton scattering are interchangeable
descriptions of scattering by effectively free and uncorrelated non-
relativistic electrons. In matter, electrons are correlated via their
mutual interactions, collective motions, exchange and degeneracy,
and interactions with other particles (ions). These correlations are
directly probed by X-ray Thomson scattering (XRTS) measure-
ments, making the technique an important emerging diagnostic
tool for studying the equation-of-state properties of cold and warm
dense matter [2e8]. Understanding these correlation effects allows
quantities such as temperature and density to be deduced directly
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from measurements. A baseline description of Thomson scattering
from ideal plasmas is provided by the Random Phase Approxima-
tion (RPA) which ignores short-range correlations between elec-
trons, with only large-scale collective motion taken into account.
For dense plasmas and plasmas in which bound electrons
contribute to the scattering, a more general treatment is required
both to provide more accurate modelling and to be able to extract
meaningful information from scattering measurements.

Coherent X-ray Thomson back-scattering is also a potentially
useful spectroscopic tool for carrying out material assays as the
cross-sections depend strongly on atomic spectra as well as being
amplified by an underlying proportionality of the cross-sections to
the square of the number of bound electrons.

This report presents a quantum mechanical derivation of the
general Thomson differential scattering cross-section for scattering
of electromagnetic radiation in a fully or partially ionised plasma
comprising one or more nuclear species. The work generalizes the
work of Chihara [1] who applies a fundamentally classical approach
to a two component system comprising electrons and ions. While
the current method and the results yielded have clear parallels to
the earlier work, they provide a different perspective while incor-
porating a proper quantal treatment of the electrons as well as a
more consistent treatment of the polarization terms in the inter-
action. A second-quantized approach is used to treat the electrons
thus including the effects of antisymmetry and the Pauli principle
from the outset. However a classical approach is maintained for the
nuclear ions, as is justified by their large masses and extremely
an open access article under the CC BY-NC-SA license (http://creativecommons.org/
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short deBroglie wavelengths. The new work is generally important
for extending existing detailed methodologies for treating Thom-
son scattering by warm dense matter, e.g. Ref. [9], to heavier
elements.

This work also generalizes our previous work [10] which in-
troduces, in the context of a simplified form of the Hamiltonian, the
basic quantum mechanical approach employed here.

At a fundamental level, the scattering process is represented by
the non-relativistic Hamiltonian

H ¼ 1
2me

p� eAð Þ2 þHfield þ… ¼ H0 þH0 þHfield (1)

where me, e and p are respectively the mass, charge and canonical
momentum of the electron, A is the electromagnetic vector po-
tential of the incident (probe) radiation and Hfield is the Hamilto-
nian for the in vacuo electromagnetic field, which comprises the
probe radiation and any ambient radiation field. The electron in-
teracts with the field through the perturbation,

H0 ¼ � e
2me

ðp$A þ A$pÞ þ e2

2me
A2 (2)

which comprises two terms, the first of which is the Kra-
merseHeisenberg (KH) polarization, which represents absorption
and emission of photons by the electron, while the second is the
quiver energy. The quiver motion gives rise to point scattering in
the first order (Born) approximation and tends to dominate the
scattering of high energy photons in the non-relativistic regime,
while the KH part gives rise to scattering only in second order via
transition operators of the form A$pGA$p in which the propagator
G represents an intermediate virtual state of the electron. Although
the two scattering processes occur in different orders of pertur-
bation theory, they are of the same order in the electromagnetic
coupling constant and therefore must be considered together. It is
noteworthy that the A2 term does not arise in the linearized Dirac
Hamiltonian and so is not treated as a separate term in a fully
relativistic QED theory of Compton scattering. The fully relativistic
formulations of the theory are discussed elsewhere [10e12].

For transverse waves, [p,A]¼p,A � A,p ¼ 0 and a second-
quantized representation of the electromagnetic field experi-
enced by an electron at position r, in terms of photon (boson)
creation and annihilation field operators, bk;e; by

k;e, is represented
in terms of the Hermitian operator A ¼ ~A þ ~A

y
where [10]

~AðrÞ¼
X
k;e

�iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vε0u

p eeik,rbk;e;
~A
yðrÞ¼

X
k;e

iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vε0u

p ee�ik,rby
k;e

(3)

where k and e are respectively the wavenumber and direction of
polarization (e,e¼ 1, e,k¼ 0) of the photonmodes present, u¼ k c
is the frequency, V is the volume and ε0 is the permittivity of free
space. The operators ~A and ~A

y
therefore represent the absorption

and emission of a photon respectively while the terms in the
transition operator representing scattering are those involving the
operator pairs ~A

y
; ~A, in either order.

2. Scattering by a single electron: the Kramers, Heisenberg,
Waller formula

In lowest-order perturbation theory, without making any other
approximations, the above yields the differential cross-section for
the angular distribution of scattering of photons, from the channel
e,k into the channel e0,k0 , by a single electron initially in the state b,
according to the formula
ds
dU0 ¼ r2e

X u0

u

� �2��〈a��F e;k; z; e0;k0; z0; Eb
� ���b〉��2 1þ nk0 � dkk0

� �

a

(4)
where re ¼ e2/4p ε0mec

2 is the classical electron radius,

z ¼ uþ i0þ
z0 ¼ u0 þ i0þ
Eb þ u ¼ Ea þ u0

(5)

F e;k; e0;k0; z; z0; E
� � ¼ � 1

me
e�ik0

$re0$pG E þ zð Þe$peik$r
�

þeik$re$pG E � z0ð Þe0$pe�ik0
$rÞ

�e�ik0
$re0$eeik$r (6)

GðEÞ ¼ ðE �H0Þ�1 (7)

a denotes an electron state in the final channel, and the factor ð1þ
nk0 � dkk0 Þ accounts for the effect of stimulated scattering in the
presence of nk0 � dkk0 spectator photons in the exit channel. Eqs.
(4)e(7) constitute the Kramers, Heisenberg, Waller formula [11].
3. Scattering from a many-electron system

3.1. Effective photon scattering operator

Our previous work [10] describes a general quantum-
mechanical treatment of Thomson scattering, but considers only
the A2 term in the Hamiltonian, which corresponds to the right-
most term on the right-hand side of Eq. (6). In the present work,
we generalize this to include the remaining polarization term in the
case of a system of electrons that is initially isotropic and unpo-
larized. In order to simplify the ensuing formalism, it is convenient
to carry out the average over the directions of the electron motions
at this stage. The scattering depends on the average of an expres-
sion like jaðe0$pÞðe$pÞ þ bðe0$eÞj2, where a and b are constant co-
efficients, over the direction of the vector p. Expanding and
applying the average yields

jaðe0$pÞðe$pÞ þ bðe0$eÞj2 ¼ jaj2ðe0$pÞ2ðe$pÞ2

þ �a*bþ b*a
�ðe0$eÞðe0$pÞðe$pÞ

þ jbj2ðe0$eÞ2

(8)
where the average is defined as XðpÞ ¼ ð4pÞ�1R XðpÞdUp.

and

ðe0$pÞðe$pÞ ¼ 1
3
p2ðe0$eÞ

ðe0$pÞ2ðe$pÞ2 ¼ 1
9
p4ðe0$eÞ2

(9)

Hence

jaðe0$pÞðe$pÞ þ bðe0$eÞj2 ¼
�
1
9
jaj2p4 þ 1

3
�
a*bþ b*a

�
p2 þ jbj2

�
� ðe0$eÞ2

¼
����13 ap2 þ b

����2ðe0$eÞ2
¼ japsps þ bj2ðe0$eÞ2

(10)
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where p2 ¼P
s
psps, s ¼ x, y, z. Now we seek an effective one-

electron operator F with the property that it preserves the
electron-direction-averaged expectation value of the cross-section
with respect to states of a free-electron in a system in which the
electron motion is isotropic, i.e.,

��〈pjFjp〉��2 ¼ j〈pjFjp〉j2 (11)

With the aid of Eq. (10), such an operator is found to be
F e;k; e0;k0; z; z0; E
� � ¼ �e$e0

me
e�ik0

$rpnG E þ zð Þpneik$r þ eik$rpnG E � z0ð Þpne�ik0
$r þ ei k�k0ð Þ$r� 	

¼ e$e0 ei k�k0ð Þ$r f k;k0;u;u0; E
� � (12)
where pn is the component of the momentum in some arbitrary
fixed direction, which we are therefore free to choose to be in the
direction normal to the scattering plane, i.e. perpendicular to both
k and k0 , which both denote predefined fixed directions. This di-
rection is henceforth denoted by the suffix n (see Fig. 1). The one-
electron operator f defined by Eq. (12) is given by

fðk;k0;u;u0; EÞ ¼ 1
2

�
fþðk;u; EÞ þ f�ð � k0;�u0; EÞ

	
(13)
Fig. 1. Diagram illustrating the geometry of Thomson scattering of plane-polarized
electromagnetic radiation from the channel (k,e) where the black arrow labelled k
denotes the direction of the radiation. and e is the direction of the (electric) polari-
zation (e,k ¼ 0), into the channel (k0 ,e0) where the red arrow labelled k0 denotes the
direction of the scattered radiation and e0,k0 ¼ 0 . Pe denotes the initial polarization
plane, which is a plane containing both e and k, and Pe0 denotes the final polarization
plane. The scattering plane PS is that containing both k and k0 . The scattering is
defined by the polar and azimuthal angles, q and f, which are respectively the angles
between k and k0 and betweenPe andPS. The planeP⊥ is the plane containing k0 that
is orthogonal to Pe; and e⊥ is the vector in P⊥ that is orthogonal to k0 . The linear
dynamics of the scattering process imposes the requirement that e0$e⊥ ¼ 0 , so thatPe0

and P⊥ are mutually orthogonal. The diagram also features n, which is the normal to
PS in the direction of k � k0 and Ph, which is the magnetic polarization plane of the
incident radiation (the plane containing k that is normal to Pe and which necessarily
contains e⊥ . (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
f± k;u; Eð Þ ¼ �1� 2
m

e�ik$rpnG± E þ uð Þpneik$r (14)

e

G± Eð Þ ¼ E �H0 ± i0þ
� ��1 (15)

The operator (6) acts on the Hilbert space of a single electron.
We now transform this into an equivalent operator acting on the
many electron Fock space, by means of the general formula,
bF ¼
X
a;b

ayaab〈ajFjb〉 (16)

where bF is the Fock-space equivalent of a Hilbert space operator F
and aya and aa are the creation and annihilation operators for the
embedded one-electron states ja〉. (see Appendix A). Replacing the
general operator F in Eq. (16) with F given by Eq. (12) yields

bF e;k;e0;k0;u;u0� � ¼X
a;b

ayaab〈a
��F��b〉

¼ e$e0
X
a;b

ayaab〈a
��ei k�k0ð Þ$rf k;k0;u;u0;Eb

� ���b〉
(17)

which is the effective scattering operator on the electron Fock space
for scattering of electromagnetic radiation by unpolarized iso-
tropically moving electrons.

Eq. (17) involves a sum over all possible transitions of the state
of an electron induced by the operator F and thereby embraces all
types of photon scattering process, which are interactions between
radiation andmatter inwhich the number of photons is unchanged.
These include Raman scattering, in which the scattering induces
discrete changes in the (bound) state of an electron with
commensurate changes in the frequency of the scattered photons;
Compton scattering in which the state of a quasi-free electron is
affected by recoil resulting from the change in the momentum of
the electromagnetic field; scatterings that cause excitation or de-
excitation of collective modes (Brillouin scattering); scattering
from tightly bound electrons (Rayleigh scattering); scattering from
bound electrons near resonance (Resonance scattering) and scat-
terings by non-relativistic electrons that leave the state of the
electron virtually unchanged (Thomson scattering). In the
following, we shall be primarily concerned with the latter, to which
end further approximations to Eq. (17) are appropriate.
3.2. Selection rules and angular distribution

An important property of the Hamiltonian H0(A) defined by Eq.
(2) is that, for any decomposition A ¼A1 þ A2 such that A1$A2 ¼ 0,
H(A1 þ A2) ¼ H(A1) þ H(A2), which allows orthogonal components
of the electromagnetic field to be treated independently, in the
first-order (Born) approximation. In particular, for a defined
entrance channel polarization be ¼ e, we can define the exit channel

polarization be0 ¼ be0k4be0⊥ to be a superposition of an in-plane mode,
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be0k , lying in the plane containing the vectors be and bk0 ¼ k0=jk0j, and
an orthogonal, out of plane mode, be0⊥. (In this section, the caret ^ is
used to denote a unit vector.) This is the canonical exit channel

basis. So, rather than treating be0 as a continuous variable, we need
only consider scattering into the discrete channels A0

⊥ and A0
k. The

same is true for the second-order terms involving A,p, which,
when averaged over the direction of p, as described above, yield

A$pGA$p ¼ A2psGps ¼ ðA2
1 þ A2

2ÞpsGps.
The scattering cross-section given by Eq. (17) vanishes ifbe0$be ¼ 0. Therefore, because be0⊥$be≡0, there is no scattering into the

⊥ mode, which implies that be0 ¼ be0k. The condition be0$bes0 is thus
expressed by

bk0
$ðbe0 � beÞ ¼ 0be � bk0

s0
(18)

which can be solved for be0 subject to be0$be0 ¼ 1, bk0
$be0 ¼ 0 to yield

be0 ¼ bk0 �
�be � bk0	���bk0 �
�be � bk0	��� ¼

be � bk0�be$bk0	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�be$bk0	2r (19)

Defining q, the scattering angle, to be the angle between bk0
andbk, and f, the azimuthal angle, to be the angle between the scat-

tering plane and the initial plane of polarization, then�bk0 � bk	$�be � bk	≡ be$bk0 ¼ cosðfÞsinðqÞ (20)

which, in combination with Eq. (19), yields the scattering angular
distribution according to

ðbe0$beÞ2 ¼ 1�
�be$bk0	2 ¼ 1� cos2ðfÞsin2ðqÞ (21)

The full scattering geometry is illustrated in Fig. 1.
Looking at this from a quantum mechanical perspective, we see

that the scattering operator is the direct product of two dipole op-
erators respectively representing absorption by and polarization of
the medium, and emission of the scattered radiation. This operator
decomposes, according to the tensor rule 151 ¼ 042, into a scalar
andsecondrank tensorpart,which is an inherentpropertyofEq. (21).

