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A new formulation to determine the unit impulse response (Green’s) functions of a loaded rotating tyre in
the vehicle-fixed (Eulerian) reference frame for tyre/road noise predictions is presented. The proposed
formulation makes use of the set of eigenfrequencies and eigenmodes for the statically loaded tyre
obtained from a finite element (FE) model of the tyre. A closed-form expression for the Green’s functions
of a rotating tyre in the Eulerian reference system as a function of the eigenfrequencies and eigenmodes
of the statically loaded tyre is found. Non-linear effects during loading are accounted for in the FE model,
while the frequency shift due to the rotational velocity is included in the calculation of the Green’s func-
tions. In the literature on tyre/road noise these functions are generally used to determine the tyre
response during tyre/road contact calculations. The presented formulation opens the possibility to solve
the contact problem directly in the Eulerian reference frame and to include local tyre softening due to
non-linear effects while keeping the computational advantage of describing the tyre dynamics as a set
of impulse response functions. The advantage of obtaining the Green’s functions in the Eulerian reference
system is that only the Green’s functions corresponding to the potential contact zone need to be deter-
mined, which significantly reduces the computational cost of solving the tyre/road contact and since the
mesh is fixed in space, a finer mesh can be used for the potential contact zone, improving the accuracy of
the contact force calculations. Although these effects might be less pronounced if a more accurate tyre
model is used, it is found that using the Green’s functions of the loaded tyre in a contact force calculation
leads to smaller forces than in the unloaded case, lower frequencies are present in the response and they
decrease faster as the rotational velocity increases.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Tyre vibrations are an important source of noise inside and out-
side the vehicle and contribute to the energy losses through rolling
resistance. Accurate and efficient models of the tyre dynamic
behaviour and of the tyre/road contact interaction are needed in
order to better understand how tyre vibrations contribute to the
interior and exterior environment.

In the literature over tyre/road noise it is generally accepted
that, due to the non-linear character of the interaction, the tyre/
road contact problem must be solved in the time-domain (Fragg-
stedt, 2008; O’Boy and Dowling, 2009; Wullens and Kropp,
2004). However, the dynamic response of the tyre itself is often de-
scribed by linear theory, linearising the equations of motion
around the undeformed state and formulating the dynamic re-
sponse in terms of unit impulse response functions or Green’s
functions (Fraggstedt, 2008; O’Boy and Dowling, 2009; Pinnington,
2006b; Rustighi et al., 2008; Wullens and Kropp, 2004, 2007). This
ll rights reserved.
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implies that non-linear effects which occur when the tyre is
loaded, due to the large deformations of the tyre belt and the
hyperelastic rubber material properties, are not included.

Furthermore, these models consider a stationary (non-rotating)
tyre and a contact zone which is rotating around the tyre. In other
words, the contact forces and tyre dynamic response are found in
the Lagrangian (tyre-fixed) reference system. In order to determine
the vibration transmission to the vehicle interior or the tyre sound
radiation, a description of the hub forces and the tyre vibration
field in the Eulerian (vehicle-fixed) reference system is needed.
This can be done by transforming the tyre response from the
Lagrangian to the Eulerian frame taking into account the shift in
frequencies due to the rotational velocity (Pinnington, 2006a;
Sabiniarz, 2011; Wullens and Kropp, 2007). However, it has been
shown that this approach does not predict the effect of rotation
on a loaded tyre correctly, since the change of the tyre eigenfre-
quencies due to rotational velocity cannot be described with a sim-
ple shift Lopez et al. (2009).

An alternative is to use a fully non-linear FE model and apply
the arbitrary Lagrangian Eulerian (ALE) formulation to obtain the
dynamic tyre response in the Eulerian reference frame (Brinkmeier
and Nackenhorst, 2004; Nackenhorst, 2004). In this way both the
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Fig. 1. Illustration of the approach to model vibrations on deformed rotating tyres.
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non-linear effects due to large deformations and the influence of
rotational velocity are included in the tyre response, but at a high
computational cost.

