A Kuratowski-Type Theorem for the Maximum Genus of a Graph

E. A. Nordhaus
Michigan State University, East Lansing, Michigan 48823
R. D. Ringeisen
Colgate University, Hamilton, New York 13346
B. M. Stewart
Michigan State University, East Lansing, Michigan 48823

AND
A. T. White*

Western Michigan University, Kalamazoo, Michigan 49001
Communicated by W. T. Tutte
Received February 25, 1971

Let \boldsymbol{G} be a finite connected graph. The genus of G, denoted by $\gamma(G)$, is the least integer n such that G can be imbedded in S_{n}. The maximum genus of G, denoted by $\gamma_{M}(G)$, is the largest integer k such that G can be 2-cell imbedded in S_{k}. This paper characterizes those graphs G for which $\gamma(G)=\gamma_{M}(G)$. As part of this characterization, it is shown that $\gamma_{M}(G)=0$ if and only if G does not contain a subgraph isomorphic to a subdivision of one of two given graphs.

1. Introduction

In the papers [5] and [6], the authors have investigated the 2-cell (disk) imbeddings of a finite undirected connected graph G with no loops or multiple edges, on a compact orientable 2 -manifold. Such a surface is homeomorphic to a sphere with k handles, which we denote by S_{k}.

[^0]Corresponding to a given graph G having V vertices and E edges the genus k is finite, and if $\gamma(G)$ and $\gamma_{M}(G)$ denote, respectively, the minimum and maximum values of k, then 2-cell imbeddings of G occur on S_{k} if and only if $\gamma(G) \leqslant k \leqslant \gamma_{M}(G)$. The parameters $\gamma(G)$ and $\gamma_{M}(G)$ are called the genus and the maximum genus of the graph G, respectively.
In this paper a characterization is given for those connected graphs G for which $\gamma(G)=\gamma_{M}(G)$, so that G has a 2-cell imbedding for exactly one value of k. The result obtained in Theorem 4 below shows that k must be zero, and describes those graphs G for which $\gamma_{M}(G)=0$. This is done in a manner reminiscent of the celebrated theorem of Kuratowski on the planarity of a graph, which states that a necessary and sufficient condition for $\gamma(G)=0$ is that G have no subgraph isomorphic to a subdivision of either the complete graph K_{5} or the complete bipartite graph $K_{3,3}$. As an application of Theorem 4, simplified proofs of two results of Duke [2] on Betti numbers are given.

2. Preliminaries

Euler's extended polyhedral formula $F-E+V=2-2 k$ applies to any 2 -cell imbedding of a graph G on S_{k}, and may be written as $F=1+\beta(G)-2 k$, where $\beta(G)=E-V+1$ is the circuit rank or Betti number of G, and F is the number of faces in the imbedding, where each face is homeomorphic to an open unit disk (a 2 -cell). When the genus k is a minimum, the number $F=d(G)$ is called the regional number of G, and represents the maximum number of faces possible in any 2 -cell imbedding. Since in general $F \geqslant 1$, we obtain at once an upper bound for the maximum genus from the inequality $\gamma_{M}(G) \leqslant[\beta / 2]$, where $[x]$ denotes the greatest integer less than or equal to x.

Fig. 1. The graphs H_{0} and H_{1}.

There are two planar graphs H_{0} and H_{1}, shown in Fig. 1, which play a decisive role in the characterization theorem (Theorem 4) soon to be developed. The graph H_{0} consists of two triangles having a common vertex, and H_{1} consists of two triangles having a common edge. In the proof of Theorem 4 we shall employ subdivisions of these graphs. A graph G_{0} is said to be a subdivision of G if G_{0} can be obtained from G in a finite number of steps, each consisting of the deletion of an edge $u v$ and the addition of a new vertex w together with the edges $u w$ and $w v$.
The following definition will also be required. A cactus is a connected (planar) graph in which each block is a cycle or an edge. Additional graph theory terminology may be found in Harary [4].

We now establish three theorems which will be employed in the proof of Theorem 4. A proof of the second of these is also contained in [6]. We use Edmond's technique of describing a 2 -cell imbedding T, as presented in [3] (see also [7]). For each vertex v of G we choose a cyclic permutation P_{v} of the vertices adjacent to v, and obtain the faces of T by the rule that the directed edge (a, b) in the boundary of a face f is followed by the directed edge $\left(b, P_{b}(a)\right)$. Here $P_{b}(a)$ denotes that vertex which follows vertex a cyclically in P_{b}.
We often find it convenient to compare the face count for an imbedding T of G with the face count for an imbedding T^{\prime} of a subgraph G^{\prime}; we introduce the notations $F(T, G)$ and $F\left(T^{\prime}, G^{\prime}\right)$ for this purpose. The symbol $P_{v(T)}$ will designate the permutation P_{v} in the imbedding T.