In this model, there is no coupling to the electron spin, which is
therefore unchanged by the scattering. Nevertheless spin still needs
to be accounted for in a many-electron system, because of the Pauli
principle.
3.3. Dielectric function and the optical theorem

For forward scattering, k ¼ k0 , u¼ u0, e ¼ e0, when there is no
change in the state of the scatterer, the diagonal matrix element of
Eq. (17) with respect to an arbitrary Fock state J is

〈JjbFðe;k; e;k;u;uÞjJ〉 ¼
X
a;b

〈JjayaabjJ〉〈ajf�k;k;u;u; Eb�jb〉
¼
X
a

〈JjayaaajJ〉〈ajfðk;u; EaÞja〉

¼
X
a

nafaðk;uÞ

(22)

where nb ¼ 0 or 1 is the occupancy of the electron state b in the
state J, and where f is the one-electron polarization operator,
fðk;u; EÞ≡ fðk;k;u;u; EÞ ¼ 1
2

�
fþðk;u; EÞ þ f�ð�k;�u; EÞ

	
(23)

whose diagonal matrix elements are

faðk;uÞ ¼ 〈ajfðk;u; EaÞja〉 ¼ 1
2

�
fþa ðk;uÞ þ f�a ð�k;�uÞ

	
(24)

where the elementary amplitudes,

f ±a ðk;uÞ ¼ 〈ajf±ðk;u; EaÞja〉 (25)

for forward scattering from the state a, are defined by

fþa k;uð Þ ¼ � 1� 2
me

〈a
��e�ik$rpnGþ Ea þ uð Þpneik$r

��a〉
¼ �1� 2

me

X
b

��〈a��e�ik$rpn
��b〉��2

Ea � Eb þ uþ i0þ

¼ �1�
X
b

fab k;uð Þ

(26)

f�a �k;�uð Þ ¼ �1� 2
me

〈a
��eik$rpnG� Ea � uð Þpne�ik$r��a〉

¼ �1� 2
me

X
b

��〈b��pne�ik$r
��a〉��2

Ea � Eb � u� i0þ

¼ �1þ
X
b

fba k;uð Þ (27)

where, since pn commutes with e�ik$r,

fab k;uð Þ ¼ 2
me

��〈a��e�ik$rpn
��b〉��2

Ea � Eb þ uþ i0þ
(28)

which possesses the property

fbaðk;uÞ ¼ �f *abð�k;�uÞ (29)

The forward scattering amplitude f(k,u) is the average expec-
tation value of the forward scattering operator, and follows directly
from Eq. (22) as follows

f ðk;uÞ ≡ 〈bFðe;k; e;k;u;uÞ〉
≡ trace

�
rbFðe;k; e;k;u;uÞ	

¼
X
a

〈na〉faðk;uÞ
(30)

where r is the statistical operator (Appendix A.2) and 〈na〉 ¼ 〈ayaaa〉
is the average number of electrons in the state a. The effect of
scattering on the propagation of a plane wave J ¼ J0ei(k$r�ut) in a
homogeneous medium is described by introducing a source term
4pF0J into the governing wave equation, where F0 is the forward
scattering operator, whose eigenvalues F0(k,u) ¼ ref(k,u)/V corre-
spond to the forward scattering amplitude per unit volume for the
mode (k,u). (See Appendix B) Since F0(k,u) is generally complex,
this requires, for real u, that k must also become complex, and we

therefore make the replacement k/ kþ 1
2 ik

� �bk where k and k are

both real. The modified wave equation c�2vttJ ¼ V2Jþ 4pF0J
then implies the dispersion relation,

kþ 1
2
ik

� �2

¼ u2

c2
þ 4pre

f k;uð Þ
V

(31)
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The quantity k is the attenuation coefficient, which is equivalent
to the total cross-section per unit volume,

k ≡ Nese=V (32)

where

Ne ¼
X
a

〈na〉 (33)

is the total number of electrons and se is the mean cross section per
electron, which describes all processes whereby flux is removed
from (or coherently added to by stimulated processes) the channel
(k,u). In a non-magnetic medium, the dispersion relation can also
be written in terms of the dielectric function ε(k,u) as follows

�
kþ 1

2
ik
�2

c2 ¼ u2
εðk;uÞ (34)

Combining Eqs. (31) and (34) then yields the fundamental
relationship between the dielectric function and the forward
scattering amplitude,

ε k;uð Þ ¼ 1þ 4p
V

c2

u2 ref k;uð Þ ¼ 1þ e2

u2
ε0meV

f k;uð Þ (35)

in which both f(k,u) and ε(k,u) are complex. Now, the imaginary
part of the dielectric function directly gives the attenuation coef-
ficient according to

kk ¼ u2

c2
Imεðk;uÞ (36)

which, when combined with Eqs. (35) and (32), yields

Nese ¼ 4p
k

reImf k;uð Þ (37)

which is a general statement of the optical theorem [13].
bF e;k0 þ q; e0;k0;u;u0� �
/bFT q; e$e0;u;u0ð Þ ¼ e$e0

X
a;b

ayaab〈a
��eiq$r��b〉〈b��f u;u0; Eb

� ���b〉
¼ e$e0

X
a;b

ayaab〈a
��eiq$r��b〉fb u;u0ð Þ

(41)
3.4. Thomson dipole approximation

The main approximation to be made is the Thomson dipole
approximation, which is appropriate if the wavelength ~1/k of the
radiation is much larger than the electron Compton wavelength,
ƛ ¼ rea�1

0 , where a0 ¼ 1/137.036… is the fine structure constant.
This is equivalent to assuming u << mec

2, which implies
k re << a0 < 1, and k2/2me << u, in which case the Compton recoil
energy of a single electron is very small compared with the energy of
the photon, which essentially defines the Thomson scattering
regime.

In the Thomson regime, kƛ< <1, the operator eik$r effectively
commutes with the electron propagator (since the commutator
introduces only second order quantum terms, of order k2/2me, via
the kinetic energy term in the Hamiltonian) in which case the op-
erators given by Eqs. (13) and (14) reduce to

fðk;k0;u;u0; EÞ/fðu;u0; EÞ ¼ 1
2

�
fþðu; EÞ þ f�ð�u0; EÞ

	
(38)
f± u; Eð Þ ¼ �1� 2
3me

X
s

psG± E þ uð Þps (39)
In these and subsequent equations, there is no longer a
dependence on k and it is therefore no longer necessary to restrict
pn to being in the direction normal to the scattering plane, allowing
it to be replaced by ps, which is the component of the momentum
operator in an arbitrary fixed direction. Restoring the summation
over smeans that usage of these operators is no longer restricted to
the context of the expectation of the cross-section. The scattering
operator for isotropically moving electrons (17) then becomes

bF e;k; e0;k0;u;u0� �
xe$e0

X
a;b

ayaab〈a
��ei k�k0ð Þ$rf u;u0; Eb

� ���b〉
¼ e$e0

X
a;b;g

ayaab〈a
��eiq$r��g〉〈g��f u;u0; Eb

� ���b〉
(40)

in which the summation over g factorizes the operator terms into a
diffraction part, 〈ajeiq$rjg〉, which depends upon the recoil mo-
mentum, q ¼ k � k0 , transferred to the scattering system; and a
part, 〈gjfðu;u0; EbÞjb〉 which, beyond the leading diagonal term,
incorporates dipole-induced transitions between the electron
states. The leading terms in Eq. (40), for which g ¼ b, represent
Thomson scattering and higher-order terms, those for which gs b,
where the energy differences are resolvable (as in low-lying atomic
states) are generally considered to represent strongly inelastic
Raman scattering and treated separately. Bearing in mind that
u[ju� u0j , the essential difference is that the diffraction part
represents direct scattering where recoil gives rise to angle-
dependent weak inelasticity (small energy changes) while the
part 〈gjfjb〉 involves virtual excitation of the electron to a state of
energy Eb þ u and thus readily allows strong discrete (angle inde-
pendent) inelastic transitions to much higher energy states. In the
case of Thomson scattering by electrons occupying quasi-free states
or high-lying atomic states, the matrix 〈gjfðu;u0; EbÞjb〉 is consid-
ered to be quasi diagonal, although thematrix elements themselves
are off the energy shell. This leads to the operator for Thomson
scattering being given by
where

faðu;u0Þ ¼ 1
2

�
fþa ðuÞ þ f�a ð�u0Þ

	
(42)

where f ±a ðuÞ are the dipole strengths, which correspond, in the
dipole approximation, to Eqs. (26) and (27) according to

fþa k;uð Þ/fþa uð Þ ¼ �1� 2
3me

X
s

〈a
��psGþ Ea þ uð Þps

��a〉
¼ �1� 2

me

X
b

X
s

��〈a��ps��b〉��2
Ea � Eb þ uþ i0þ

¼ �1�P
b

fab uð Þ

(43)

and
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f�a �k;�uð Þ/f�a �uð Þ ¼ �1� 2
3me

X
s

〈a
��psG� Ea � uð Þps

��a〉
¼ �1� 2

3me

X
b

X
s

��〈b��ps��a〉��2
Ea � Eb � u� i0þ

¼ �1þ
X
b

fba uð Þ

(44)

and where

fab uð Þ ¼ fab 0;uð Þ ¼ 2
3me

X
s

��〈a��ps��b〉��2
Ea � Eb þ uþ i0þ

(45)

Expressing Eq. (40) in terms of the time-dependent strength-
density operator, ~rqðtÞ defined by

~rq tð Þ≡
X
a;b

ayaab〈a
��e�iq$rf

��b〉ei Ea�Ebð Þt (46)

fjb〉 ¼ fbðu;u0Þjb〉 (47)
2 uð Þ ¼ uε0Imε uð Þ ¼ � e2

3m2
euV

X
a;b

X
s

〈na〉� 〈nb〉
� ���〈b��ps��a〉��2Im 1

Ea � Eb þ uþ i0þ

¼ pe2

3m2
euV

X
a;b

X
s

〈na〉� 〈nb〉
� ���〈b��ps��a〉��2d Ea � Eb þ u

� �
¼ pe2

2meV

X
a;b

〈na〉� 〈nb〉
� �

f 0abd Ea � Eb þ u
� �

(54)
where the amplitudes fb(u,u0) are given by Eq. (42), yields

bFðe;k; e0;k0;u;u0; tÞ ¼ e$e0~rk0�kðtÞ (48)

Some transparency is gained by expressing the operators ~rq and

~r
y
q symbolically in terms of the standard density operator rq

(Appendix A, Eq. (218)) according to: ~rqðtÞ≡rqðtÞ~f, ~ryqðtÞ≡~f
y
r�qðtÞ in

which ~f and ~f
y
are superoperators acting on the density operator

immediately to the. left and right respectively.
The scattering operator for Thomson scattering thus reduces to

the elegant and simple forms.

bFT q; e$e0;u;u0; tð Þ ¼ e$e0~r�q tð Þ ¼ e$e0r�q tð Þ~f (49)
3.5. Electrical conductivity, oscillator strengths and sum-rules

In the Thomson dipole approximation, the forward scattering
amplitude (30) becomes
f uð Þ ≡ f 0;uð Þ ¼
X
a

〈na〉fa uð Þ (50)
where

faðuÞ ¼ faðu;uÞ ¼ 1
2

�
fþa ðuÞ þ f�a ð�uÞ

	
¼ �1� 1

2

X
b

�
fabðuÞ � fbaðuÞ

�
(51)

Combining Eqs. (50) and (51) yields

f uð Þ ¼ �Ne � 1
2

X
a;b

〈na〉 fab uð Þ � fba uð Þ� �
¼ �Ne � 1

2

X
a;b

〈na〉� 〈nb〉
� �

fab uð Þ
(52)

where fab(u) is given by Eq. (45), in terms of which the long-
wavelength limit of the dielectric function (35) is

ε uð Þ ¼ ε 0;uð Þ ¼ 1þ e2

u2
ε0meV

f uð Þ (53)

This yields the electrical conductivity 2ðuÞ according to
which is the KuboeGreenwood formula [14,15]. The final expres-
sion on the right of Eq. (54) expresses the result in terms of the one-
electron dipole oscillator strengths,

f 0ab ¼ 2
3me

X
s

��〈b��ps��a〉��2
Eb � Ea
� � (55)

which are related to the fab by the Cauchy identity

ImfabðuÞ ¼ �pud
�
Ea � Eb þ u

�
f 0ab (56)

and which satisfy the ThomaseReicheeKuhn sum rule in the ve-
locity gauge,X
b

f 0ab ¼ �
X
a

f 0ab ¼ 1 (57)

Integrating the Kubo-Greenwood formula, (54), with respect to
u, making use of Eqs. (55) and (57), yields
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1
ε0

Zþ∞

�∞

2 uð Þdu¼
Zþ∞

�∞

uImε uð Þdu

¼ pe2

2meε0V

Zþ∞

�∞

X
a;b

〈na〉�〈nb〉
� �

f 0abd Ea�Ebþu
� �

du

¼ pe2

2meε0V

X
a;b

〈na〉�〈nb〉
� �

f 0ab¼
pe2

meε0V

X
a

〈na〉

¼ pe2

meε0

Ne

V
≡ pU2

0

(58)

which is the conductivity sum rule. Since Imε(u) is an odd function
of u, this can also be written,

1
ε0

Z∞
0

2ðuÞdu ¼
Z∞
0

uImεðuÞdu ¼ p

2
U2
0 (59)

Combining Eqs. (52), (53) and (57) yields the sum rule in yet
another form:

2
p

Z∞
0

Imf uð Þdu
u

¼ 1
2

X
a;b

〈na〉� 〈nb〉
� �

f 0ab

¼P
a
〈na〉 ¼ Ne

(60)

Note that Eqs. (58)e(60) embrace all of the electrons
in the system (¼Ne) including bound electrons. This is
because the integral over frequency extends to infinity, so
all possible transitions between electron states are
encompassed.

If the electrons are in LTE at a temperature T, then 〈na〉 ¼ pðEaÞ,
where pðEÞ is the FermieDirac distribution.

pðEÞ ¼ 1
1þ expðE=T � hÞ (61)

and h ¼ me/T is the degeneracy parameter, which is determined by
the normalization to the particle number, (33). Hence

�
〈na〉� 〈nb〉

�
d
�
Ea � Eb þ u

� ¼ �1� e�u=T
	
pðEaÞqðEa þ uÞ

� d
�
Ea � Eb þ u

�
(62)

where qðEÞ ¼ 1� pðEÞ, by which (54) may be recast in the following
form
2ðuÞ ¼ uε0ImεðuÞ ¼ pe2

2meV

�
1� e�u=T

	X
a;b

pðEaÞqðEa þ uÞd�Ea � E

¼ � e2

2meV

�
1� e�u=T

	
u

X
a;b

pðEaÞqðEa þ uÞImfabð

¼ e2ne
2me

�
1� e�u=T

	
u

X
a

pðEaÞqðEa þ uÞImfþa ðuÞ
use having been made of Eqs. (56) and (43) and in which the sum
over a can be interpreted as a sum over probabilities of transitions
whereby a photon of frequency u is absorbed by an electron
initially in state a with probability pðEaÞ leading to a state whose
probability of being initially unoccupied and therefore available is
qðEa þ uÞ. The factor (1 � e�u/T) incorporates the effect of induced
emissions, as required by detailed balance. Eq. (63) is a standard
formula for the absorption coefficient, kabs, which is closely related
to the opacity. Making reference to Eq. (36), noting that the ap-
proximations leading to Eqs. (54) and (63) retain only contributions
of Оða0Þ while the scattering contribution to the attenuation co-
efficient is Оða20Þ and therefore not included, leads to

kabsðuÞ ¼
zðuÞ

nðuÞε0c
(64)

where nðuÞ ¼ ck=u ¼ Re
ffiffiffiffiffiffiffiffiffiffi
εðuÞp ¼

�
1
2 ReεðuÞ þ 1

2 jεðuÞj
�1=2

is the

refractive index, and hence the absorption contribution to the
attenuation coefficient is

kabsðuÞ¼ne
4pre
k

�
1�e�u=T

	X
a

pðEaÞqðEaþuÞImfþa ðuÞ
.X

a

pðEaÞ

(65)

A feature of Eqs. (64) and (65) is the presence of a factor of
1=nðuÞ compared with the versions of these formulae that apply in
vacuo, as has been previously noted [16e18].
3.6. Strength functions

The function fa(u) defined by Eq. (51) is the strength function
(sometimes loosely referred to as a response function) or scat-
tering factor [19] which is a function that describes the dynamical
response, via virtual excitations, of an electron in the state a, to a
photon of frequency u, relative to that of an entirely free electron,
for which f(u) ≡ �1, where the minus sign is a manifestation of
Lenz's law. Basically, the strength function encodes how the
electron's response to the radiation is modified by the interaction
between the electron and its environment (e.g. through interac-
tion with a potential or by collisions with other particles). In the
case of electrons that are tightly bound in an atomic potential,
when the photon energy is insufficient to cause real excitations,
the strength function tends to zero. In general, the strength
function is a complex function modulated by resonances, when
the photon energy can excite the electron to a higher discrete
level, or, most significantly, by photoionization when the photon
energy is sufficient to cause ionization. It is evident from Eq. (39),
for example, that the deviation of the strength function from �1 is
entirely due to the polarization (A,p) terms in the Hamiltonian.
b þ u
�
f 0ab

uÞ

.X
a

pðEaÞ

(63)
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Let

faðuÞ ¼ �ð1þ caÞ (66)

and let the reduced absorption cross-section associated with state a

be defined by

~sa uð Þ ¼ 4prec
u

Imfa uð Þ (67)

in terms of which, referring to Eqs. (64), (54) and (50), the ab-
sorption coefficient is given by

nðuÞkabsðuÞ ¼
u

c
ImεðuÞ ¼ e2

ucε0meV

X
a

〈na〉ImfaðuÞ

¼ 1
V

X
a

〈na〉~saðuÞ (68)

The conductivity sum rule is then expressed by

Z∞
0

ImcaðuÞ
du
u

¼ �p

2
(69)

and the KramerseKr€onig dispersion relation relating the real and
imaginary parts of the dielectric function yields

ca uð Þ ¼ �1
4prec

2
p
§

Z∞
0

~sa u0ð Þ
u02 � u2 u

02du0 þ iu~sa uð Þ
0@ 1A (70)

The functions ~saaðuÞ for a specified species a can be obtained
from an opacity calculation, for example, and Eq. (70) then provides
the means of determining caaðuÞ.