Another possibility is to still model the tyre dynamic response
as a collection of Green’s functions but use the fully non-linear
FE model to determine the static deformation due to loading and
linearise the equations of motion around the deformed state (Lo-
pez et al., 2007, 2009). In this way, the effect of the softening
due to the large deformations and the non-linear material proper-
ties on the dynamic properties of the tyre is included in the linear-
ised dynamic response, while the low computational cost of
describing the tyre as a set of Green’s functions is preserved.

In this paper a formulation for the Green’s functions of a loaded
rotating tyre in the Eulerian reference frame is proposed, based on
the Modal-Arbitrary Lagrangian Eulerian (M-ALE) approach pre-
sented in Lopez et al. (2007). Particular attention is paid to the ef-
fect of load and rotational velocity on the eigenfrequencies and the
implications of these effects for the Green’s functions. Using this
formulation to solve the tyre/road contact problem requires only
a small submatrix of the total matrix of Green’s functions, which
reduces the size of the system matrices and, therefore, the compu-
tational cost. Furthermore, the contact forces and tyre response are
directly obtained in the vehicle-fixed reference frame, which al-
lows for a direct coupling to interior noise transmission and sound
radiation.

2. Modal-Arbitrary Lagrangian Eulerian (M-ALE) formulation

The Modal-Arbitrary Lagrangian Eulerian (M-ALE) formulation
is developed by Lopez et al. (2007) and applied to model tyre vibra-
tions on deformed rotating tyres in the low frequency range, up to
approximately 300 Hz. In the M-ALE approach the initial tyre
deformation is calculated using the full FE nonlinear system of
equations and, subsequently, the eigenvalues and eigenvectors of
the tyre in the deformed state are calculated. These eigenvalues
and eigenvectors together with the mass-matrix are extracted
from the FE code and a coordinate transformation is applied to this
linearised model to account for the tyre rotation. As a consequence
the stiffening of the tyre due to the centrifugal forces and the Cori-
olis effect are included in the model. A short review of the M-ALE
formulation is given here.

The dynamic equations of a tyre in an Eulerian (vehicle-fixed)
reference frame can be written as

€gðtÞ þ eDðXÞ _gðtÞ þ eKðXÞgðtÞ ¼ UT fðtÞ; ð1Þ

where the vector f(t) contains the applied forces in the Eulerian ref-
erence frame, X is the rotating velocity of the tyre, g(t) are the mod-
al coordinates of the statically loaded tyre and U represents the
matrix of eigenvectors, such that the displacement vector in carte-
sian coordinates in the Eulerian reference frame is given by

x ¼ Ug: ð2Þ

The modified damping and stiffness matrices eD and eK are defined
aseD ¼ 2PðX;M;UÞ þ Dmod ð3Þ

andeK ¼ SðX;M;UÞ þ DmodPðX;M;UÞ þ Kmod: ð4Þ

The matrices P and S are added stiffness and damping terms due to
the rotation are given by

PðX;M;UÞ ¼ UT M bXUþX
DU
Dh

� �
ð5Þ

and
SðX;M;UÞ ¼ UT M bX2Uþ 2X bX DU
Dh
þX2 D2U

Dh2

 !
; ð6Þ

where bX is the matrix relating the time derivative of the rotation
matrix to the rotation matrix Lopez et al. (2007) and h represents
the spatial angular position in the vehicle-fixed reference frame.

The mass matrix, M, is extracted from the finite element dis-
cretization and the stiffness matrix Kmod is a diagonal matrix with
elements kii ¼ x2

i , where xi are the eigenfrequencies of the de-
formed non-rotating tyre and i = 1, . . . ,N with N the number of re-
tained modes. The reduced damping matrix Dmod is the projection
of the system damping matrix on the retained modes. In general
Dmod can be a full matrix, since there is no fundamental assump-
tion in the formulation that requires this matrix to be diagonal.
However, as a first approximation, Rayleigh damping is assumed

Dmod ¼ aMþ bK; ð7Þ

in which K represents the stiffness matrix and a and b are constant
coefficients.

