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Let G be a finite connected graph. The genus of G, denoted by r(G), is the least 
integer n such that G can be imbedded in S, . The maximum genus of G, denoted 
by y&G), is the largest integer k such that G can be Zcell imbedded in Sk. 
This paper characterizes those graphs G for which r(G) = y&G). As part of 
this characterization, it is shown that 7.&G) = 0 if and only if G does not 
contain a subgraph isomorphic to a subdivision of one of two given graphs. 

1. MX~DUCTION 

In the papers [5] and [6], the authors have investigated the 2-cell (disk) 
imbeddings of a finite undirected connected graph G with no loops or 
multiple edges, on a compact orientable 2-manifold. Such a surface is 
homeomorphic to a sphere with k handles, which we denote by S, . 

* Research supported in part by Western Michigan University (Faculty Research 
Fellowship). 

260 
0 1972 by Academic Press, Inc. 



MAXIMUM GENWS OF A GRAN 261 

Corresponding to a given graph G having V vertices and E edges the 
genus k is finite, and if y(G) and y=(G) d enote, respectively, the rn~~~rnurn 
and maximum values of k, then 2-cell imbeddings of G occur on S, if an 
only if y(G) < k < yM(G). The parameters y(G) and yM(G) are cahe 
the genus and the maximum genus of the graph 6, respectively. 

In this paper a characterization is given for those connected graphs G 
for which y(G) = yM(G), so that G has a 2-cell imbedding for exactly o 
value of k. The result obtained in Theorem 4 below shows that k must 
zero, and describes those graphs G for which y&G) = 0. This is done m 
a manner reminiscent of the celebrated theorem of ~~~atows~ on 
planarity of a graph, which states that a necessary and sufhcient condit 
for y(G) = 0 is that G have no subgraph isomorphic to a subdivision of 
either the complete graph K5 or the complete bipartite graph 

cation of Theorem 4, simplified proofs of two rest&s of 
numbers are given. 

2. PRELIMINARIES 

Euler’s extended polyhedral formula F - E + V = 2 - 2k apices 
to any 2-cell imbedding of a graph G on S;, , and may be written 
as 8’ = 1 + /3(G) - 2k, where /I(G) = E - Y + 1 is the circuit rank or 

etti number of G, and F is the number of faces in the imbedding, where 
each face is homeomorphic to an open unit disk (a &cell). When the 
genus k is a minimum, the number F = d(6) is called the regional number 
of G, and represents the maximum number of faces possible in any 2-cell 
imbedding. Since in general F >, 1, we obtain at once an upper boun 
the maximum genus from the inequality yM(G) < [p/2], where fx] denotes 
the greatest integer less than or equal to X. 

FIG. 1. The graphs Ho and HI e 
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There are two planar graphs HO and HI , shown in Fig. 1, which play a 
decisive role in the characterization theorem (Theorem 4) soon to be 
developed. The graph HO consists of two triangles having a common 
vertex, and HI consists of two triangles having a common edge. In the 
proof of Theorem 4 we shall employ subdivisions of these graphs. A 
graph G, is said to be a subdivision of G if G, can be obtained from G in a 
finite number of steps, each consisting of the deletion of an edge uv and 
the addition of a new vertex w  together with the edges uw and WV. 

The following definition will also be required. A cactus is a connected 
(planar) graph in which each block is a cycle or an edge. Additional graph 
theory terminology may be found in Harary [4]. 

We now establish three theorems which will be employed in the proof 
of Theorem 4. A proof of the second of these is also contained in [6]. We 
use Edmond’s technique of describing a 2-cell imbedding T, as presented 
in [3] (see also [7]). For each vertex v of G we choose a cyclic permutation 
P, of the vertices adjacent to v, and obtain the faces of T by the rule that 
the directed edge (a, b) in the boundary of a face f is followed by the 
directed edge (b, S(a)). Here P,(a) denotes that vertex which follows 
vertex a cyclically in Pb . 

We often find it convenient to compare the face count for an imbedding 
T of G with the face count for an imbedding T’ of a subgraph G’; we 
introduce the notations F(T, G) and F(T’, G’) for this purpose. The 
symbol P*Q.) will designate the permutation P, in the imbedding T. 

THEOREM 1. Any cycle in G can be taken as the boundary of a face, for 
an appropriately chosen imbedding Tfor G. 

ProoJ: To obtain the boundary: 

(fh--1wi+1 ->, 

select the permutation PWi at vertex vi of the cycle as follows: 

P,$ : (Vi-1 , vi+1 ,... >. 

Battle, Harary, Kodama, and Youngs [I] have shown that the genus of 
a graph is the sum of the genera of its blocks. The analogous result does 
not hold in general for the parameter yM , as shown in [5]; however the 
following theorem does afford a partial analog. 