A useful analytic function in Imu > 0 that fulfils these re-
quirements precisely and corresponds to a bound-free edge char-
acterised by the archetypal above-threshold absorption profile,
fu�3 [20,21], is

ca uð Þ ¼ E2a þ 2D2
a

u uþ inað Þ ln 1� u2

E2a
� 2iDaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2a þ 2D2
a

q u

Ea

0B@
1CA (71)

inwhich Ea > 0 is the binding energy, Da is a measure of the spectral

width of the level a and na ¼ 2ðDa=EaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2a þ 2D2

a

q
. The real and

imaginary parts of Eq. (71) are as follows;
RecaðuÞ ¼
E2a þ 2D2

a

u2 þ n2a

0B@1
2
ln

 
1� 2u2

E2a þ 2D2
a

þ u4

E4a

!
� na

u
tan�1

0B@ 2DaEaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2a þ 2D2

a

q u

E2a � u2

1CA
1CA

ImcaðuÞ ¼ �E2a þ 2D2
a

u2 þ n2a

0B@ na

2u
ln

 
1� 2u2

E2a þ 2D2
a

þ u4

E4a

!
þ tan�1

0B@ 2DaEaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2a þ 2D2

a

q u

E2a � u2

1CA
1CA

(72)
where, for u > 0 the inverse tangent is defined in the range (0,p).
For small u,
RecaðuÞ ¼ �1�
 
1� 4

3
D2
a

E2a þ 2D2
a

!
u2

E2a
þ О

 
u4

E4a

!

ImcaðuÞ ¼ �3E4a þ 16D2
aE

2
a þ 12D4

a

12Da

�
E2a þ 2D2

a

	3=2 u3

E3a
þ О

 
u5

E5a

! (73)

while for large u[Ea

RecaðuÞ �
E2a þ 2D2

a

u2

 
ln

 
u2

E2a

!
� na

jujp
!

ImcaðuÞ � �E2a þ 2D2
a

u2

 
na

juj ln
 
u2

E2a

!
þ p

! (74)

according to which the function fa(u) defined by Eqs. (66) and (71)
possesses the following limits

fa uð Þ /
u/0

1� 4
3

D2
a

E2a þ 2D2
a

 !
u2

E2a

fa uð Þ /
u/∞

�1� E2a þ 2D2
a

u2 ln
u2

E2a

� �
� pi

� �
/� 1

(75)

At resonance, u ¼ Ea,

ca Eað Þ ¼ �1
2

E2a þ 2D2
a

Ea Ea þ inað Þ ln
1
2
þ Ea

2Da

� �2
 !

þ pi

 !
(76)

so, for Da≪Ea,

fa Eað Þ ¼ �1� ca Eað Þxln
Ea
2Da

� �
� 1þ 1

2
pi (77)

in which the real part is characterised by a logarithmic spike while
the imaginary part passes through ½p. The full function fa(u) for
Da/Ea ¼ 0.01 is illustrated in Fig. 2.

For sharp edges ðDa≪EaÞ the width 2Da is the full-width at half
maximum (FWHM) of the broadening profile defined as

LaðuÞ ¼ 1
Ea

v

vu

�
u2 ImfaðuÞ

	
(78)

i.e.

2Da ¼ FWHMðLaðuÞÞ (79)
which approximation is found to be valid when D/E ( 0.1.
Note that this model ignores the effect of higher lying vacant

bound levels. In general, some of the strength that has been



Fig. 2. Illustration of the analytic function f(u) defined by Eqs. (66) and (71) for D/E ¼ 0.01. The red curve denotes the real part of the function, which is the polarizability, and the
blue curve denotes the imaginary part, which gives the absorption coefficient through Equation (68). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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assigned to the bound-free edge at u¼ Eawould become associated
with the boundebound lines corresponding to transitions a/ b in
which a photon is absorbed. High lying bound levels merging with
the continuum contribute to the effective width, while sparse
deeply-bound levels may be considered to make a relatively small
contribution to the total strength. In general, a KramerseKr€onig
transform of the complete absorption spectrum a/, including the
effect of stimulated emission, would be needed to determine the
resonance profile accurately. In the special case of a highly degen-
erate electron system (cold metal or degenerate warm dense
matter) all the bound levels are filled so there are only edges, and
no lines, in the spectrum, and the model is directly applicable.

For the continuum electrons, we invoke the Drude free electron
model,

ε uð Þ ¼ 1� U2
e

u uþ inð Þ (80)

where

Ue ¼
ffiffiffiffiffiffiffiffiffiffiffi
nee2

ε0me

s
(81)

is the free-electron plasma frequency and n is a characteristic
collision frequency. Eqs. (53) and (50) then yield

X
a>0

〈na〉fa uð Þ ¼ � u

uþ in

X
a>0

〈na〉 ¼ � u

uþ in
neV (82)

where ne is the average free electron density. Hence

〈fa>0 uð Þ〉 ¼ ff uð Þ ¼ � u

uþ in
(83)

Taking the imaginary part of Eq. (80) andmaking use of Eq. (54),
taking account of only the free electrons, leads to a formula for n as
follows

n

u2 þ n2
¼ p

2neV

X
a>0; b>0

〈na〉� 〈nb〉
� �

f 0abd Ea � Eb þ u
� �

(84)
which renders n as a function of u. Application of Eqs. (62) and (63)
then leads to

n

u2 þ n2
¼ 1� e�u=T

2neVu

X
a>0

pðEaÞqðEa þ uÞImfþa ðuÞ (85)

By means of the anzatz

Im
�1

uþ ina uð Þ ¼
3

4Ea
Imfþa uð Þ (86)

for real u � 0, Eq. (85) can be recast in the following form

n

u2 þ n2
¼ 2

3
1� e�u=T

u
〈Ea

na

u2 þ n2a
qðEa þ uÞ〉

a>0
(87)

which provides a means of interpolating between the conductivity
collision frequency

1
nc

≡
1

nð0Þ ¼
2
3T

〈
1

nað0Þ EaqðEaÞ〉a>0
(88)

in terms of which the DC conductivity is given, in accordance with
Eq. (63), by

2 0ð Þ ¼ e2ne
menc

(89)

and the high-frequency bremsstrahlung collision frequency

nbrðuÞ ≡
u

T
nðuÞju> > T ;na ¼

2
3T

〈EanaðuÞqðEa þ uÞ〉a>0 (90)

in terms of which the bremsstrahlung reduced absorption coeffi-
cient is

~kbr uð Þ ¼ 2
U2
eT

u3c

�
1� e�u=T

	
nbr uð Þ (91)

In dense plasmas and metals, nc and nbr are typically less than or
of the order of a few eV in both regimes, so, at x-ray energies, and
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temperatures T≪u2=nbr, the factor u2/(u2 þ n2) can reasonably be
approximated by unity.
t

3.7. Differential cross-section

Following the general argument given in Ref. [10], the differ-
ential cross-section for the scattering of photons from the channel
u,k into the element du0dU0 about the channel u0, k0 is obtained as
follows

vs

vU0vu0 ¼
1
2p

r2e
u0

u

Zþ∞

�∞

〈bFy 1
2
t

� �bF �1
2
t

� �
〉exp i u� u0ð Þtð Þdt

¼ 1
2p

r2e e$e0ð Þ2 u0

u

Zþ∞

�∞

〈~f
y
rq

1
2
t

� �
r�q �1

2
t

� �
~f〉exp i u� u0ð Þtð Þd

(92)
〈~f
y
rq
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*
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〈ayaaaa
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y
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*
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þ
X
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〈ayaaa〉jfaj2jfaaj2

¼
X
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(96)
where bF is the operator given by Eq. (48) and q ¼ k � k0 , which is
the generalization of Eqs. (18) and (21) in Ref. [10]. Note the fact
that the factor u0/u is not squared. The integral on the right-hand
side of Eq. (92) is the strength-density dynamic structure factor
(which is the dynamic structure factor defined in terms of the
strength density instead of the electron density.) In the forward
direction (q ¼ 0), Eq. (92) reduces to

vs

vU0vu0
��
q¼0

¼ r2e 〈
��X

a

nafa uð Þ��2〉d u� u0ð Þ (93)

Expanding the kernel using Eqs. (46) and (47) yields the inter-
mediate strength-density correlation function,

〈~fyrq
�
1
2
t
�
r�q

�
�1
2
t
�
~f〉¼X

a;b;g;d
〈ayaabfab

�
q;
1
2
t
�
fgd

�
�q;�1

2
t
�
aygad〉

�f *a ðu;u0Þfdðu;u0Þ
(94)

in which

fab q; tð Þ ¼ 〈a
��eiHte�iq$re�iHt��b〉 ¼ 〈a

��e�iq$r��b〉ei Ea�Ebð Þt

¼ 〈a
��e�iq$r tð Þ��b〉 (95)

are scalars on the Fock space of the electrons but operators on the
Fock space of the atomic nuclei, and in which Ea, Eb are the
electronic level energies. Since only the electron coordinates have
been integrated over, the functions (95) depend upon the nuclear
dynamics. The expectation average in Eq. (94) represents an
average over both electronic and nuclear configurations. This is
treated using the Born-Oppenheimer approximation [22,23] which
depends upon the assertion that the ion motion is sufficiently slow
for the electron dynamics to be determined independently of it.
This allows the electronic states a, b,… to be effectively treated
within a static nuclear configuration, with the nuclear motion
subsequently introduced via an adiabatic approximation.

We evaluate (94), for a particular ion configuration denoted by
the ion coordinates, Ri, i ¼ 1…Ni , corresponding to some instant in
time, using: (i) that the expectation value only contains contribu-
tions from terms when equal numbers of particles are created and
annihilated in each state and (ii) the fermion commutation re-
lations (Appendix A, Eq. (199)) together with the fermion rule
〈ayaaaayaaa〉 ¼ 〈n2a〉 ¼ 〈na〉 ¼ 〈ayaaa〉 (where na¼ 0 or 1 is the number
of electrons in the state a). The quantities fab can then be treated as
scalars. This procedure yields
in which fa ¼ fa(u,u0) and fab and f*
ab(without arguments) denote

fab ¼ fab q;
1
2
t

� �
¼ 〈a

���e�iq$r 1
2 tð Þ���b〉

f*
ab ¼ fba �q;�1

2
t

� �
¼ 〈b

���eiq$r �1
2 tð Þ���a〉 (97)

The first term in the sum on the right-hand side of the final
expression of Eq. (96) represents coherent scattering. The second
term describes incoherent inelastic scattering, which is recoil-
induced Raman scattering [24], also sometimes referred to as
nonresonant inelastic X-ray scattering (NIXS) [25], as a sum over
one-electron transitions a / b.
4. Scattering from atomic systems

4.1. Decomposition of the strengthedensity correlation function

Wenowproceed tomake the customary decomposition of Eq. (96)
into sumsover bound (or core) and free states,where the bound states
are defined to be one-electron states that are localisedwellwithin the
dimensions of the wavelength of the radiation. For atomic states
generally to satisfy this requirement, it is appropriate to make the
long-wavelength assumption, which asserts that the wavelength is
much greater than the atomic size as characterised by the Bohr
radius. This requires 1=k> > rea�2

0 , which is equivalent to
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u≪a0mec2x3:6 keV, which is a weaker assumption than that
required for the Thomson dipole approximation, as discussed in sec-
tion3.4. It is typicallyaveryvalid assumption in theoptical regime, but
becomes less true in the x-ray regime, where one needs to be careful
about its applicability, and it may be appropriate to consider the ap-
proximations on a state-by-state basis. In hot plasma, for example, the
core states inhighlyexcited ionswill be confinedwithinmuch smaller
distances than the Bohr radius, by factors ~1/(Z� Zb)2), thus extending
the validity of the assumption, while highly excited electron states
(e.g. Rydberg states) in atoms or ions, may be less confined. The long-
wavelength assumption is generally necessary to make the atomic
dipole approximation in the treatment of the absorption and emission
of radiation by atomic systems, though the validity of this approxi-
mation in the X-ray regime is not without question [26].

The sum
P
a;b

on the right hand side of Eq. (96) can then be

decomposed according toX
a;b

¼
X

a<0;b

þ
X

a>0;b<0

þ
X

a>0;b>0

(98)

where a < 0, for example, denotes a bound state and b > 0 a free
state. The third term, which comprises a double sum over free
states only, is then restored to the original form,

X
a>0;
b>0
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*
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2
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� �
~f〉

(99)

where rfq
~f ¼ ~rfq is the free-electron strength density operator.

The result, after some manipulation, is
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(100)

Eq. (100) decomposes the scattering cross-section into separate
contributions represented by the four terms on the right hand side.
The first term represents the principal contribution from free
electrons; the second and third terms represent respectively inco-
herent and coherent scattering from bound electrons; and the
fourth term represents interference between coherent scatterings
from bound and from free electrons.

For very dilute free electron systems, the operator f tends
to �1. More generally, the free electron term is taken to be repre-
sented by

〈~f
y
rfq

1
2
t

� �
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2
t

� �
~f〉 ¼ ��ff uð Þ��2〈rfq 1

2
t
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rf�q �1

2
t

� �
〉 (101)
where ff(u) is given by Eq. (83), which leads to the minimal
approximation,
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〉 (102)

where n is the characteristic collision frequency in the Drude
model.

The remaining three terms involve bound states. Assuming that
there are no molecules present, each bound state can be associated
with a single nucleus. We can then resolve the bound states a < 0,
according to a / a, i, where a, i denotes the electronic bound state
a in the field of the nucleus i. The coordinates of the electron are
thenwritten r/ reiþ Ri, where rei is the electron's position relative
to the nucleus, i, and Ri is the nuclear coordinate, which is treated
classically. This separation restricts the Fock space fja〉g to that of
the electrons only. When both or either of the states a, b denote a
bound state, with respect to nuclei i, j, the functions defined by Eq.
(97) then become

fab/dijf
i
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�
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1
2
t
�

f*
ab/dijf

i
ba
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t
�
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(103)

where

fi
ab q; tð Þ ¼ 〈a; i

��e�iq$rei tð Þ��b; i〉e�iq$Ri tð Þ

¼ ei Ea�Ebð Þtfa
ab qð Þe�iq$Ri tð Þ; i2a (104)

and

fa
aa qð Þ ¼ 〈a; i

���e�iq$rei 0ð Þ
���a; i〉��i2a ¼

Z ���ja
a reið Þ��2e�iq$rei d3rei

(105)

is the Fourier transform of the bound electron density and where a
denotes a particular ion species defined by the nuclear species (Z,A)
and charge state Za and where any overlap between bound states
associated with different nuclei has been ignored. The sum over
individual nuclei {i} then transforms into a sum over atomic species
{a} according toX
i

¼
X
a

X
i2a

(106)

where the sum over i2a denotes a sum over all ions of the same
species.
4.2. Incoherent scattering

Incoherent scattering is represented by the second term on the
right-hand side of Eq. (100), which may now be recast as follows
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where 〈〉a represents an average over the subset of ions of species a.
and where
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where it has been assumed that the one-electron states b associ-
ated with a particular ion comprise a complete set. The term (107)
represents incoherent inelastic scattering in which the electrons
undergo direct excitations (de-excitations) a / b, in which energy
Eb � Ea is transferred from (to) the photon in the process. The
transitions can occur only when there is an electron in the initial
state and none in the final state, which accounts for the 〈nað1� nbÞ〉
factor. The function Sa

a q; tð Þ defined by (108) is the particle-hole
intermediate time autocorrelation function for the bound state a, a;
and xaaðq; tÞ defined by (109) is the corresponding particleeparticle
intermediate time autocorrelation function.