The data needed to build the matrices eD and eK are the eigen-
values and eigenvectors of the statically loaded tyre obtained from
a FE analysis and the mass matrix M from the FE model. It should
be noted that eD and eK are non-diagonal and non-symmetric matri-
ces, which means that Eq. (1) is a coupled system of equations.
Therefore the set of coordinates g(t) is not a set of modal coordi-
nates of the rotating tyre in the vehicle-fixed reference frame.
The approach from Lopez et al. (2007) summarized above is illus-
trated in Fig. 1.

Assuming a stationary harmonic excitation

fðtÞ ¼ f̂ðxÞeixt ð8Þ

and

gðtÞ ¼ ĝðxÞeixt; ð9Þ

where ^ denotes complex amplitude, Eq. (1) can be transformed to
the frequency domain, leading to the following set of equations:

ĝðx;XÞ ¼ ½�x2Iþ ixeDðXÞ þ eKðXÞ��1UT f̂ðxÞ: ð10Þ

Considering that the response in the frequency domain can be ob-
tained as the product of a receptance matrix and the forces

ûðxÞ ¼ HðxÞf̂ðxÞ; ð11Þ

and taking the relationship in Eq. (2) into account, an expression for
the receptance of the rotating tyre in the Eulerian reference frame
can be derived,

Hðx;XÞ ¼ U½�x2Iþ ixeDðXÞ þ eKðXÞ��1UT : ð12Þ

The above expression gives the response at a given position and
direction on the tyre to an excitation at a given position and direc-
tion on the tyre in the Eulerian reference frame and it shows that
the response of the tyre depends on the rotational velocity X of
the tyre. In practice, only the submatrix relating the forces at the
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contact area to the response at any position on the tyre is needed to
determine the tyre response once the contact forces are known. This
significantly reduces the computational effort.

3. Green’s functions of the rotating tyre

3.1. Tyre/road contact interaction

It is generally accepted that the tyre/road contact problem must
be solved in the time-domain due to the non-linear character of the
interaction (Fraggstedt, 2008; O’Boy and Dowling, 2009; Wullens
and Kropp, 2004). The usual assumption is that the dynamic
behaviour of the tyre itself can be described, using linear theory,
as a collection of unit impulse response functions or Green’s func-
tions. The tyre response is then calculated in the time-domain from
the convolution integral between the Green’s functions and the
forces

ujðtÞ ¼
X

l

gjlðtÞ � flðtÞ: ð13Þ

In Eq. (13) uj(t) is the displacement at location and direction j on
the tyre, fl(t) is the force at location and direction l on the tyre and
gjl(t) is the corresponding Green’s function.

One way to obtain the Green’s functions of the rotating tyre in the
Eulerian reference frame is to calculate the receptance matrix given
in Eq. (12) numerically and perform an inverse FFT transformation of
this matrix. Although this is a valid approach, it has the disadvantage
that the full time-history of the Green’s functions has to be calcu-
lated and stored, which becomes prohibitive in terms of computer
effort if long simulation times at medium frequencies are to be
achieved. A computationally efficient alternative is to derive an ana-
lytical expression of the Green’s functions of the rotating tyre in the
Eulerian reference frame. Such an expression allows for the calcula-
tion of the Green’s functions for a given time instant on-line during
the computation of the contact forces, which dramatically reduces
the storage needs and speeds up the calculations.

3.2. Derivation of the Green’s functions

The Green’s functions gjl of the tyre expressed in the vehicle-
fixed reference frame can be determined by solving

€gðtÞ þ eDðXÞ _gðtÞ þ eKðXÞgðtÞ ¼ UT
l dðtÞ; ð14Þ

where Ul is the lth row of U and d(t) represents the Dirac delta
function. In order to find an analytical expression for the Green’s
function, the first step is to transform Eq. (14) to a set of first order
differential equations. To this end a new vector y is defined as

yðtÞ ¼
gðtÞ
_gðtÞ

� �
ð15Þ

and the first order system becomes

AðXÞ _yðtÞ þ BðXÞyðtÞ ¼ UT
l dðtÞ; ð16Þ

with

AðXÞ ¼
eDðXÞ I

I 0

" #
; BðXÞ ¼

eKðXÞ 0
0 �I

" #
and UT

l ¼
UT

l

0

" #
:

ð17Þ

The system of Eq. (16) is a set of coupled differential equations. Be-
cause A and B are non-symmetric matrices, the general algebraic
eigenvalue problem and the adjoint eigenvalue problem have to be
solved in order to transform Eq. (16) into a set of uncoupled first order
differential equations. The general eigenvalue problem is given by

½sAþ B�v ¼ 0 ð18Þ
and the adjoint eigenvalue problem can be written as

½sAþ B�T w ¼ 0; ð19Þ

where v and w are the right and left eigenvectors respectively and
the eigenvalue s is the same for both eigenvalue problems. All vari-
ables in Eqs. (18) and (19) are functions of X, but the explicit depen-
dence is omitted for clarity. If a new variable transformation is
introduced in Eq. (16)

yðtÞ ¼ VcðtÞ; ð20Þ

with V the matrix with right eigenvectors and c(t) the modal coor-
dinates of the rotating tyre in the Eulerian reference frame, and
premultiplying with the matrix of left eigenvectors W the following
set of uncoupled differential equations is obtained

ar½ _crðtÞ � srcrðtÞ� ¼ wT
r U

T
l dðtÞ; r ¼ 1; . . . ;2N; ð21Þ

where

WT AV ¼ darc and WT BV ¼ d�srarc r ¼ 1; . . . ;2N; ð22Þ

with dc indicating a diagonal matrix and N the number of eigenvec-
tors extracted from the FE analysis of the statically loaded tyre. It
should be stressed that the left wr and right vr eigenvectors and
the corresponding eigenvalues sr depend on the rotational velocity
of the tyre X.

Now it can be easily shown that the solution to Eq. (21) has the
following form:

crðtÞ ¼
wT

r U
T
l

ar
esr t ; r ¼ 1; . . . ;2N: ð23Þ

By combining Eqs. (2) and (20) a relationship can be found be-
tween the response at a given point of the rotating tyre in the Eule-
rian reference frame and the modal coordinates of the rotating
tyre,

xðtÞ ¼ UVcðtÞ with U ¼ ½U 0�: ð24Þ

If Eq. (23) is substituted in Eq. (24) an expression for the Green’s
function between the excitation at a given location and direction l
and the response at another location and direction j expressed in
the Eulerian reference frame can be obtained,

gjlðX; tÞ ¼
XN

k¼1

Ujk

X2N

r¼1

vkr

PN
p¼1wprUlp

ar
esr t

" #
: ð25Þ

In Eq. (25) the X dependence of gjl has been explicitly included to
stress the fact that the Green’s functions determined by Eq. (25)
are expressed in the Eulerian reference frame and that they will
change if the rotational velocity changes. In practice the Green’s
functions are evaluated at discrete time intervals, which leads to
a slightly modified form of Eq. (25)

gjlðX;mDtÞ ¼
XN

k¼1

Ujk

X2N

r¼1

vkr

PN
p¼1wprUlp

ar
esr mDt

" #
;

m ¼ 1; . . . ;M; ð26Þ
where Dt is the time step used in the calculations and T = MDt is the
total calculation time considered.

Introducing the following diagonal matrix

CðX;mDtÞ ¼ esr mDt

ar

� �
; r ¼ 1; . . . ;2N ð27Þ

a compact expression for the matrix of Green’s functions for a rotat-
ing tyre in the Eulerian reference frame can be obtained,

GðX;mDtÞ ¼ UVðXÞCðX;mDtÞWTðXÞUT : ð28Þ

It should be noted that only the submatrix corresponding to the
contact region needs to be evaluated to solve the tyre/road interac-
tion problem, which significantly reduces the actual size of the
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matrices in Eq. (27). It is also important to note that the only infor-
mation needed to apply Eq. (25) are the eigenvalues and eigenvec-
tors of the statically loaded tyre and the mass matrix M, which can
be readily obtained from a FE model of the tyre.
4. Tyre model