THEOREM 2. Let H be a graph with n components G, , G, ,..., G, , and 
G a connected graph obtainedfrom H by the addition of n - 1 edges. Then 
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Proof. We establish the case n = 2. The general result 
induction. (We assume that no Gi is an isolated vertex; this trivial case is 
left to the reader.) For y1 = 2, add edge xy, joining x in G, to y in Gz . Let 
TI be any 2-cell imbedding of G, , with P,(,I): (x1 , xe ,...). Let T, be any 
Z&cell imbedding of G, , with Py(T2): ( y1 , yz ,...I. Then we may form a 
2-cell imbedding T of 6, described by: 

P V(TI) ’ if u E V(G,) and I; # x; 

B (x1 7 Y, x2 ,-->, if a=~; 
vo-) = (VI > x ,̂ Y2 ,...>, if u=y; 

P Z)(T$ ’ if v E V(G,) and c #y. 

There is a face fi in T3 with boundary (x1 xx2 n**>, and a face f2 in T, 
with boundary ( y1 yy, .e*). These two faces are combined in T for G into 
one face f with boundary (x1 xyyz *.* y1 yxx, -0.). This already uses all 
the innovations in T as compared with TI and TS , so all the other faces of 
T are the same as faces in T, and Tz . Hence we have 

Conversely, if we are given T for G, we reverse the above definitions and 
arguments to find T’ for 6, and T” for G, with the property that 

F(T’, Gl) + F(T”, G,) = F(T, G) + I ~ (21 

Now suppose that T* is a 2-cell imbedding of G &orrespo~di~g to 
Then F(T*, G) < F(T, G) for every 2-cell imbedding T of G. Using 

(2) we know there exists a 2-cell imbedding (T*)’ for G1 and a 2-ceh 
imbedding (T*)” for G, with F(T*, G) = F((T*)‘, G,) + F((T*)“, G,) - E. 

Let T,* be a 2-cell imbedding of G1 corresponding to yM(GI), so that 
F(Tl*, 63 < F(T, , GJ for every 2-cell imbedding Tl of G, . ~irni~ar~~, 
let T,* be a 2-cell imbedding of G, corresponding to y,&GJ, so that 
.&‘(Tz*, 6,) < F(T2 , GJ for every 2-cell imbedding Tf, of Gz . Using (1) 
we know there exists a 2-cell imbedding T of G with 

F(T, G) = F(Tl*, GJ + F(T,“, 6,) - 1. 

y the minimal properties of F(Tl*, G,) and F(T,“, G,), it follows that 

F(T, G) = F(T,*, G,) + F(T,“, G,) - 1 

< F((T*)‘, 6,) + F((T*)“, G,) - 1 = F(T*, G). 
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By the choice of T*, we know that F(T*, G) < F(T, G). HenceF(T*, G) = 
F(T, G), and we may make the following computation: 

27+(G) = 2 + E - V - P(T*, G) 

= 2 + t-G + Ez + 1) - W, + V,> -(WI*, G3 + FVz*, Gd - 1) 

= (2 + El - V, - F(Tl*, GJ) + (2 + Es - V, - F(Tz*, G,)) 

= hdG3 + %4(GJ. 

Division by 2 then completes the proof. 
As an application of Theorem 2, we exhibit, for every natural number ~1, 

a connected graph G, with y&G,) = 2r(GJ = 2~2. Let IZ disjoint copies 
of the graph K3,3 be joined together by y1 - 1 additional edges so as to 
form a connected graph G, . By the result of Battle, Harary, Kodama, and 
Youngs, y(G,) = ny(K,,,) = n. Also, since y&C&) = 2 (see [6]), 
y&G,) = nyM(K,,,) = 2n, by Theorem 2. 

THEOREM 3. If G has a 2-cell imbedding for which some vertex appears 
in the boundary of at least three distinct faces, then y(G) # y&G). 

Proof. In [2, Theorem 3.2(iii)], Duke has shown that, if G has a 2-cell 
imbedding T in S, such that some vertex appears in the boundary of at 
least three distinct faces, then G also has a 2-cell imbedding in Sk+l . 
Hence Y(G) f YM(@ 

3. AN ANALOG OF KURATOWSKI'S THEOREM 

We are now prepared to state our principal result. 

THEOREM 4. Let G be a connected graph. Then the following four 
statements are equivalent: 

(9 Y.&G) = Y(G). 
(ii) G has no subgraph isomorphic to a subdivision of HO or H1 . 

(iii) G is a cactus whose cycles are vertex disjoint. 

(iv> YMM(G) = 0. 

Proof. We establish the circular set of implications: 

(ii) 3 (iii) 3 (iv) * (i) * (ii). 