The corresponding dynamic structure factors are
Sa
a q;uð Þ¼ 1
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�∞

Sa
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� ����fa

ab qð Þ
���2
Optically inactive states are those bound states in which the
electron is confined within dimensions very much smaller than
the wavelength. Localised states for which the long-wavelength
approximation does not hold are referred to as optically active.
Such states may exist in the optical regime and the modification
of the spectral properties of scattered radiation that they
give rise to is perceived as colour. However these states are
generally associated with continuum electrons, rather than core
states.
For Thomson scattering in the optical regime, it is reasonable to
treat the core states (occupied bound states) as being optically
inactive. For such states, the long-wavelength approximation is
equivalent to setting the matrix elements of the commutator
[H,q,r] between such states to zero. Referring to (109), this yields
xaaðq; tÞ þ

��fa
aaðqÞ

��2x1, which corresponds to the static (geomet-
rical optics) limit. In effect, this means that the Compton recoil is
insufficient to perturb the internal state of the ion and that the
recoil is taken up by the ion as awhole or by the ions collectively. In
the long-wavelength approximation, we then have,
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��2; a<0 (111)
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where q$raab ¼ 〈a; ajq$rjb; a〉, which is real. Note that completeness
demands that there are some optically active states present, since

X
bðbsaÞ

fa
abf

a*
ab ≡ 1� ��fa

aa

��2s0 (113)

The approximation represented by (112) is applicable when the
summation over b is weighted by the occupancy of the state and the
optically active states are sparsely populated ð〈nb〉≪1Þ. For
example, while Rydberg states in low-density plasmas are candi-
dates to be optically active, such states, when they exist, are
generally well above the level of the chemical potential and
therefore weakly populated.

On the other hand, for free states (which can be treated as non-
localised quasi-plane-wave states corresponding to points on the
reciprocal lattice of a 3-torus) we can neglect any coupling be-
tween bound and free states induced by the operator eiq,r when
the Compton recoil is insufficient to cause ionization of any core
state, which is defined to be a bound state having non-negligible
occupancy. This is tantamount to saying that, in the long wave-
length approximation, at least, eiq$r

��a> ��
a>0 comprises a super-

position of free states that are orthogonal to any core bound state,
i.e.,

〈nanb〉af
a
abðqÞx0; a>0; b<0 or a<0; b>0 (114)

Even in Thomson scattering, the recoil, although classically
negligible, is still finite. If it is taken up by an individual electron,
the state of that electron must change, however slightly, and the
Pauli principle comes into effect. This can have a disproportionally
large effect on the scattering if the final state is blocked, as is
typically the case in degenerate plasma. If however the electron is
bound and the recoil does not change the internal state, there is no
Pauli blocking and the recoil is taken up by the ion, or ions
collectively. This is described by the intermediate ion self-
correlation function,
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(115)

which when applied to Eq. (107), while applying the approxima-
tions (111)e(114), yields
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(116)

Equation (116) describes incoherent scattering by electrons in
optically-inactive bound states where the scattering is according to
ordinary wave optics, while momentum and energy conservation
are accommodated through recoil of the ions.

At the other extreme, when the recoil energy is large (so that
ju� u0j> > jEaj) which is a situation which commonly arises in the
treatment of the incoherent (NIXS) component of XRTS from
weakly bound electrons, other approximations become applicable.
One that seems to be particularly favoured is the impulse approxi-
mation (IA) [27], in which any motion, relative to the potential, of
the active electron during the scattering is ignored, so that only the
kinetic energy changes. The resulting dynamic structure factor re-
sembles RPA in the sense of being an average of
dðu� u0 � ðp$q=mÞ � ðq2=2mÞÞ over the distribution of initial
electron momenta p, while accounting for Pauli blocking in the
final state. However, the momentum distribution, instead of being
given by the plane-wave density of states as in the RPA, is given in
terms of the momentum spectral distribution or the real-space
Green functions [25], as may be determined from HartreeeFock
(HF) or density functional theory (DFT) calculations. Recent ex-
tensions of the IA [28] that take account of the electron binding
energy in bound-free scattering, for example, have yielded good
agreement with recent XRTS measurements in warm dense matter
(WDM) [5,6].

In general, an atom may contain both optically active and
inactive states, in which case the sum over states may be split
accordingly and the appropriate approximations applied as
required.
4.3. Ion correlations

The ion self-correlation function (115) is related to the inter-
mediate ion correlation matrix defined by,

Sab q; tð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
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þ dabS
s
aa q; tð Þ (117)

which represents the temporal and spatial correlations between
ions of species a and b, and which reduces to the static structure
factor, Sab(q,0) ≡ Sab(q), when the nuclei are stationary. If the
temporal fluctuations (velocities) are independent of the spatial
correlations (positions), an assumption that may be considered
appropriate for systems interacting via short range forces (e.g.
small hard cores) then Saa q; tð Þ ¼ Saa qð ÞSsaa q; tð Þ. More generally, we
may write

Saaðq; tÞ ¼ SaaðqÞSsaaðq; tÞ þ Daaðq; tÞ (118)

where

Ssaa q; t ¼ 0ð Þ ¼ 1
Daa q; t ¼ 0ð Þ ¼ 0; Daa q; t/∞ð Þ ¼ 0; Daa q;�tð Þ ¼ Daa q; tð Þ

(119)

The Fourier transform of (117) with respect to time gives the
ioneion dynamic structure factor,
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Sabðq;uÞ ¼
1

Zþ∞

Sabðq; tÞeiutdt (120)

2p

�∞

and hence, from Eq. (118),

Saaðq;uÞ ¼ SaaðqÞSsaaðq;uÞ þ Daaðq;uÞ (121)

where Ssaaðq;uÞ and Daa(q,u) are calculated from their corre-
sponding intermediate functions in accordance with (120). A
reasonable model of the self-correlation for weakly-coupled
Coulomb systems is provided by

Ssaa q;uð Þ ¼ ��εa q;uð Þ��2Saa q;uð Þ (122)

where εa(q,u) is the dielectric function of the ion species a
defined so that the total dielectric function is
ε q;uð Þ ¼ εe q;uð Þ þP

a
εa q;uð Þ � 1ð Þ. Equation (122) holds for clas-

sical (Boltzmann) particles in the RPA, for example, when Ssaa q;uð Þ
would be the dynamic structure factor for non-interacting particles,
which then comprises only the self part. Equation (122) is claimed
to have more general validity, potentially applicable to non-
equilibrium systems, through the deployment of a more accurate
dielectric function [29]. For equilibrium systems, application of the
Fluctuation-dissipation theorem [30e32], yields
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T
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where Da is the Debye length defined by
1=D2

a ¼ maU
2
a=T ¼ naZ2a e

2=ε0T . Integration of (123) over frequency
yields, for non-degenerate systems,
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Im εa q;uð Þð Þdu ¼ 1 (124)

which complies with the first of Equation (119). Note that we have
not made recourse to the usual classical assumption that
u< < T01� e�u=Txu=T . Equation (124) is exact, in the context of
RPA, but would require additional assumptions and approximations
were the classical form to be used: Firstly, the classical integral is
exhausted by the compressibility sum rule but, because the integral
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(128)
extends to infinity, beyond the classical regime, the correct result is
yielded only if Imεa(q,u) vanishes or makes a negligible contribution
in the regimeu> � T . The classical assumption is not generally valid,
even for ions: It is not difficult to envisage that u; Ua >e T in situa-
tions involving x-ray scattering in metals or warm dense matter, for
example. For freely moving weakly interacting ions with a Max-
wellian velocity distribution, a semiclassical calculation yields [33]

Ssaa q;uð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma

2pq2T

r
exp � ma

2q2T
u� q2

2ma

� �2 !
(125)

which describes the effect of both Doppler broadening and recoil
on the scattering by such particles. For interacting particles in a
plasma fluid, Eq. (125) is a reasonable description for frequencies u
much greater than the putative collision frequency.

In strongly coupled systems, the ion correlations depend upon
the frequencies,UK¼U�K, of the collectivemodes {K}, each defined
by its wavevector K and polarization eK. In a monoatomic crystal-
line solid comprising a single species, the dynamic ioneion struc-
ture factor takes the (approximate) form [34]

Saa q;uð Þ ¼ B qð ÞSaa qð Þd uð Þ þ 1� B qð Þð ÞSinelaa q;uð Þ (126)

where SaaðqÞ is the ‘zero excitation’ lattice static structure factor
defined as the static structure factor in the limit N K þ 1=2/0
when all collective modes, including zero-point modes, are sup-
pressed. (Note that SaaðqÞsSaaðqÞ.) Both SaaðqÞ ¼

R∞
�∞ Saaðq;uÞd u

and SaaðqÞ are quantum mechanical objects and subject to a
quantum uncertainty. Even in the zero excitation limit, incoherent
quantum fluctuations persist and are characterised by the corre-

lation length Lq ¼ macs=ð naZÞ1=2 where cs is the sound velocity and
na the particle density. (See Appendix C) This accounts for the decay
in the pair correlation at large distances, something that does not
occur in the equivalent classical structure factor in which all
the particles would be placed at precisely fixed locations.
For typical metals, this distance seems to be of the order of a
nanometre. Particular implications of this include the limits,
SaaðqÞ /

jqj/∞
1 ≡ SaaðqÞ /

jqj/∞
1, yielding, in both instances, pair

correlation functions that are square integrable over all space.
In Eq. (126), the function
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(127)

is the DebyeeWaller factor, in which Ma ¼ 〈Na〉ma,
N K ¼ 1=ðexpðUK=TÞ � 1Þ is the BoseeEinstein occupancy of the
mode K, and
is the inelastic dynamic structure factor which describes the exci-
tation and de-excitation of phonon modes K in the scattering sys-
tem. The first term in Eq. (126) describes Laue and Bragg scattering,
and the second describes Brillouin scattering by the collective
modes (phonons). Subject to the approximation (127), the dynamic
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structure factor (126) satisfies the f-sum
Z ∞

�∞
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q2=2ma, by virtue of the lemma (see Appendix C),X
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which holds for any finitely bounded function f(q) for which the
sum

P
q
f ðqÞ is absolutely convergent. The self-correlation is given

by (126) with Saa ¼ 1, [34], which yields
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(130)

which satisfies
Z ∞

�∞
SSaa q;uð Þdu ¼ 1 identically, and the f-sumZ ∞

�∞
SSaa q;uð Þ udu ¼ q2=2ma by virtue of

P
fKg

ðq$eKÞ2 ¼ q2〈Na〉 ,

which is a limiting case of (129), and the approximation (127).
4.4. Scattering by bound electrons

In order to take account of the coupling (mixing) between
electron states within the same atom, i, it is appropriate to
define the electron pair distribution for a pair of electron states, a,
b, as follows, where r and r0 denote the electron coordinate
operators.
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which effectively replace fi
aaf

i*
bb and fi

aaf
j*
bb respectively, where

jSaða; bÞ; i〉 denotes a two-electron state Saða; bÞ in the field of the
nucleus i and where
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In Equation (131), Fa
ab is the distribution function for a pair of

electrons occupying the mixed state Saða; bÞ in the average field of
the remaining electrons within the same ion species a, while fa

aa is
the equivalent function for a single electron in the state a. For
coupled identical particles, it is appropriate to use a symmetrised
form of the joint density such that

Fa
abðqÞ ¼ Fa

baðqÞ ¼ Fa
abð�qÞ ¼ Fa

bað�qÞ (133)

and
1
2

�
fa
aaðqÞ þ fa

bbðqÞ
	
¼ 〈Saða; bÞ; ijeiq$rjSaða; bÞ; i〉

���
i2a

(134)

Substituting into the third terms of (100) according to (103) and
subsequently averaging over the ion configurations, yields

X
a<0;b<0

〈nanb〉f *a fbfaaf
*
bb ¼

X
i;j

X
a<0;b<0

〈nian
j
bF

ij
abðq; tÞ〉f *a fb

¼
X
a;b

X
i2a;j2b

X
a<0;b<0

〈nian
j
b〉F

ij
abðq; tÞf a*a f bb

(135)

We now make the independence assumption that the electronic
states in different atoms are uncorrelated with each other and
with the positions of the atoms. Moreover, we take the one electron
states to be of definite parity, as in the Hartree central field
approximation, in which case the densities fa

aaðqÞ are real, so that
fa
aaðqÞ ¼ fa*

aaðqÞ ¼fa
aað�qÞ. Then, referring to Eq. (131) and making

use of Eq. (115),
where Pa ¼ 〈Na〉=Ni is the average fraction of atoms in the charge
state a, 〈na〉a ¼ 〈nia

��i2a〉¼ 1=〈Na〉
P
i2a

〈nia〉 denotes the average

number of electrons in the state a associated with ions of species a
and where

gaabðqÞ ¼ 〈nanb〉aF
a
abðqÞ � 〈na〉a〈nb〉af

a
aaðqÞfa

bbðqÞ
¼ 〈nanb〉a

�
Fa
abðqÞ � fa

aaðqÞfa
bbðqÞ

	
þ �〈nanb〉a

� 〈na〉a〈nb〉a
�
fa
aaðqÞfa

bbðqÞ
(137)

is the internal bound-state covariance for electron states a, b in ions
of species a, which, in the final expression on the rhs of Eq. (137), is
divided up into two parts: the dynamical correlation due to config-
uration interactions, representing two-electron correlations beyond
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HartreeeFock, and the statistical correlation due to fluctuations in
the electron populations. (Exchange correlations are dealt with via
the commutation relations obeyed by the fermion creation and
annihilation operators.) Substitution into Eq. (135), yields

X
a<0;b<0

〈nanb〉f *a fbfaaf
*
bb ¼ Ni

X
a;b

ffiffiffiffiffiffiffiffiffiffi
PaPb

p �
Sabðq; tÞ~r<

a ðqÞ~r< *
b ðqÞ

þ dabS
s
aaðq; tÞgaabðqÞ

	
(138)

in which (suppressing the dependence on u)

~r<
a ðqÞ ¼ ~r<

a ð�qÞ ¼
X
a<0

〈naa〉f
*
af

a
aaðqÞ (139)

Combining (138) with (116) yields the total bound electron
strength correlation function,

〈~f
y
rbq

�
1
2
t
�
rb�q

�
�1
2
t
�
~f〉 ¼

X
a<0;b

〈na
�
1� nb

�
〉jfaj2fabf

*
ab

þ
X

a<0;b<0

〈nanb〉f *a fbfaaf
*
bb

¼ Ni

X
a;b

ffiffiffiffiffiffiffiffiffiffi
PaPb

p  
Sabðq; tÞ~r<

a ðqÞ~r< *
b ðqÞ þ dabS

s
aaðq; tÞ

�
 X

a<0

b<0

f *a fbg
a
abðqÞ þ

X
a<0

〈naa〉
��f aa ��2�1� ��fa

aaðqÞ
��2	!!

(140)

Finally, substituting (140) into (92) and carrying out the time
integration, yields the bound electron contribution, in the static
limit, to the Thomson scattering cross-section as follows.

vs

vU0vu0
��
b ¼ r2e e$e0ð Þ2 u0

u
Ni

X
a;b

ffiffiffiffiffiffiffiffiffiffi
PaPb

p  
Sab q;u� u0ð Þ~r<

a qð Þ~r< *
b qð Þ

þdabS
S
aa q;u� u0ð Þ

 
Ga þ

X
a<0

〈naa〉
���f aa ��2

� 1� ��fa
aa qð Þ��2� �!!