In this section the tyre model used in the simulations is de-
scribed and the influence of loading and travelling velocity on
the eigenfrequencies of the tyre is shortly discussed.
4.1. Description of finite element (FE) tyre model

A FE model of a 185/70 SR14 tyre without tread pattern is used
in this research SIMULIA (2006). The tread and sidewall consist of
rubber, while the belts and carcass consist of fibre-reinforced rub-
ber composites. The rubber is modelled as incompressible and
hyperelastic. The hyperelastic behaviour of the rubber is described
by a strain energy potential of the Neo-Hookean form. In addition,
the fibre-reinforcements are modelled as a linear elastic material.
In the circumferential direction, 72 general three-dimensional 6-
and 8-node linear hybrid brick elements are used to discretise
the model, each node having three active translational degrees of
freedom. In total, this leads to a tyre model consisting of 6048 ele-
ments and to approximately 25,000 degrees of freedom. The tyre
model is inflated to an uniform inflation pressure of 200 kPa. More
detailed information about the build-up and materials of the FE
model can be found in SIMULIA (2006).

This FE tyre model has been qualitatively validated for the fre-
quency range 0–250 Hz by comparing eigenfrequencies to experi-
mental data of tyres of similar size, as shown in Fig. 2. Here the
calculated eigenfrequencies of the first symmetric mode family
(n,0) (with n the number of wavelengths in the circumference) are
compared to experimental data. However, the inner structure of
the measured tyres is unknown, which prevents a direct comparison
of the calculated eigenfrequencies with the measured results.

Guyan reduction is applied in order to reduce the size of the
system matrices. Guyan reduction neglects inertia effects and is
exact at zero frequency only, Guyan (1965). However, if the re-
tained DOF’s are selected following the guidelines reported in
Bouhaddi and Fillod (1992), a reduced eigenvalue problem can be
obtained which gives a maximum error < 7% between the full
and reduced models in the frequency range 0–500 Hz.
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Fig. 2. Comparison of calculated and measured eigenfrequencies. � 185/70 R14
(calculated), 4 175/70 R13 Gong (1993), � 185/70 R14 Fioole (2008), h 195/70 R14
Kim et al. (2007).
4.2. Influence of load on the tyre eigenfrequencies

The tyre is statically loaded onto an idealised rigid, flat and
smooth surface. The normal to the surface is aligned with a radial
direction in the tyre. The contact between the tyre and the smooth
surface is modelled as a frictionless rigid contact. Subsequently, the
tyre rim is loaded with a force in the negative vertical direction
(perpendicular to the flat rigid surface) and the contact force distri-
bution is determined. After this the rim is fixed, the contact con-
straint on the contact nodes is removed and the contact forces
are applied on the contact nodes.

In Fig. 3 the lowest 50 calculated eigenfrequencies ordered from
lowest to highest are shown for the unloaded and loaded tyre for
two load values, 2750 and 4350 N. These results are in good qual-
itative agreement with the effect of tyre loading measured in
(Kindt, 2008; Pieters, 2007). It can be seen that increasing the load
from 2750 to 4350 N has a very small influence on the eigenfre-
quency. In the following sections only the results for the load of
2750 N will be shown, since the results for 4350 N are very similar.

4.3. Influence of travelling velocity on the tyre eigenfrequencies

There are three effects that make the eigenfrequencies of a
rotating tyre depend on the rotational velocity and, therefore, dif-
fer from the eigenfrequencies of the non-rotating tyre. The stiffen-
ing due to the rotation leads to slightly higher eigenfrequencies
and the Coriolis acceleration leads to the so-called ‘bifurcation’ ef-
fect, where the speed of waves propagating in opposite circumfer-
ential directions with the same wavelength are different even
when observed in the Lagrangian reference system Kim and Bolton
(2003). However, it has been shown that the change in eigenfre-
quencies due to rotational stiffening and Coriolis acceleration is
negligible at the rotational velocities corresponding to the usual
driving velocities Kim and Bolton (2003).