(ii) * (iii). By Kuratowski’s theorem G is planar, since & contains 
both H,, and H1 as subgraphs, and KS,3 has a subgraph H,’ isomorphic to 
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a subdivision of Z& . Any block B of G which is not an edge must be a cycle, 
since by well-known properties of blocks (see, for example [4]) 
otherwise have an edge common to two cycles, implying that 
subgraph isomorphic to a subdivision of W, , contrary to (ii). Thus G is 
cactus. Furthermore, the cycles of G are vertex disjoint, since otherwise 
would contain a subgraph isomorphic to a subdivision of PH, , again 
violating (ii). 

(iii) * (in). Let G be a cactus with (disjoint) cycles C, ) i = I, 2,..., n. 
Then p(C) = 1, and since y&C) < [~(C&?], as noted earlier for 
connected graphs in general, then yM(Ci) = 0, i = I, 2,. ..) n. The equation 
y&G) = CL, yM(Ci) = 0 now follows from Theorem 2. 

(iv) * (i). This is immediate, since 0 < y(G) < yw(G). 

(i) * (ii). We establish the contrapositive of this implication. 

FIG. 2. The case Ho ~ 

The case H,, . Assume that G contains a subgraph E&,’ which is iso- 
morphic to a subdivision of H, . It is possible to choose a 2-cell imbedding 
T for G so that the vertex Q common to the two cycles of Ho’ is iu the 
boundary of at least three distinct faces (fi ,fi ) and f3 in Fig. 2): we use 
Theorem 1 to obtain two faces containing o,, 9 each bounded by a cycle of 
H,‘. Since v,, has degree at least four, it must appear in the boundary of at 
least one other face. Applying Theorem 3, we see that y(G) f yM(G). 

The case H1 . Assume now that G contains a subgraph lY1’ isomor~~~& 
to a subdivision of HI . Again using Theorem 1, we select a 2-cell im- 
bedding T for G as shown in Fig. 3. Here Theorem 1 guarantees that we 
can bound one face, f3 = (v,,vr ... v~.+~v~+~ ... vJ, with a cycle of HI’. We 
consider two subcases: 

Subcase 1. In the imbedding T for G, suppose that edge v~v,+~ is in the 
boundary of two distinct faces, fi and fi (see Fig. 3). Then v0 is in the 
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FIG. 3. The case HI . 

boundary of these two faces and is also in the boundary of the face f3 , so 
that y(G) # yM(G), by Theorem 3. 

Subcase 2. Now suppose that directed edges (Q , zl,+J and (I,+.~ , q,) 
occur in the boundary of the same face of T: 

Then we have, in particular, I’+) : (z),+~ , II, , aI ,...) and I’,((,) : 
(Vi-1 ,%+1,Un+i 3..-1; see Fig. 3, where fi = fi for this subcase. We 
modify the imbedding T for G to T’ for G as follows: 

if v = vO ; 
P = v(T’) if v = vi ; 

Then vO is in the boundary of at least the following three faces of T’ : 

and 

The latter two faces are distinct, since the removal of edge vov, from T 
leaves a 2-cell imbedding of G - v,vo with v. and v, in the boundary of a 
common face. Adding vov, within that face gives the two distinct faces 
described above, for a total of at least three distinct faces containing v. . 
Now applying Theorem 3 again, we see that y(G) Z y&G). This completes 
the proof. 
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4. APPLICATIONS 

We use Theorem 4 to provide short proofs for two theorems of 
[2, Theorems 4.1 and 4.31, relating the regional number d(G) and the 
Betti number P(G) of a connected graph G. We combine these two theorems 
into the following: 

THEOREM 5. Let G be a connected graph. Then: 

(i) d(G) = 1 if and only if p(G) = 0; 

(ii) d(G) = 2 if and only if ,8(G) = 1. 

ProofI (i) if /3(G) = 0, then yM(G) < @(C)/Z] implies y&G) = 0, so 
that y(G) = 0. From d(G) = 1 + p(G) - 2y(G), d(G) = 1. Conversely7 
if d(G) = I, then ,8(G) = 2y(G), and yM(G) < p(G)/2 = y(G). Thus 
y,(G) < y(G), so that y&G) = y(G) = 0, by eorem 4, and /3(G) = 

(ii) if /3(G) = 1, h t en y&G) < [/3(G)/2] implies yM(G) = 0, so again 
y(G) = 0. From d(G) = 1 + p(G) - 2y(G), d(G) = 2. Con ely, if 
4(G> = 2, then P(G) = 2y(G) + 1, and y.dG) < ,&Q/2 = y + w. 
Thus y&G) < y(G), so again yM(G) = y(G) = 0, by Theorem 4, an 
/3(G) = 1. 

It is evident that, when (i) is satisfied, G is a tree; when (ii) holds, G is a 
planar graph having exactly one cycle. 
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