(141)

where, referring to (137),

Gaðq;uÞ ¼
X

a<0;b<0

f a*a ðuÞf ab ðuÞgaabðqÞ (142)

which is the total strength variance 〈D~r2a〉 for the bound electrons.
This term is difficult to calculate and is often ignored or overlooked
in calculations. Equation (141) holds in the static (optical) limit by
virtue of the interim approximation (116), which affects only the
final term. The more general unapproximated form of this term is
substituted later at Equation (176).
4.5. Scattering by free electrons

The free electron part of the cross-section is, making use of Eq.
(101), given by.
vs

vU0vu0
��
f
¼ 1

2p
r2e e$e0ð Þ2 u0

u

Zþ∞

�∞

〈~f
y
rfq

1
2
t

� �
rf�q �1

2
t

� �
~f〉

�exp i u� u0ð Þtð Þdt

¼ r2e e$e0ð Þ2NiZf
u0

u

��ff uð Þ��2Sfee q;u� u0ð Þ
(143)

where

Sfee q;uð Þ ¼ 1
2pNiZf

Zþ∞

�∞

〈rfq
1
2
t

� �
rf�q �1

2
t

� �
〉exp i u� u0ð Þtð Þdt

(144)

is the free-electron dynamic structure factor and ff(u) is the free
electron strength function, which is given, in the Drude model, by
Eq. (83).
4.6. Free electron structure factor

The free electron correlations described by the structure factor
(144) are affected by correlations with the ion fluctuations. In the
BorneOppenheimer approximation, the free electron density
operator is given semi-classically by

re r; tð Þ ¼ r0e r; tð Þ þ ne
X
a

Z bg fea r� r0ð Þ ra r0; tð Þ � nað Þd3r0

(145)

where bg fea rð Þ is the effective (atom-in-jellium) pair correlation
function between free electrons and a single ion of species a, and
r0e r; tð Þ is the free electron density in the presence of a homoge-
neous positively charged background, and ra(r,t) is the ion density.

〈re〉¼
1
V

Z
V

re r;tð Þd3r¼ 1
V

Z
V

r0e r;tð Þd3r¼ne¼
X
a

naZa

〈ra〉¼
1
V

Z
V

ra r;tð Þd3r¼na¼Na

V
¼Pani

(146)

X
a

〈Na〉
Z bg fea rð Þd3r ¼ V (147)

In the first instance, the labels {a} label individual nuclei, in
which case, {a} ¼ {i}, Ni¼1, ri(r,t) ¼ d(r � ri(t)). In Coulomb systems,
the electron-ion correlation function can be regarded as being
dominated by the monopole interaction, which depends only on
the charge state of the ion, while being much less dependent on
higher multipole terms, which would depend on the internal state
of the ion. Accordingly, we take 〈Na〉 to be the average number of
ions of a particular nuclear species in the charge state Za. Formally,
it is straightforward to generalize the definition of the ion species to
include information about the ion's internal state.

The complete free-electroneion correlation function implied by
Eq. (145) is

gea rð Þ ¼ bg fea rð Þ þ
X
b

nb

Z bg feb r� r0ð Þgba r0ð Þd3r0 (148)

which confirms bg fea to be the electron-ion correlation function that
one would obtain from using a single-centre atom-in-jellium
approximation. Fourier transforming Eq. (148), taking the general
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definition of the Fourier transform of the pair correlation between
particle species a, b to be

gab qð Þ ¼ ffiffiffiffiffiffiffiffiffiffi
nanb

p Z
gab rð Þe�iq$rd3r (149)

yields

gea qð Þ ¼
X
b

bg feb qð Þ dab þ gba qð Þð Þ (150)

Expressing (145) in terms of the density fluctuation operators,
dr ¼ r� 〈r〉, yields

dre r; tð Þ ¼ dr0e r; tð Þ þ ne
X
a

Z bg fea r� r0ð Þdra r0; tð Þd3r0 (151)

the Fourier transform of which yields

drfq tð Þ ≡ dre q; tð Þ ¼ dr0e q; tð Þ þ
X
a

ffiffiffiffiffi
Zf
Pa

s bg fea qð Þdra q; tð Þ (152)

in which

r q; tð Þ ¼
Z

r r; tð Þe�iq$rd3r (153)

Zf ¼
X
a

PaZa (154)

The electroneelectron correlation function, which is the elec-
tron dynamic structure factor, is defined by

See q;uð Þ ¼ 1
2pneV

Z∞
�∞

〈dre q;
1
2
t

� �
dre �q;�1

2
t

� �
〉eiutdt

(155)

This yields,

Sfee q;uð Þ ¼ S0ee q;uð Þ þ
X
a;b

bg fea qð Þbg feb qð ÞSab q;uð Þ (156)

where

Sab q;uð Þ ¼ 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffi
NaNb

p Z∞
�∞

〈dra �q; tð Þdrb �q;0ð Þ〉eiutdt (157)

is the ioneion dynamic structure factor, which is equivalent to
(120) for the classical ion density

ri r; tð Þ ¼
X
i

d r� ri tð Þð Þ (158)

and

S0ee q;uð Þ ¼ 1
2pneV

Z∞
�∞

〈dr0e q;
1
2
t

� �
dr0e �q;�1

2
t

� �
〉eiutdt

(159)

is the electron dynamic structure factor in the absence of electron-
ion correlations, such as would exist if the ions were replaced by
an equivalent uniform continuous positive charge distribution.
When the electrons can be regarded as being weakly coupled
S0ee q;uð Þ can be reasonably approximated by the RPA dynamic
structure factor, while local field corrections, as proposed by Chi-
hara [35] for example, can, in principle, extend the theory to re-
gimes of strong electron coupling.

The static sum rule then yields,

Sfee qð Þ ¼ S0ee qð Þ þ
X
a;b

Sab qð Þbg fea qð Þbg feb qð Þ (160)

from which one obtains, making reference to Eq. (150),

gee qð Þ ¼ g0ee qð Þ þ
X
a;b

dab þ Sab qð Þð Þbg fea qð Þbg feb qð Þ (161)

Similarly, the f-sum rule yields (AssumingZ ∞

�∞
uSabðq;uÞdu ¼ dabq

2=2ma),

Z∞
�∞

uSfee q;uð Þdu ¼ q2

2m*
(162)

1
m* ¼

1
me

þ
X

a

��bg fea qð Þ��2
ma

(163)

which defines an effective q-dependent (reduced) mass m* that
depends on the electron-ion correlations. Since, mi >> me, for all
practical purposes m* ¼ me.

Combining Eqs. (143) and (156) yields the free-electron part of
the cross-section as follows

vs

vU0vu0
��
f
¼ r2e e$e0ð Þ2NiZf

u0

u

��ff uð Þ��2�S0ee q;u� u0ð Þ

þ
X
a;b

bg fea qð Þbg feb qð ÞSab q;u� u0ð Þ
	

(164)

Equations (145)e(164) hold when the electroneelectron and
electroneion correlations are sufficiently weak for the density
fluctuations to be additive in first order, as per Eq. (145). In
condensed matter, for example, it may be appropriate to seek
alternative ormodified approaches in order to capture the details of
the electronic structure. Chihara [35] extends the above equations
to the liquid metal regime through the incorporation of dynamical
local field corrections into the definition of S0ee q;uð Þ within the
context of formal linear response theory. In the low-temperature
(T ¼ 0) limit, when there is no final state blocking above the
Fermi surface and electroneelectron correlations are fully sup-
pressed, the momentum density distribution is given in terms of
the one-electron real space Green function (RSGF) [25], which can
be linked to density functional theory calculations, thus potentially
providing a detailed approach to treating scattering from conduc-
tion and valence bands in crystalline solids.
4.7. Bound-free interference

Interference between coherent scatterings from bound and free
electrons is expressed by the fourth term on the right hand side of
Eq. (100). In the same manner as given at Eqs. (135)e(140)
where



v

P
a<0;b>0

〈nanb〉
�
f *a fbfaaf

*
bb þ faf *b f

*
aafbb

	
¼ Ni

X
a<0;b>0

〈nanb〉
�
SabðqÞf *a fbfaf

*
b þ SbaðqÞf *b fafbf

*
a

	

¼ Ni

X
a;b

ffiffiffiffiffiffiffiffiffiffi
PaPb

p 0@Sabðq; tÞ
�
~r<
a ~r> *

b þ ~r< *
a ~r>

b

	
þ dab

X
a<0;b>0

�
gaab þ gaba

	1A (165)
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~r>
a ðqÞ ¼

X
a>0

〈naa〉f
*
af

a
aaðqÞ ¼ f *f

X
a>0

〈naa〉f
a
aaðqÞ (166)

Hence, the bound-free interference contribution to the cross
section becomes

vs

U0vu0
��
bf

¼ r2e e$e0ð Þ2 u0

u
Ni

0@X
a;b

ffiffiffiffiffiffiffiffiffiffi
PaPb

p 0@Sab q;u� u0ð Þ

� ~r<
a qð Þ~r> *

b qð Þ þ ~r< *
a qð Þ~r>

b qð Þ
� 	

þ dabS
S
ab q;u� u0ð Þ

X
a<0;b>0

gaab qð Þ þ gaba qð Þ
� 	1A1A

(167)

The dynamical and statistical correlations involving free states
can be expected to be much weaker than those between bound
states. It is therefore reasonable to neglect those contributions by
setting ga

abðqÞ ¼ 0 whenever either or both of the states a, b are not
bound, whereupon (167) reduces to

vs

vU0vu0
��
bf

¼ r2e e$e0ð Þ2 u0

u
Ni

�X
a;b

ffiffiffiffiffiffiffiffiffiffi
PaPb

p
Sab q;u� u0ð Þ

� ~r<
a qð Þ~r> *

b qð Þ þ ~r< *
a qð Þ~r>

b qð Þ
� 		 (168)
4.8. Total cross-section

Finally, we add the bound and free electron contributions given
by Eqs. (141) and (164) respectively, together with the interference
contribution (168), to yield the total differential cross-section for
photon scattering. By making the formal identification

ffiffiffiffiffi
Pa

p
~r>
a q;uð Þ ¼

ffiffiffiffiffi
Zf

p
f *f uð Þbg fea qð Þ (169)

where the dependence on u has now been made explicit, the result
(given here for optically-inactive bound states) is

v2s

vU0vu0 ¼ r2e e$e0ð Þ2 u0

u
Ni

0@Zf
���ff uð Þ��2S0ee q;u� u0ð Þ þ

X
a;b

ffiffiffiffiffiffiffiffiffiffi
PaPb

p

�
0@Sab q;u� u0ð Þ~ra q;uð Þ~r*b q;uð Þ þ dabS

S
ab q;u� u0ð Þ

� Ga þ
X
a<0

〈naa〉
��f aa ��2 1� ��fa

aa qð Þ��2� � !1A1A (170)

where, Ga is given by (142) and
~raðq;uÞ ¼ ~r>
a ðq;uÞ þ ~r<

a ðq;uÞ (171)

is the total strength-density density of the electrons associated
with ion species a.

The general result for the total double-differential cross-section is

v2s

vU0vu0 ¼ r2e e$e0ð Þ2 u0

u
Ni F0f q;u;u0ð Þ þ Fcoh q;u;u0ð Þ
n

þF incohb q;u;u0ð Þg (172)

inwhich the quantity in fg is the complete dynamic structure factor
for the scattering process. This comprises the following terms:

F0f q;u;u0ð Þ ¼ Zf
��ff uð Þ��2S0ee q;u� u0ð Þ (173)

which is free electron contribution in the absence of electron-ion
correlations. The dynamic structure factor S0ee q;uð Þ is the electron
dynamic structure factor in the presence of a uniform positive
charge distribution, and, in theweak coupling limit, which typically
applies to electrons, is adequately given by RPA, while admitting
the possibility of local field corrections to deal with regimes of
stronger electron coupling [35]. Equation (173) is in the standard

form apart from the factor
��ff uð Þ��2 where ff(u) is free electron

strength function, which can be taken to be given by (83). For X-
rays, this factor is effectively unity.

The second term in Eq. (172) is the coherent scattering
contribution

Fcoh q;u;u0ð Þ ¼
X
a;b

ffiffiffiffiffiffiffiffiffiffi
PaPb

p
Sab q;u� u0ð Þ~ra q;uð Þ~r*b q;uð Þ
�

þdabS
S
aa q;u� u0ð ÞGaÞ (174)

which involves a double summation over all the different ion
species, which are present in proportions given by Pa, Pb,… whereP
a
Pa ¼ 1. The quantity Sabðq;u� u0Þ is the ioneion dynamic

structure factor representing the correlations between ions of
species a,b, which, for crystalline solids, provides a description of
Bragg scattering and Laue scattering. For a monoatonic lattice, the
ioneion dynamic structure factor Saa(q,u) and the self-correlation
function SSaa q;uð Þ are expressed by Eqs. (126) and (130) in terms
of the phonon modes {K} of the lattice. The quantityffiffiffiffiffi
Pa

p
~ra q;uð Þ ¼

ffiffiffiffiffi
Pa

p X
a

〈naa〉fa uð Þfa
aa qð Þ

¼
ffiffiffiffiffi
Pa

p X
a<0

〈naa〉fa uð Þfa
aa qð Þ þ

ffiffiffiffiffi
Zf

p
ff uð Þbg fa qð Þ

(175)

is the strength cloud correlatedwith an ion of species a (cf Chihara's
‘electron cloud’ [1]) where fa

aaðqÞ is the Fourier transform of the
normalised electron bound-state density associated with the one-
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electron bound state a in that ion species, normalised such that
fa
aað0Þ ¼ 1; 0 � 〈naa〉 � 1 is the average occupancy of the state; andbg fa qð Þ is the Fourier-transformed electron-ion pair correlation

function, as defined by Eq. (149) in terms of the effective (atom-in-

jellium) pair correlation bg fea rð Þ between free electrons and a single
ion of species a. The first term on the right-hand side of (174)
represents coherent scattering from uncoupled bound states. The
second term treats the correlations, both static and dynamic, be-
tween different electron states in the same ion and comprises the
product of the ion self-correlation function and the strength vari-

ance, Gaðq;uÞ ¼ 〈D~r2a〉 ¼
P

a<0;b<0
f a*a ðuÞf ab ðuÞgaabðqÞ, which accounts

for correlations between bound electrons in the same ion, where
the level-specific covariance gaabðqÞ is defined by (137). The quan-

tity Gað0;uÞ is the variance Df 2a of the strength function of the
particular atomic species, which reduces to the variance in the
number of bound electrons in that species when faðuÞ ¼ 1 ca. In
general, the bound-state strength function fa(u) can be determined
by KramerseKr€onig transformation of the contribution of the state
to themonochromatic absorption coefficient. Alternatively, a useful
approximate analytic formula for the strength function for bound
electrons is provided by Eqs. (66) and (71). The self-correlation
Ssaa q;u� u0ð Þ also accounts for the effect of the ion recoil on the
scattered photon through the possibility of u s u0. Coherent
scattering is typically the dominant contribution to Thomson
scattering from complex atomic systems due to the quadratic
dependence on the electron strengths.

The third term in Eq. (172) is the bound-state incoherent scat-
tering contribution, which, referring to Eqs. (107) and (108), is
given generally by

F incohb q;u;u0ð Þ ¼
X
a

Pa
X
a<0

〈naa〉
��f aa uð Þ��2 Z∞

�∞

Ssaa q;u� u0 � u00ð Þ

� Sa
a q;u00ð Þdu00

(176)

where Sa
aðq;uÞ is the bound-state dynamic structure factor as

defined by (110). This contribution vanishes in the forward direc-
tion and at long wavelengths (q ¼ 0) and morphs into Compton
scattering at very short wavelengths (high photon energies), with a
suitably modified structure factor. The convolution with the ion
selfecorrelation function accounts for the effect of ion motion
(Doppler and recoil) on the scattering. In the static limit of wave
optics, Sa

aðq;uÞ ¼ ð1� ��fa
aaðqÞ

��2ÞdðuÞ and Eq. (176) reduces to the
simplified form

F incohb q;u;u0ð Þ ¼
X
a

PaSsaa q;u� u0ð Þ
X
a<0

〈naa〉
��f aa uð Þ��2

� 1� ��fa
aa qð Þ��2� � (177)

as already embodied in some previous formulae, notably Eqs. (140),
(141) and (170).