The third effect is the well-known Doppler-shift, which appears
when the tyre is observed from an Eulerian (vehicle-fixed)
reference system. In the case of the unloaded tyre, the two identi-
cal eigenfrequencies observed in the Lagrangian reference system
split into two frequencies, one higher and one lower that the origi-
nal frequency according to the relationship

f ¼ fs �
n

2p
X; ð29Þ

where f is the rotation compensated tyre eigenfrequency, fs the
eigenfrequency of the non-rotating tyre and n the number of wave-
5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

Mode number

Ei
ge

nf
re

qu
en

cy
 [H

z]

Fig. 3. Influence of load on eigenfrequencies. � unloaded tyre, h load 2750 N, . load
4350 N.
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Fig. 4. Influence of travelling velocity on eigenfrequencies. With (a) unloaded tyre, (b) load 2750 N and � 0 km/h, . 60 km/h, h 100 km/h.
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lengths along the circumference Kim and Bolton (2003). According
to Eq. (29) the eigenfrequencies of an unloaded rotating tyre line-
arly increase or decrease as the rotational velocity increases. This
gives straight lines of varying slopes when the eigenfrequencies
are plotted as a function of the rotational velocity. However, as
shown in Lopez et al. (2009), Eq. (29) no longer holds for loaded
tyres. In this case a phenomenon known as frequency loci veering
occurs and the eigenfrequency lines corresponding to two modes
’bend’ instead of crossing when they approach each other. This ef-
fect becomes more pronounced as the tyre load increases. Never-
theless, if the eigenfrequencies are plotted as a function of the
mode number, both the unloaded and loaded tyre show the same
qualitative behaviour. This is shown in Fig. 4, where the eigenfre-
quencies of the unloaded and loaded (load 2750 N) tyre as a func-
tion of the mode number are shown for the non-rotating tyre and
two travelling velocities: 60 km/h (X = 55.7 rad/s) and 100 km/h
(X = 87.8 rad/s). Note that for every value of the travelling velocity
the modes are ordered from lowest to highest eigenfrequency. Both
plots show a similar increase of modal density as the travelling
velocity increases for both the unloaded and the loaded tyre. There-
fore the net effect of increasing the travelling velocity is a decrease
in the values of the eigenfrequencies and an increase of the number
Fig. 5. Coordinate system and selected excitation and response locations. (a)
of modes in a given frequency range which is also reported in Brink-
meier and Nackenhorst (2008).
5. Calculation of the Green’s functions of the rotating tyre

The tyre model described in Section 4.1 has been used to calculate
the Green’s functions of the loaded rotating tyre given by Eq. (28). A
finer mesh is used for the potential contact zone, with a discretiza-
tion of 0.8� in the potential contact zone and 4� elsewhere. The spa-
tial gradients of the eigenvectors in Eqs. (5) and (6) are calculated by
a 7 point finite difference scheme. Six hundred modes are considered
in the calculations and the Rayleigh damping parameters are set to
a = 30 s�1 and b = 10�4 s. These values are chosen such that the cor-
responding modal damping ratios are of the same order found in
experiments for the frequency range 0–300 Hz (Kindt, 2008; Pieters,
2007). Furthermore all results shown below correspond to a load of
2750 N and only excitations and responses in the vertical direction
(perpendicular to the road surface) are considered.

In Fig. 5(a) and (b) a schematic front view and a close-up view of
the tyre at the potential contact zone can be seen where the nodes
considered in the calculations are shown and numbered 1–4. Node
Schematic front view of the tyre and (b) close view of the contact area.



Fig. 6. Green’s functions of the unloaded rotating tyre. (—) 0 km/h, (. . .) 60 km/h, (---) 100 km/h.
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Fig. 7. Green’s functions of the loaded rotating tyre. Load 2750 N. (—) 0 km/h, (. . .) 60 km/h, (---) 100 km/h.
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1 is exactly in the middle of the contact area on the yz-plane and
nodes 3 and 4 are placed symmetrically with respect to this plane,
at the leading (�10, 4�) and trailing (10, 4�) edge, respectively. The
angular values indicate the position of nodes 3 and 4 in the circum-
ferential direction when the tyre is unloaded, taking the rotating
direction as positive and node 1 as position 0�. These nodes are
chosen to illustrate the influence of rotation on the tyre response.
Node 2 is placed on the yz-plane at an axial distance of 0.038 m
from node 1 and is chosen to show the difference in softening ef-
fect due to the loading.

The Green’s functions for the unloaded and loaded tyre have
been calculated with a time discretization Dt = 10�4 s. Using Eq.
(28) the submatrix corresponding to the four positions depicted
in Fig. 5 can be determined. The results are plotted in Figs. 6 and
7 for the unloaded and loaded tyre respectively. The Green’s func-
tions are shown in the time interval [0–0.02] s and the same verti-
cal axis scaling is used for all plots in Fig. 6 and for all plots in Fig. 7,
but a different vertical axis scaling is used in each of these figures.
Results for three velocities are presented: 0 km/h (solid line),
60 km/h (dotted line) and 100 km/h (dashed line).

The point-Green’s functions of the unloaded tyre in Fig. 6(a–d)
show all a qualitatively similar pattern, with an initial response
peak which is only slightly affected by the travelling velocity, both
in height and width. This is possibly due to the fact that the highest
eigenfrequency included in the model is approximately 800 Hz,
with a corresponding time period of about 1.2 ms. The influence
of the travelling velocity becomes apparent after the first millisec-
ond, where the period of the response increases with increasing
travelling velocity.

The functions g33 and g44 in Fig. 6(c) and (d) are particularly
interesting. For a non-rotating tyre (solid line) both Green’s func-
tions are identical, since points 3 and 4 are located symmetrically
with respect to the yz-plane and the vertical excitation is symmet-
rically applied as well. As the travelling velocity increases, small
differences in the response during the first 2 ms (frequencies above
500 Hz) can be seen, but the responses are practically identical for
subsequent time steps. The rotation of the tyre disturbs the sym-
metry of the system with respect to the yz-plane while the excita-
tion is still symmetric with respect to this plane. The radial
component of the excitation is the same at nodes 3 and 4, but
the tangential component points against the rotation at node 3
and in the direction of rotation at node 4. Since the tangential com-
ponent is small for an angle of 10, 4�, the difference between g33

and g44 is small as well.
The cross-Green’s functions g31 and g41 shown in Fig. 6(e) and

(f) give the vertical response at node 3 and 4, respectively for a ver-
tical excitation at node 1. As one would expect, these two re-
sponses are identical for the non-rotating tyre. As the travelling
velocity increases differences between these two Green’s functions
become apparent. From node 1 to node 3 at the leading edge,
waves have to travel against the rotation, which increases the time
for the perturbation to reach node 3. On the other hand, from node
1 to node 4 at the trailing edge waves travel with the rotation,
which decreases the time for the perturbation to reach node 4.

In the case of the loaded rotating tyre, larger differences be-
tween the Green’s functions are found, as shown in Fig. 7. The ini-
tial response peak in the point-Green’s functions and the
amplitude of the subsequent response is larger than in the case
of the unloaded tyre, particularly for the nodes located on the cen-
tre line of the contact area in the longitudinal direction. This is due
to the softening occurring at the contact patch when the tyre is
loaded, which is specially pronounced in the middle of the contact
area. Although this effect is overestimated in the current FE model,
due to the relatively simple model of the belt structure, the
response at node 2 is in reasonable agreement with experimental
data O’Boy and Dowling (2009). A better estimation of the
softening at the contact patch will be obtained if a more realistic
model of the belt structure is used. It should be noted that this de-
crease in stiffness at the contact patch can only be predicted if the
large deformations due to loading are determined using a non-
linear model. It can also be seen that the period of oscillation
increases as the rotational velocity increases and this effect is again
more pronounced than for the unloaded tyre.