5. Example applications

5.1. Low-frequency resonance scattering

Let us consider scattering, by a single atomic species a, of low
energy photons whose energy is verymuch less than the ionization
energy of an atom. In an un-ionised gas, the absorption coefficient
is dominated by the coherent scattering term, which, in this case, is
given by:
coh q;u;u0ð Þ¼ Saa q;u�u0ð Þ��~ra q;uð Þ��2þSsaa q;u�u0ð ÞGa
� �
X �
xd u�u0ð Þ
a<0;b<0

Saa qð Þ〈naa〉〈nab〉fa
aa qð Þfa*

bb qð Þ

	 (178)
þgaab qð Þ fa uð Þf *b uð Þ

Using the low-energy limit of the strength function given by Eq.
(75), while assuming Da≪Ea (for general simplicity) this becomes

Fcoh q;u;u0ð Þxu4d u� u0ð Þ
X

a<0;b<0

1

EaEb
� �2

�
�
Saa qð Þ〈naa〉〈nab〉fa

aa qð Þfa*
bb qð Þ þ gaab qð Þ

	 (179)

which exhibits the well-known u4 frequency-dependence charac-
teristic of Rayleigh scattering. The incoherent scattering contribu-
tion is, by contrast, given as follows, where 〈r2〉a is the mean square
radius of the state density

��fa
aaðqÞ

��2 so that, for small q,
fa
aa qð Þx1� 1

6q
2〈r2〉a ¼ 1� 1

3 1� mð Þ u=ð cÞ2〈r2〉a,

F incohb q;u;u0ð Þ ¼ d u� u0ð Þ
X
a<0

〈naa〉
��f aa uð Þ��2 1� ��fa

aa qð Þ��2� �

¼ u4d u� u0ð Þ
X
a<0

〈naa〉

E4a
1� ��fa

aa qð Þ��2� �

x
u6

c2
1� mð Þd u� u0ð Þ

X
a<0

2〈naa〉

3E4a
〈r2〉a

(180)

(in which m ¼ cos(q) is the cosine of the scattering angle) which is
generally very much smaller than the coherent contribution (178).
5.2. Two component plasma e comparison with previously
published formulae

In the case of a two component plasma comprising a mixture of
electrons and a single ion species (a) the coherent scattering
contribution (174) becomes (making use of Eq. (122))

Fcoh q;u;u0ð Þ¼Saa q;u�u0ð Þ
���~ra q;uð Þ��2þGa q;uð Þ��εa q;u�u0ð Þ��2	

(181)

in which

~raðq;uÞ ¼
X
a

〈na〉f *a ðuÞfaaðqÞ (182)

Decomposing the sum on the right-hand side of Eq. (182) yields

~ra q;uð Þ ¼
X
a

〈na〉 1þ f *a uð Þ� �
faa qð Þ � 1ð Þ �

X
a

〈na〉faa qð Þ

þ
X
a

〈na〉f *a uð Þ þ
X
a

〈na〉

¼
X
a

〈na〉 1þ f *a uð Þ� �
faa qð Þ � 1ð Þ � re qð Þ þ f * uð Þ þ Z

(183)

where



Fig. 3. Calculations of the form factor jWðuÞj2 defined by Eq. (187), for 90� scattering (m ¼ 0) of X-rays by different chemical elements under a range of LTE conditions. Comparisons
are made between calculations using the complete Formula (182) derived in this work (blue curves) and calculations, using identical atomic data, with the Chihara approximation
(194) (red curves). The calculations illustrate (a) Kr (Z ¼ 36) at T ¼ 30 eV and ne ¼ 1.05 � 10�17 cm�3 for which the calculations are in very close agreement, with the maximum
absolute discrepancy in the L-band being <0.02; (b) Xe (Z ¼ 54) at the same temperature and electron density, for which there is noticeable disagreement in the L-band of(0.2; and
(c) Bi (Z ¼ 83) at solid density (9.75 g/cm3) and T ¼ 5 eV for which there is very significant disagreement (<e 0:5) in both the L and M bands. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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re qð Þ ¼
X
a

〈na〉faa qð Þ ¼
X
a<0

〈na〉faa qð Þ þ
ffiffiffiffiffi
Zf

p bg fea qð Þ (184)

is the unweighted electron density, which, for an intrinsically un-
polarized system, is real and is a function of q2;

f uð Þ ¼P
a

〈na〉fa uð Þ ¼
X
a<0

〈na〉fa uð Þ þ Z � Zbð Þff uð Þ

¼ fb uð Þ � Z � Zbð Þ u

uþ in

(185)

and Z ¼P
a
〈na〉 is the total number of electrons associated with

each ion. Chihara [1] defines

bace
uð Þ ¼ c2re

u2 fb uð Þ ¼ e2

4pε0meu2 fb uð Þ (186)

while setting ff uð Þ ¼ �1 ⇔ n ¼ 0, and neglects the sumP
a
〈na〉ð1þ f *a ðuÞÞðfaaðqÞ � 1Þ by virtue of the polarization contri-

bution being calculated in the long wavelength (q ¼ 0) limit, as a

result of which
��~r q;uð Þ��2 ¼ ��re qð Þ � Zb � 4pε0meu

2=
�

e2Þbace
uð Þ��2.

This is essentially the formula for the coherent scattering form
factor given in Ref. [1] where re(q) is the Fourier transform of the
total electron density, which is here expressed in terms of its bound
and free components according to Eqs. (171) and (169). However
the neglect of the remaining terms in Eq. (183) appears inconsistent
with the need to maintain the dependence on q. This approxima-
tion can be avoided by using either of the formulae (182) or (183)
instead.

To understand the significance of the approximation made by
Chihara, we have performed calculations of the coherent scattering
form factor, W(q,u) defined, for Zb s 0, by

W q;uð Þ ¼ 1
Zb

~ra q;uð Þ (187)

in terms of which, the principal contribution to the coherent
photon cross-section is given by

v2s

vU0vu0
��
coh ¼ r2e e$e0ð Þ2 u0

u
NiZ

2
b

��W q;uð Þ��2Saa�q;u� u0� (188)

(Note that normalising to the number of bound electrons is quite
arbitrary e we could just have as easily used the total electron
number Z instead. The reason for the choice is that the high fre-
quency coherent scattering is dominated by bound electrons, due
to the free electrons being relatively weakly correlated, so that,
classically, we would then expect W x 1. This allows meaningful
direct comparisons between the (non-classical) values of this
parameter for different elements.) The atomic model used for these
calculations was a screened hydrogenic average-atom using the
Slater rules [36] combined with a DebyeeHückel/ThomaseFermi
model for the free electrons. This model is not intended to provide
an accurate representation of the real physical systems but rather to
capture sufficient physics to allow a comparison of the different
scattering models within an otherwise identical framework. In this
atomic model, the broadening of an edge corresponding to a level a
with ionization potential Ea, neglecting the effect of any [-splitting
and any variation of the density of states across the edge, is rep-
resented by a combination of Doppler and Fermi broadening ac-
cording to
Da ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DF

1þ exp �me=Tð Þ
� �2

þ D2
D

s
(189)

inwhich me denotes the electronic chemical potential and where, in
accordance with (79),

2DF ¼ FWHM Fermið Þ ¼ FWHM
v

vE
1

1þ exp E � með Þ=Tð Þ
� �

¼ 2T ln 3þ 2
ffiffiffi
2

p� 	
x3:5T

2DD ¼ FWHM Dopplerð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8T ln 2
mac2

s
Ea

(190)

in terms of which the strength functions are calculated according to
Eqs. (66) and (71).

Suitable convergent functions faa(q) are given, in the long-
wavelength approximation, by faa qð Þxexp �1

6q
2〈r2〉a

� �
where

〈r2〉a ¼ R r2jjaðrÞj2d3r is the mean square radius of the bound state
a. For [ e degenerate hydrogenic states (a ¼ n)

〈r2〉n ¼
Pn�1

[¼0 2[þ 1ð Þ〈r2〉n[Pn�1
[¼0 2[þ 1ð Þ

¼ 1
4meEn

Pn�1
[¼0 2[þ 1ð Þ 5n2 þ 1� 3[ [þ 1ð Þ� �Pn�1

[¼0 2[þ 1ð Þ
¼ 5þ 7n2

8meEn

(191)

inwhich 〈r2〉n[ ¼ 5n2 þ 1� 3[ [þ 1ð Þ� �
= 4meEnð Þ is the mean square

radius of the hydrogenic state with principal and orbital quantum
numbers n and [ respectively [37], and

En ¼ Z2ne
2

8pε0a0n2
¼ Z2nme

2n2
e2

4pε0

� �2

¼ mec2

2n2
Zna0ð Þ2; n ¼ 1; 2; 3…

(192)

where a0¼ 4p ε0/mee
2 is the Bohr radius, a0 ¼ e2=4pε0Zc is the Fine

Structure Constant and Zn (Za < Zn � Z) is the effective (screened)
nuclear charge.

Using this model, we have performed rudimentary atomic cal-
culations for various elements across the periodic table under a
range of temperatures between room temperature and ~700 eV and
densities between solid density down to 1017 electrons per cubic
centimetre. Comparisons are made between the scattering form
factor jWðq;uÞj2 obtained using the new formula.

W q;uð Þ ¼ 1
Zb

X
a

〈na〉f *a uð Þfaa qð Þ

¼ 〈f *a uð Þfaa qð Þ〉a<0 þ
ffiffiffiffiffi
Zf

p
Zb

f *f uð Þbg fea qð Þ (193)

and the same quantity calculated according to Chihara's formula,

W q;uð Þ ¼ 1þ 1
Zb

f *b uð Þ � re qð Þ� � ¼ 1þ 〈fa uð Þ〉a<0 �
re qð Þ
Zb

(194)

In this notation, the residual term in ~r (183), that ignored by
Chihara, is.
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D~rðq;uÞ≡�
X
a

〈na〉
�
1þ f *a ðuÞ

	
ðfaaðqÞ � 1Þx

� 1
3
q2
X
n

pnn
2cnðuÞ〈r2〉n (195)

where pn ¼ 〈na〉=2n2 , 1 � pn � 0. Combining Eqs. (195), (191) and
(192) while using that q2 ¼ 2(u/c)2(1 � m), where m ¼ cos(q), yields

D~rx� 1
6
ð1� mÞ

�
u

a0mec2

�2X
n

1
Z2n

pnn
4
�
5þ 7n2

	
cnðuÞ (196)

For non-resonant situations (u not close to an ionization
threshold, En) making use of Eqs. (73) and (74), this can be very
approximately estimated by
D~rx
1
6
ð1� mÞ

�
u

a0mec2

�2
8<: X

njEn <u

1

Z2n
pnn

4
�
5þ 7n2

	 E2n
u2 ln

 
u2

E2n

!
þ

X
njEn >u

1

Z2n
pnn

4
�
5þ 7n2

	9=;
x

1
6
ð1� mÞ

(X
n�N

pnðZna0Þ2
�
5þ 7n2

	
ln
�
ZNn
Znnu

�
þ 1
4

X
n<N

pnðZna0Þ2
�
5þ 7n2

	� ZNn
Znnu

�4
)

x
1
6
ð1� mÞ

X
n�N

pnðZna0Þ2
�
5þ 7n2

	
ln
�
ZNn
Znnu

�
(197)
where

n2u ¼ mec2

2u
ZNa0ð Þ2 (198)

and N is the smallest value of n for which En > u, ie, N > nu > N � 1.
For filled or nearly-filled shells, the sum is mainly controlled by the
factor, (Zna0)2(5 þ 7n2), which, by making the approximation,
Zn z Z � 3n2, which holds very roughly for such levels in mid-to-
high Z elements, is found to be a maximum for n2 z Z/9.
We argue, albeit quite crudely, that the correction becomes
important when, for the dominant terms in the sum,
7
6n

2 Z � 3n2
� �

a0
� �2

>e 0:20 7
54 Z

2
3 Za0
� �2

>e 0:20Z >40 implying

that the correction is likely to be important only for heavy ele-
ments, those in the upper half of the periodic table, with the
greatest deviation in the spectrum for frequencies corresponding to
ionization from filled levels for which n2 z Z/9. With the factor
scaling approximately as Z3, we would expect to see very close
agreement between the formulae for light elements and significant
disagreement for heavy elements. These rough predictions are
borne out by the detailed calculations using the model described
above and hold independently of temperature and density, subject
only to the requisite electron shells being occupied. Fig. 3 illustrates

comparisons of the form-factor
��W q;uð Þ��2 ¼ ��~ra q;uð Þ��2=Z2b for

m ¼ cos(q) ¼ 0 between calculations using the full formula with
W(q,u) calculated according to Eq. (193) or (182), and calculations
using Chihara's more approximate formula, (194). The results show
that the Chihara formula is accurate for light elements, but can be
expected to underestimate the cross-section in certain heavy-
element regimes (L- and M-bands) by as much as a factor of 4.
The applicability of the Chihara formula to light elements is sup-
ported by experiment, inwhich it is found to give a good account of
Thomson X-ray scattering in WDM [7,8].
A term corresponding to GaSsaa q;u� u0ð Þ, which describes, via
the atomic strength variance Gaðq;uÞ, given by Eq. (142), the static
correlations between bound electrons in the same atomic ion, is
also absent from Chihara's formula (as it is from our numerical
calculations). These correlations are generally difficult to calculate
in detail. This is especially true of the dynamical correlations arising
from corrections to HartreeeFock, though these can reasonably be
ignored, where a Hartree-based central field model provides an
adequate description of the atom. The remaining contribution of
the statistical correlations to Eq. (181) is equivalent, at q ¼ 0, to the

application of a factor 1þ О
�
DZ2b=Z

2
b

	
, where DZ2b is the variance in

the number of bound electrons. There are plasma regimes where
this factor deviates significantly from unity, so any prevailing
assumption that the Ga term can be ignored is not always justified.
These calculations have been carried out using a very simplified
atomic model. More realistic results applicable to real systems
would result from using, for example, average-atom modelling
techniques such as those described in Ref. [9].

6. Conclusions

A quantummechanically based derivation of the formula for the
differential cross-section for Thomson scattering of photons by a
many-atom system, inwhich electrons are either bound in localised
core states associated with single nuclei or exist in delocalised
states inwhich they are able tomove throughout thewhole system,
has been presented. The model encompasses scattering of elec-
tromagnetic radiation spanning the optical and X-ray spectral re-
gimes by atomic systems, which may include plasmas, metals, and
monoatomic fluids and crystalline solids, though the main envis-
aged applications would be to metals and dense plasmas. A notable
departure from previous work on this topic is the formulation of
the cross-section directly in terms of the correlation between
electron strength-density fields, which comprise the product of the
particle density for each electron state and the strength function for
that state, where the strength function is a complex function,
equivalent to the forward scattering amplitude, that gives the
scattering response of an electron in a particular quantum state to a
photon of a particular energy. The strength functions are generally
obtainable via KramerseKr€onig transformation of the absorption
coefficients, and a useful analytical formula is given, in the case of
bound states for which the above-threshold photoionization cross-
section falls off inversely with the cube of the frequency, by Eqs.
(71) and (72) in conjunction with Eq. (66). A key result of this work
is the scattering cross-section (92), in which the strength-density
correlation function (94) replaces the particle correlation function
in the standard treatment. Another key result, provided by Eq. (96),
is the reduction of this correlation function, for a many electron
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system, into its coherent and incoherent parts. Breaking this down
further into its more recognisable components, while distinguish-
ing between bound and free electrons, leads to the main result,
expressed by Eqs. (172)e(177), which gives the scattering differ-
ential cross-section for an arbitrary mixture of ionic or atomic
species. The general result comprises three parts: (i) a free-electron
part that does not depend on the ion configuration; (ii) a coherent
atomic scattering part that depends upon the ioneion correlations
as well as the internal correlation between electrons within indi-
vidual atoms; and (iii) an incoherent atomic part that depends on
the convolution of the ion self-correlation dynamic structure factor
with the bound state dynamic structure factor, and which, in the
high-energy (relativistic) limit, would carry over to Compton
scattering. These formulae distinguish between the effects of
electron dynamics (expressed by the strength functions) and cor-
relations (expressed by structure factors). In atomic systems with
large numbers of bound electrons, coherent scattering typically
dominates the scattering of optical and x-ray photons, because of
the proportionality of the cross-section to the square of the number
of correlated electrons, and encompasses Rayleigh, Bragg and Laue
scattering. For a two-component plasma or metal, comprising
electrons and a single ionic species, the coherent scattering part
bears a close resemblance to the formula given by Chihara [1], with
which it is compared in section 5.2. The most notable differences
between the formulae are due to the electron polarization, which
Chihara treats the long-wavelength limit, and the quantum and
statistical correlations between bound states in the same atom, as
expressed by Eq. (137). Our analysis and numerical calculations
show that Chihara's approximation for the polarization holds very
well for light elements (Z < 40) consistently with experimental
observation [7,8], but is increasingly deficient for heavier elements.
This result is of particular significance for the monitoring and
diagnosis of heavy elements by means of Thomson scattering.
Appendix A. Representations the Fock space operators

A.1. Creation and annihilation operators

We start with the elementary creation and annihilation opera-
tors aya; aa;… acting on the many-electron Fock space satisfying the
standard equal-time fermion anti-commutation relations

aaa
y
b þ aybaa ¼ dab

ayaa
y
b þ ayba

y
a ¼ 0

aaab þ abaa ¼ 0
(199)

and whose time dependence is expressed, in the interaction pic-
ture, by

aa tð Þ ¼ e�iEataa 0ð Þ (200)

where Ea is the energy of the one-electron state
��a〉 ¼ aya

��0〉. In the
first instance, the label a encompasses the spin state s of the
electron. The field operator that creates an electron with spin s at
position r within some volume V at time t is

ayr;s tð Þ ¼
ffiffiffiffi
V

p X
a

〈a
��r; s〉aya tð Þ

¼
ffiffiffiffi
V

p P
a

eiEat〈a
��r; s〉aya 0ð Þ

(201)

Henceforth the time dependencewill be suppressed, and, unless
indicated otherwise, all operators are given at the same arbitrary
time t ¼ 0. Then Eq. (201) becomes
ayr;s ¼
ffiffiffiffi
V

p X
a

〈a
��r; s〉aya;s (202)

in which 〈r; sja〉 ¼ jaðr; sÞ where ja(r,s), the normalized wave-
functions, expressed in terms of spatial and spin coordinates, satisfy
normalization and completeness conditions as follows

〈ajb〉¼P
s

Z
V

〈ajr;s〉〈r;sjb〉d3r¼
X
s

Z
V

j*
aðr;sÞjbðr;sÞd3r¼ dab

〈r;sjr0;s0〉¼P
a

〈r;sja〉〈ajr0;s0〉¼P
a

jaðr;sÞj*
aðr0;s0Þ ¼ dðr�r0Þdss0

(203)

so

ayr;s
��0〉 ¼ ffiffiffiffi

V
p ��r; s〉 (204)

ak;s ¼ 1
V

Z
V

ar;se�ik$rd3r

¼ 1ffiffiffiffi
V

p
X
a

aa
Z
V

〈r; s
��a〉e�ik$rd3r

¼P
a
〈k; s

��a〉aa
(205)

ayk;s
��0〉 ¼ ��k; s〉 ¼ 1ffiffiffiffi

V
p

Z
V

��r;s〉eik$rd3r
V〈k; s

��k0; s0〉 ¼ Vdkk0dss0 /
V/∞

2pð Þ3d k� k0� �
dss0

〈r; s
��k; s〉 ¼ 1ffiffiffiffi

V
p eik$r

(206)

ar;s ¼
X
k

ak;se
ik$r (207)

The commutation relations for the operators ar,s, ak,s,… are
readily deduced from the definitions above and the archetypal re-
lations (199)

ar;sa
y
r0;s0 þ ay

r0; s0ar;s ¼ Vd r� r0ð Þdss0

ayr;sa
y
r0;s0 þ ay

r0; s0a
y
r;s ¼ 0

ar;sar0;s0 þ a
r0; s0ar;s ¼ 0

(208)

ak;sa
y
k0
;s0 þ ay

k0
;s0ak;s ¼ d k;k0� �

dss0

ayk;sa
y
k0
;s0 þ ay

k0
;s0a

y
k;s ¼ 0

ak;sak0
;s0 þ a

k0
;s0ak;s ¼ 0

(209)

For most purposes, the spin coordinates can be suppressed
through the replacement

〈r; sja〉 ¼ 〈rja〉dssa
Jaðr;sÞ ¼ JaðrÞdssa

(210)

where 〈rja〉 ¼ JaðrÞ is the purely spatial part of the wavefunction
where a convention is adopted whereby the spatial state is labelled
solely by the spatial quantum numbers equivalent to making the
replacement a/ a, sa. When this is done, Eqs. (204)e(207) reduce
to the standard forms for a spinless particle:
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ayr j0〉 ¼
ffiffiffiffi
V

p
jr〉 (211)

ak ¼ 1
V

Z
V

are�ik$rd3r

¼ 1ffiffiffiffi
V

p
X
a

aa
Z
V

〈r
��a〉e�ik$rd3r

¼P
a

〈k
��a〉aa

(212)

ayk
��0〉 ¼ ��k〉 ¼ 1ffiffiffiffi

V
p

Z
V

��r〉eik$rd3r
V〈k

��k0〉 ¼ Vdkk0 /
V/∞

2pð Þ3d k� k0� �
〈r
��k〉 ¼ 1ffiffiffiffi

V
p eik$r

(213)

ar ¼
X
k

ake
ik$r (214)

Note that, in Eqs. (211)e(214), the spin coordinate, upon which
the one-body expressions on both sides of each equation generally
depends, has been merely suppressed. It has not been necessary to
make the assumption of spin symmetry at this stage.
A.2. Density operator

The density operator r(r) that gives the particle density at the
point r, is given, in the first instance, by

r rð Þ ¼ 1
V

X
s

ayr;sar;s ¼
X
a;b;s

〈a
��r; s〉〈r; s��b〉ayaab

¼P
a;b

〈a
��r〉〈r��b〉dsasbayaab (215)

The expectation of this operator within amany body system that
is represented by the statistical operator

r ¼
X
В

jJВ〉PВ〈JВj (216)

in which PВ is the probability of the system being in the stateJВ, is
given by

〈r rð Þ〉¼Tr rr rð Þð Þ
¼P

А;В
〈JА

��JВ〉PВ〈JВ
��X
a;b;s

〈a
��r;s〉〈r;s��b〉ayaab��JА〉

¼ P
А;a;b;s

PА〈JА
��ayaab��JА〉〈a

��r;s〉〈r;s��b〉
¼ P

А;a;s
PА〈JА

��ayaaa��JА〉〈a
��r;s〉〈r;s��a〉

¼ P
А;a;s

PАn Аð Þ
a

��Ja r;sð Þ��2
¼P

a
〈na〉

��Ja rð Þ��2
(217)

where 〈na〉 ¼
P
А;s

PАn
ðАÞ
a ; and its Fourier transform is, making use of

Eqs. (214) and (212),
rq ¼
Z
V

r rð Þe�iq$rd3r ¼
X
k;s

ayk;sakþq;s

¼ P
a;b;k;s

〈a
��k; s〉〈kþ q; s

��b〉ayaab
¼P

a;b
〈a
��e�iq$r��b〉dsasbayaab

¼P
a;b

〈a
��e�iq$r��b〉ayaab

(218)

Note that, in Eqs. (215)e(218), as throughout the body of this
paper, a, b,… label both the spin and spatial state coordinates of a
single particle. For fermions, such states have an occupancy na of
either 0 or 1. For spin-symmetric systems, one in which the elec-
tron's properties do not depend upon its spin state, the labels a, b,...
may be used to refer only to the spatial state coordinates while the
operators aya; ab denote the creation and annihilation of particles
having a definite, but arbitrary spin. This allows the spin labels in
Eqs. (215)e(218) to be suppressed altogether, whereupon

rðrÞ ¼ g
X
a;b

〈ajr〉〈rjb〉ayaab (219)

〈rðrÞ〉 ¼
X
a

〈na〉jJaðrÞj2 (220)

rq ¼ g
X
a;b

〈aje�iq$rjb〉ayaab (221)

provided that the spin degeneracy is accounted for through the
factor, g(¼2), and where, in (220), 〈na〉 represents the average
number of electrons in the spatial state a. However the na s
themselves no longer represent the single fermion occupancies.
While Eqs. (217) and (220) appear formally identical, there are, for
electrons, twice as many terms in the former. In general, it is not
possible to disregard spin altogether.

Appendix B. Wave propagation in a homogeneous linear
scattering medium

B.1. Treatment of localised scattering

We consider scattering of waves governed by the standard wave
equation�
V2 � c�2vtt

	
J0ðr; tÞ ¼ 0 (222)

which may be used to describe, for example, the propagation of the
components of the electromagnetic field in vacuo. Let a mono-
chromatic wave J0 r; tð Þ ¼ J0 rð Þe�iut ¼ exp ik0$rð Þe�iut , which is a
solution of Eq. (222) for frequency u ¼ k0c, be incident upon an
element of linear scattering medium (one that does not give rise to
a change in frequency) occupying a volume element d3r0 located at
the point r0. The resulting wavefunction, J(r,t) ¼ J(r)e�iut is then
given by the LippmanneSchwinger equation

JðrÞ ¼ J0ðrÞ þ 4pGþ
0 ðk0; r; r0ÞF

�bk0
;k0

	
J0ðr0Þd3r0 (223)

where

Gþ
0 k0; r; r

0ð Þ ¼ 1
4p
��r� r0

�� exp ik0
��r� r0

��� �
(224)
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is the retarded Green function, which satisfies the inhomogeneous
wave equation

V2 þ k20 þ i0þ
� 	

Gþ
0 k0; r; r

0ð Þ ¼ d r� r0ð Þ (225)

The external wave field beyond d3r0, in the direction defined bybk0 ¼ ðr� r0Þ=jr� r0j, is

J0 rð Þ þ 1��r� r0
�� F bk0

;k0

� 	
exp ik0

��r� r0
��� �
J0 r0ð Þd3r0 (226)

which identifies Fðbk0
;k0Þ as the elementary scattering amplitude

per unit volume in the direction bk0
. If the scattering occurs in an

extended volume, then the external wave field (outside the scat-
tering volume) is

J rð Þ ¼ J0 rð Þ þ
Z
V

1��r� r0
�� F bk0

;k0

� 	
exp ik0

��r� r0
��� �
J0 r0ð Þd3r0

¼ J0 rð Þ þ exp ik0$rð Þ
Z ZR

ε

F bk0
;k0

� 	

�exp ik0R
0 1� bk0$

bk0� 	� 	
R0dR0d2bk0

(227)

in which, for sake of argument, the scattering volume is taken to be
a spherical shell with internal radius ε and external radius R, cen-
tred at r0 ¼ r.
B.2. Wave propagation in a scattering medium

Now suppose that the scattering region fills all of local space,
by which is meant the dimensions R of the scattering region are
large such that k0R >> 1 together with ε / 0. In this limit, the
integral over R0 in (227) vanishes unless bk0$

bk0 ¼ 1, which means
that only forward scattering contributes, while scattering in other
directions cancels by destructive interference. If the scattering
component fills all space and there is no residual unscattered
component, then the source of the scattering becomes the scat-
tered wave itself. The source wave and the scattered wave are
therefore identical, and Eqs. (223)e(227) become replaced by the
homogeneous equation

jðrÞ ¼ 4pF0ðk;uÞ
Z

Gþ
0 ðk0; r; r0Þjðr0Þd3r0 (228)

where k denotes the modified wavevector associated with the plane
wave solution, jðr; tÞ ¼ eiðk$r�utÞ. Formally, (228) is expressed by

J ¼ 4pGþ
0 F0J (229)

where the operators F0 and Gþ
0 are defined by

F0e
ik$r�iut ¼ F0 k;uð Þeik$r�iut

Gþ
0 ¼ V2 � c�2vtt þ i0þ

� 	�1 (230)

Eq. (229) is therefore equivalent to

�
V2 � c�2vtt � 4pF0

	
J ¼ 0 (231)

which is the form of the wave equation that is deemed to hold in
the scattering medium.
The argument applies to vector fields in an unpolarized me-
dium, inwhich case Fðbk0

;k0Þ generalizes to Fðbe0; bk0
; be0;k0Þwhich is

now a tensor acting in the polarization space of the wave, e.g. ac-
cording to the rules (19). However, in the forward direction this
becomes unit diagonal, so the operator F0 remains scalar.
Appendix C. Lemmas

C.1. Introduction

Let M be a smooth manifold in ℝ3 of volume V ¼ a$ðb� cÞ
having the topology of a 3-torus with fixed primitive lattice vectors
a, b, c, such that for any function f on M,

f rþ að Þ ¼ f rþ bð Þ ¼ f rþ cð Þ ¼ f rð Þ (232)

A regular (Bravais) lattice may be represented on M, in which
caseV is the volume of the unit cell. More generally,Mmay be used
to represent any homogeneous physical system, i.e. one whose
properties are, on some scale (≪

��a��; ��b��; ��c�� ), the same every-
where, including crystalline solids at finite temperature and even
disordered systems, by means of the imposition of cyclic boundary
conditions, in which case V is the total volume of the system. In
terms of the above, the reciprocal space is defined by the possible
values of the vector

K ¼ 2p
V

ð[a*þm b*þ n c*Þ; [;m;n2ℤ (233)

where a* ¼ b � c, b* ¼ c � a, c* ¼ a � b, in terms of which

f rð Þ ¼
X
K

~f Kð Þe�iK$r (234)

where

~f ðKÞ ¼ 1
V

Z
V

f ðrÞeiK$rd3r (235)

Now let a spatial ‘lattice’ be defined by the set of points {ri},
i ¼ 1…N denoting the positions of N similar particles (of mass mp)
in a physical system. The static structure factor of the lattice is
defined, for any q, to be

S qð Þ ¼ 1
〈N〉

〈
XN
i

XN
j

e�iq$rieiq$rj〉 (236)

where the 〈〉 denotes an ensemble or time average and includes
convolution with the incoherent quantum fluctuations, which
ensure that, even in the zero excitation limit when all collective
motion, including zero point motion, ceases, the correlations decay
over distance characterized by a finite correlation length Lq. The
Heisenberg uncertainty principle implies that the uncertainty in
the position of each particle measured relative to its neighbour
satisfies 〈Dx2〉 >e ZDt=mp where Dt is the corresponding time un-
certainty. The propagation distance of any discernable disturbance
is limited, by definition, to Lq which implies Dt >e Lq=cs where cs is
the longitudinal sound speed. The correlation length also corre-
sponds to the distance beyond which the positions of neighbouring
particles can no longer be resolved so that any correlations disap-
pear. Since, for incoherent fluctuations, the uncertainties add in
quadrature, this yields Lqz1=np〈Dx2〉 where np is the particle
density. Combining the preceding formulae yields the upper limit
to the correlation length given by
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L2qz
mpcs
npZ

(237)

This has particular implications for the pair correlation function
(pcf) gðrÞ, which is related to the static structure factor by

1þ gðrÞ ¼ 1
〈N〉

X
K
ðSðKÞ � 1Þe�iK$r (238)

namely that it is guaranteed to be square integrable over all space,

even in the zero excitation limit, i.e.,
R
V

jgðrÞj2d3r exists and is finite

in the limit of V/∞. The pcf has the following additional
properties

〈N〉
V

Z
V

gðrÞd3r ¼ �1 (239)

〈N〉
V

Z
V

gðrÞeiK$rd3r ¼ SðKÞ � 1; Ks0 (240)

We prove the following lemmas:
C.2. Lemma 1

For any function f on M,

1
〈N〉

〈
XN
i¼1

XN
j¼1

f
�
ri � rj

�
〉 ¼ f ð0Þ þ 〈N〉

V

Z
V

f ðrÞð1þ gðrÞÞd3r

(241)

[Proof: Using Eqs. (234) and (236) it is straightforward to show
that

1
〈N〉

〈
XN
i¼1

XN
j¼1

f
�
ri � rj

�
〉 ¼

X
K

~f ðKÞSðKÞ (242)

Rearranging terms on the right-hand side and substituting for
~f ðKÞ from Eq. (235) and then making use of Eqs. (234) and (238)
yields

1
〈N〉

〈
XN
i¼1

XN
j¼1

f
�
ri � rj

�
〉 ¼

X
K

~f ðKÞðSðKÞ � 1Þ þ
X
K

~f ðKÞ

¼ 1
V

X
K

Z
V

f ðrÞeiK$rd3rðSðKÞ � 1Þ þ f ð0Þ

¼ 1
V

Z
V

f ðrÞ
X
K

eiK$rðSðKÞ � 1Þd3rþ f ð0Þ

¼ 〈N〉
V

Z
V

f ðrÞð1þ gðrÞÞd3rþ f ð0Þ

(243)

QED]
C.3. Lemma 2

If ~f ðKÞ is a given function that is everywhere finite or zero on the

reciprocal space and for which the sum
P
K

~f ðKÞ is absolutely

convergent so that the Fourier transform f(r) defined by (234) exists
forcr , then, in the limit of very large 〈N〉[1 , and large V, such
that 〈N〉=V ¼ n,

X
K

SðK� qÞ~f ðKÞ ¼ 〈N〉~f ðqÞ (244)

[Proof: First use Eqs. (236) and (234) to write

X
K

S K� qð Þ~f Kð Þ ¼ 1
〈N〉

〈
XN
i¼1

XN
j¼1

eiq$ ri�rjð Þf ri � rj
� �

〉 (245)

Application of the Lemma 1 (241) to the right-hand side then
yields

P
K
SðK� qÞ~f ðKÞ ¼ f ð0Þ þ 〈N〉

V

Z
V

eiq$rf ðrÞð1þ gðrÞÞd3r

¼ f ð0Þ þ 〈N〉
V

Z
V

eiq$rf ðrÞgðrÞd3rþ 〈N〉
V

Z
V

eiq$rf ðrÞd3r

¼ 〈N〉

0@~f ðqÞ þ f ð0Þ
〈N〉

þ 1
V

Z
V

eiq$rf ðrÞgðrÞd3r
1A

(246)

Application of the Schwarz inequality yields

1
V

������
Z
V

eiq$rf ðrÞgðrÞd3r
������< a

0@1
V

Z
V

jgðrÞj2d3r
1A1=2

(247)

where a is the upper bound on jf j in V. Since g is square integrable,
the third term in the parenthesis on the right hand side of Eq. (246)
vanishes in the limit of V/∞ at least as fast as V�1=2.