Unlike in the case of the unloaded tyre, the point-Green’s func-
tions g33 and g44 for the loaded tyre in Fig. 7(c) and (d) are no long-
er similar when the tyre is rotating and the difference becomes
more pronounced as the travelling velocity increases. For a travel-
ling velocity of 100 km/h the response at the leading edge has a
lower amplitude and larger period than the response at the trailing
edge. This behaviour can be explained by looking at the eigen-
modes of the loaded rotating tyre, which are not axi-symmetric,
due to the loading, and are not symmetric with respect to the ver-
tical plane perpendicular to the travelling direction, due to the
rotational velocity and the effect of frequency-loci veering Lopez
et al. (2009). Since the leading edge is stiffer than the trailing edge,
these Green’s functions will lead to a non uniform force distribu-
tion, with the resultant vertical force acting at the front of the con-
tact patch and moving away from the centre of the contact patch as
the travelling velocity increases.

Regarding the cross-Green’s functions for the loaded tyre in
Fig. 7(e) and (f), they show the same qualitative behaviour as in
the unloaded case, with a larger time for the perturbation to travel
towards the leading edge (against the rotation) and a shorter time
to travel towards the trailing edge (with the rotation) with respect
to the non-rotating situation. Also a larger amplitude and longer
periods are seen compared to the unloaded case.

It can be concluded that using the Green’s functions of the
loaded tyre in a contact force calculation leads to smaller forces
than in the unloaded case, lower frequencies are present in the re-
sponse and they decrease faster as the rotational velocity increases.
Furthermore, for the loaded tyre the rotational velocity leads to an
asymmetry between the point-responses at the leading and trail-
ing edge, which is not found for the unloaded tyre. These results
indicate that Green’s functions obtained linearising around the
underformed configuration do not adequately describe the effect
of load and rotational velocity on the tyre dynamic response. How-
ever, as mentioned earlier, the current FE model overestimates the
softening due to loading at the contact zone, which means that the
effects mentioned above will probably be less pronounced if a
more accurate tyre model is used. The influence of linearising
around the loaded configuration on the predicted contact forces
and tyre vibrations should be investigated and compared to exper-
imental result in order to provide definitive conclusions.
6. Conclusions

A closed-form expression for the Green’s functions of a loaded
rotating tyre expressed in the Eulerian reference frame is derived.
The information needed to actually compute these Green’s func-
tions are the eigenfrequencies and eigenmodes of the loaded tyre
in the tyre reference frame and the mass matrix obtained from a
standard FE calculation. A non-linear FE model is used to deter-
mine the large tyre deformation due to loading and the model is
linearised around the deformed state. This is different from the
usual definition of the Green’s functions where the tyre model is
linearised around the undeformed state.

The presented formulation opens the possibility to solve the
contact problem directly in the Eulerian reference frame and to in-
clude local tyre softening due to non-linear effects while keeping
the computational advantage of describing the tyre dynamics as
a set of impulse response functions. Solving the contact problem
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in the Eulerian reference frame means that only a small submatrix
of the total matrix of Green’s functions is needed and that a finer
mesh is only needed in the potential contact zone, which dramat-
ically reduces the size of the matrices and, therefore, the computa-
tional requirements. Additionally the contact forces and tyre
response are directly obtained in the vehicle-fixed reference frame,
which allows for a direct coupling to interior noise transmission
and sound radiation.

It can be concluded that using the Green’s functions of the
loaded tyre in a contact force calculation leads to smaller forces
than in the unloaded case, lower frequencies are present in the re-
sponse and they decrease faster as the rotational velocity increases.
Although these effects might be less pronounced if a more accurate
tyre model is used, these results indicate that Green’s functions ob-
tained linearising around the underformed configuration do not
adequately describe the effect of load and rotational velocity on
the tyre dynamic response. Nevertheless, the accuracy of the tyre
model should be enhanced and the influence of linearising around
the loaded configuration on the predicted contact forces and tyre
vibrations should be investigated and compared to experimental
result in order to provide definitive conclusions.
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