We now let 〈N〉 andV become arbitrarily large, while remaining
finite, and retain only the leading non-vanishing term in the
parenthesis on the right hand side of Eq. (246), which then reduces
the postulated result.

QED]
Appendix D. Free electron collision frequency model

For the purposes of the calculations described above, the free-
electron collision frequency n used in the Drude model, Eqs.
(80)e(87), is estimated by the general form of the standard formula
for the electron-ion collision frequency used in the conductivity,

n ¼ n 0ð Þ ¼ nc ¼
X
a

2pname

〈p3〉
Zae2

4pε0

� �2

ln La (248)

(Eq. (88)) inwhich 〈p3〉 is the thermal average of the cube of the free
electron wave-number (taken over a Fermi-Dirac distribution) and
the Coulomb Logarithm is taken to be given by
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ln La ¼ 1
2

ln 1þ xyð Þ � xy
1þ y

� �
x ¼ 1

1þ 4h2C
; y ¼ 4h2CL

2
0 ¼ 4 pDeð Þ2

(249)

where hC ¼ Zae2me=4pε0p and L0 ¼ pDe=hC ¼ 8pε0DeE=Zae2 are
the effective BorneSommerfeld parameter and the argument of the
classical Coulomb logarithm respectively, where

E ¼ Z2p2

2me
¼ 3

2
EB þ 2T2

EB
(250)

where

EB ¼

Z ∞

0
pðEÞqðEÞE3=2dEZ ∞

0
pðEÞqðEÞE1=2dE

¼ 2
〈E�1〉

(251)

which is directly proportional to the electron bulk-modulus. The
energy E corresponds to the saddle-point in the determination, by

the Laplace method, of the integral
Z ∞

0
E5=2pðEÞqðEÞE1=2dE, which

arises in the calculation of the average (88), given that the leading
(non-logarithmic) energy dependence of the collision frequency is

nað0Þ � E�3=2
a .

The Formula (249) is positive definite for cx; y and interpolates
between the classical Coulomb logarithm ln L0, for hC[1, and the
Born Coulomb Logarithm for a screened-Coulomb potential,
ln LBorn ¼ 1=2 ln 1þ yð Þ � y=ð 1þ yð ÞÞ, for hC≪1.
Appendix E. List of symbols

E.1. List of symbols used for mathematical and physical quantities

Unit used throughout this paper are generally such that Planck's
constant Z and Boltzmann's constant kB are both equal to unity, so
that same symbols are used for energy and frequency as well as for
wavenumber and momentum.
A operator corresponding to the electromagnetic vector

potential

aya; aa creation and annihilation operators for electron in state a

B(q) DebyeeWaller factor
by
k;e;bk;e creation and annihilation operators for photon in state k,e

a,b… atomic/ionic species or state labels
a0 Bohr radius, ¼ 4pε0Z2=mee2 ¼ rea�2

0
c velocity of light
cs longitudinal sound speed in a solid
E electron energy
Ea energy of electron in level a, equivalent to ionization

threshold energy in the case of a bound electron
En ionization threshold energy for bound electron in

hydrogenic level with principal quantum number n
e charge on an electron
e Euler's constant
e ¼ be unit vector in direction of (electric) polarization
eK polarization of a collective (phonon) mode {K} of the

scattering medium
F scattering operator in Hilbert space of an electron
F0 forward scattering operator (Appendix B)
F scattering operator in electron Hilbert space averaged
over the direction of the electron's motionbF scattering operator in Fock spacebFT Fock space scattering operator for Thomson scattering

F0 forward scattering amplitude per unit volume
(eigenvalue of F0)

Fcoh Fcoh q;u;u0ð Þ coherent scattering form-factor defined as in
Eq. (172) and given by Eq. (174)

Fincoh Fincoh(q,u,u0) incoherent scattering form-factor defined as
in Eq. (172) and given by Eq. (176)

F0f F0f q;u;u0ð Þ ¼ form-factor for scattering by free electrons,
in the absence of electron-ion correlations, defined as in
Eq. (172) and given by Eq. (173)

f f(k,k0;u,u0;E) ¼ polarization part of the scattering
operator F as defined by Eq. (12)

f f(k,u;E) ¼ ½(fþ(k,u;E)þ
f�(�k,�u;E)) ¼ f(k,k;u,u;E) ¼ polarization
operator ¼ forward scattering limit of f(k,k0;u,u0;E)

f f(u,u0;E) ¼ ½(fþ(u;E) þ f�(�u0;E)) ¼ f(0,0;u,u0;E) ¼
polarization part of the scattering operator in dipole
approximation

f± f±(k,u;E) ¼ advanced and retarded polarization operators
as defined by Eq. (14)

f± f±(u;E) ¼ f±(0,u;E) ¼ advanced and retarded polarization
operators as defined by Eq. (39)

~f; ~f
y

strength superoperators defined by ~rqðtÞ≡rqðtÞ~f,
~ryqðtÞ≡~f

y
r�qðtÞ

fa fað…Þ ¼ 〈ajfð…; EaÞja〉: fa(k,u) is the forward scattering
amplitude for photon scattering by an electron in state a;
fa(u) is the forward scattering amplitude (in dipole/long-
wavelength approximation) for photon scattering by
electron in (bound) state a, ¼strength function that gives
the response of an electron in the (bound) state a to
radiation of frequency u

f ±a f ±a ð…Þ ¼ 〈ajf±ð…; EaÞja〉 ¼ advanced and retarded
amplitudes/strength functions

f(k,u) average expectation value of the forward scattering
amplitude as defined by Eq. (30), which is directly related
to the dielectric function ε k;uð Þ by Eq. (35)

f(u) ¼f(0,u) ¼ forward scattering amplitude in dipole/long-
wavelength approximation

ff uð Þ free electron strength function ¼ contribution to the
forward scattering amplitude due to continuum (free)
electrons

fb uð Þ ¼ f uð Þ � Zf ff uð Þ ¼ P
a<0

〈na〉fa uð Þ bound electron part of
f ðuÞ

f 0ab one-electron oscillator strengths for transition a/b,
which are real

G electron propagator
G±ðEÞ retarded and advanced propagators for electron with

energy E
gab gabðrÞ ¼ actual pair correlation function between particles

of species a and b, which may represent electrons (e) or
ions (a; b;…). gabðqÞ is the Fourier transform defined in
accordance with (149)

g0ee g0ee rð Þ ¼ free electron pair correlation function given in
the absence of electron-ion correlations. (cf S0ee) g

0
ee qð Þ is

the Fourier transform defined in accordance with (149)
~gfea ~gfea rð Þ ¼ effective (atom-in-jellium) pair correlation

function between free electrons and single ion of species
a. ~gfea qð Þ is the Fourier transform defined in accordance
with (149)

H Hamiltonian operator
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H0 unperturbed electron Hamiltonian operator
Hfield unperturbed electromagnetic field Hamiltonian operator
H0 electron-field interaction part of Hamiltonian
i

ffiffiffiffiffiffiffi
�1

p
, or label denoting a general ion

i; j labels designating individual ions or atomic nuclei
K wavevector of collective mode fKg of the medium
k incident photon wavevector
k0 scattered photon wavevector
k (real part of) photon wavenumber
kB Boltzmann's constant (where rendered explicit)
[ orbital angular momentum quantum number (of

hydrogenic electron bound state)
LaðuÞ edge broadening profile for level a
Lq correlation length due to incoherent quantum

fluctuations
me electron mass
ma mass of ion species a
m* effective reduced mass of electron as modified by

electron-ion correlations
Ne number of electrons in system
Ni number of ions in system ¼P

a
Na

Na number of ions of species a
N K number of phonons in the mode K, ¼ 1=ðexpðUK=TÞ � 1Þ
n principal quantum number (of hydrogenic electron

bound state)
n0 principal quantum number of hydrogenic state that is in

resonance with the incident photon energy
na density of ions of species a, ¼ 〈ra〉 ¼ Na=V ¼ Pa ni
ne free electron density, ¼ 〈re〉 ¼

P
a
naZa ¼ Zfni

ni total ion density ¼P
a
na ¼ Ni=V

na occupancy, ¼1 or 0, of electron state a

nðuÞ refractive index
Pa ¼ 〈Na〉=Ni ¼ fraction of ions that are of species a
p electron momentum operator
px Cartesian component of p
pn component of electron's momentum normal to the

scattering plane for a particular scattering geometry
pðEÞ FermieDirac distribution function defined by Eq. (61)
q scattering wavevector ¼ k0 � k
qðEÞ ¼ 1� pðEÞ
Ri position of ith ion
re ¼ e2=4pε0mec2 ¼ classical electron radius
r electron position in general coordinate system
rei ¼ r� Ri ¼ electron position relative to ith ion
Sab Sabðq; tÞ ¼ intermediate ioneion correlation function.

Sabðq;uÞ ¼ ioneion dynamic structure factor.
SabðqÞ ¼ Sabðq; t ¼ 0Þ ¼ ioneion static structure factor

Sfee Sfee q;uð Þ ¼ free electron dynamic structure factor.
Sfee qð Þ ¼ corresponding static structure factor

S0ee S0ee q;uð Þ ¼ free electron dynamic structure factor
calculated in the absence of electron-ion correlations

T temperature
t time
V volume
Z mean atomic number ¼ Ne=Ni
Za charge state of ion species a
Zb average number of bound electrons

per ion ¼ Z � Zf
Zf mean ionization ¼P

a
PaZa

a; b; ::: one electron state labels. The notation a<0 refers to a
bound state for whichEa <0, and b>0 to a continuum
state for whichEb >0

a0 fine structure constant ¼ e2=4pε0Zcx1=137:036
bace bace
uð Þ Chihara's core electron polarization function, as

defined by Eq. (186)
Ga Gaðq;uÞ ¼ bound state covariance correction to scattering

cross-section, as defined by Eq. (142), representing effect
of correlations between bound states in the same ion(s)

gaab ga
abðqÞ ¼ boundebound state covariance function defined

by Eq. (137), which describes the static correlations
between bound states in the same ion

Da spectral width of level a
DX the deviation of a quantity X from its average
DX2 ¼ 〈DX2〉 ¼ the variance of X
dðxÞ Dirac delta function
dra draðr; tÞ ¼ raðr; tÞ � 〈ra〉
ε0 permittivity of free space
εðk;uÞ dielectric function
εðuÞ ¼ ε 0;uð Þ ¼ dielectric function in long wavelength limit
εa ¼ εaðq;uÞ ¼ dielectric function of ion species a
2ðuÞ (complex) electrical conductivity
h electron degeneracy parameter ¼ me=T
hC effective (electron-energy averaged) BorneSommerfeld

parameter for a Coulomb collision ¼ Zae2me=4pε0p
(Appendix D).

q scattering angle
k attenuation coefficient ¼ total effective cross-section per

unit volume
kabs absorption coefficient, Eqs. (64) and (65)
~kbr Bremsstrahlung reduced absorption coefficient defined

by Eq. (91)
L0 argument of the classical Coulomb logarithm, ln L0
ƛ electron Compton wavelength
me electron chemical potential
m cosðqÞ
v effective free-electron collision frequency
nc conductivity collision frequency defined by Eq. (88)
na damping frequency relating to the broadening of a

bound-free edge associated with bound state a

xaa xaaðq; tÞ ¼ intermediate bound-state self-correlation
function defined by Eq. (109), xaaðq;uÞ ¼ corresponding
dynamic structure factor

ca ¼�ð1þ faÞ ¼ strength modification due to binding for
electron in state a

rðrÞ density operator in coordinate (r) space
rq density operator in momentum (q) space
ra raðr; tÞ ¼ density of particle species a where a may

represent electrons (e), ions (i) or particular ion species
(a; b;…)

r0e r0e r; tð Þ ¼ free electron density calculated in the presence
of a homogeneous positively charged background
charge density, i.e., in the absence of electroneion
correlations

~rq ¼ ~rqðtÞ ¼ strength density operator in momentum (q)
space, as defined by Eq. (46)

~r<
a ~r<

a ðq;uÞ ¼ ~r<
a ðqÞ ¼ Fourier transform of the strength

density of the bound electrons associatedwith ion species
a, as defined by Eq. (139)

~r>
a ~r>

a ðq;uÞ ¼ ~r>
a ðqÞ ¼ Fourier transform of the strength

density of the free electrons associated with ion species a,
as defined by Eq. (166), ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

Zf=Pa
p

f *f uð Þ~gfea qð Þ
~ra ~raðq;uÞ ¼ ~r>

a ðq;uÞ þ ~r<
a ðq;uÞ ¼ total strength density of

the electrons associated with ion species a, and given by
Eq. (175)

r statistical operator (as defined by Eq. (216))
Si quantum state of atom or ion, i
Sa quantum numbers corresponding to atomic or ionic

state a
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Sa
a Sa

aðq; tÞ ¼ intermediate bound-state weighted self-
correlation function defined by Eq. (108)

Sa
aðq;uÞ corresponding dynamic structure factor

SaaðqÞ lattice structure factor for a solid, in which the atoms are
fixed at their true (finite temperature) equilibrium
positions, i.e., in the absence of any collective motions,
including zero point motion

s label denoting one of the Cartesian coordinates, x; y; z, of a
vector

s electron spin (Appendix A only)
se mean total photon cross-section per electron
sa photon absorption cross-section due to electron in state a

~sa photon reduced absorption cross-section due to electron
in state a

F
ij
ab F

ij
abðq; tÞ ¼ Fourier transform of the pair distribution for

two electrons in the correlated state jSða; bÞ〉 generated
from the Hartree state ja〉jb〉

f Azimuthal scattering angle
fab ¼ fabðq; tÞ ¼ 〈ajexpð�iq,rðtÞÞjb〉 for electron states a and

b, Eq. (95)
fi
ab ¼ fi

abðq; tÞ ¼ 〈a; ijexpð�iq$reiðtÞÞjb; i〉 for electron states a
and b relative to ith ion

caðuÞ polarizability of electron state a, ¼ �ð1þ fbðuÞÞ
J Fock state representing system of many electrons
ja
a wavefunction of bound electron level a, in ion species a

U scattering channel direction
Ue free electron plasma frequency

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nee2=ε0me

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zfnie2=ε0me

p
U0 total electron plasma frequency

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Znie2=ε0me

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nee2=ε0meV

p
Ua plasma frequency of ion species a,

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2anae2=ε0ma

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NiPaZ

2
ae2=ε0maV

q
UK frequency of phonon mode K
u (initial) photon frequency
u0 scattered photon frequency

Other symbols, particularly those used in the appendices, are
defined locally in their respective contexts.
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