Theorem 1. Any cycle in G can be taken as the boundary of a face, for an appropriately chosen imbedding T for G.

Proof. To obtain the boundary:

$$
\left(v_{i-1} v_{i} v_{i+1} \cdots\right)
$$

select the permutation $P_{v_{i}}$ at vertex v_{i} of the cycle as follows:

$$
P_{v_{i}}:\left(v_{i-1}, v_{i+1}, \ldots\right) .
$$

Battle, Harary, Kodama, and Youngs [1] have shown that the genus of a graph is the sum of the genera of its blocks. The analogous result does not hold in general for the parameter γ_{M}, as shown in [5]; however the following theorem does afford a partial analog.

Theorem 2. Let H be a graph with n components $G_{1}, G_{2}, \ldots, G_{n}$, and G a connected graph obtained from H by the addition of $n-1$ edges. Then

$$
\gamma_{M}(G)=\sum_{i=1}^{n} \gamma_{M}\left(G_{i}\right)
$$

Proof. We establish the case $n=2$. The general result then follows by induction. (We assume that no G_{i} is an isolated vertex; this trivial case is left to the reader.) For $n=2$, add edge $x y$, joining x in G_{1} to y in G_{2}. Let T_{1} be any 2 -cell imbedding of G_{1}, with $P_{x\left(T_{1}\right)}:\left(x_{1}, x_{2}, \ldots\right)$. Let T_{2} be any 2-cell imbedding of G_{2}, with $P_{y\left(r_{2}\right)}:\left(y_{1}, y_{2}, \ldots\right)$. Then we may form a 2 -cell imbedding T of G, described by:

$$
P_{v(T)}=\left\{\begin{array}{l}
P_{v\left(T_{1}\right)}, \quad \text { if } v \in V\left(G_{1}\right) \quad \text { and } v \neq x \\
\left(x_{1}, y, x_{2}, \ldots\right), \quad \text { if } v=x ; \\
\left(y_{1}, x, y_{2}, \ldots\right), \quad \text { if } v=y ; \\
P_{v\left(T_{2}\right)}, \quad \text { if } v \in V\left(G_{2}\right) \quad \text { and } v \neq y
\end{array}\right.
$$

There is a face f_{1} in T_{1} with boundary $\left(x_{1} x x_{2} \cdots\right)$, and a face f_{2} in T_{2} with boundary ($y_{1} y y_{2} \cdots$). These two faces are combined in T for G into one face f with boundary ($x_{1} x y y_{2} \cdots y_{1} y x x_{2} \cdots$). This already uses all the innovations in T as compared with T_{1} and T_{2}, so all the other faces of T are the same as faces in T_{1} and T_{2}. Hence we have

$$
\begin{equation*}
F(T, G)=F\left(T_{1}, G_{1}\right)+F\left(T_{2}, G_{2}\right)-1 \tag{1}
\end{equation*}
$$

Conversely, if we are given T for G, we reverse the above definitions and arguments to find T^{\prime} for G_{1} and $T^{\prime \prime}$ for G_{2} with the property that

$$
\begin{equation*}
F\left(T^{\prime}, G_{1}\right)+F\left(T^{\prime \prime}, G_{2}\right)=F(T, G)+1 \tag{2}
\end{equation*}
$$

Now suppose that T^{*} is a 2 -cell imbedding of G corresponding to $\gamma_{M}(G)$. Then $F\left(T^{*}, G\right) \leqslant F(T, G)$ for every 2 -cell imbedding T of G. Using (2) we know there exists a 2 -cell imbedding $\left(T^{*}\right)^{\prime}$ for G_{1} and a 2 -cell imbedding $\left(T^{*}\right)^{\prime \prime}$ for G_{2} with $F\left(T^{*}, G\right)=F\left(\left(T^{*}\right)^{\prime}, G_{1}\right)+F\left(\left(T^{*}\right)^{\prime \prime}, G_{2}\right)-1$.

Let $T_{1} *$ be a 2 -cell imbedding of G_{1} corresponding to $\gamma_{M}\left(G_{1}\right)$, so that $F\left(T_{1}^{*}, G_{1}\right) \leqslant F\left(T_{1}, G_{1}\right)$ for every 2 -cell imbedding T_{1} of G_{1}. Similarly, let $T_{2}{ }^{*}$ be a 2 -cell imbedding of G_{2} corresponding to $\gamma_{M}\left(G_{2}\right)$, so that $F\left(T_{2}{ }^{*}, G_{2}\right) \leqslant F\left(T_{2}, G_{2}\right)$ for every 2 -cell imbedding T_{2} of G_{2}. Using (1) we know there exists a 2 -cell imbedding T of G with

$$
F(T, G)=F\left(T_{1}^{*}, G_{1}\right)+F\left(T_{2}^{*}, G_{2}\right)-1
$$

By the minimal properties of $F\left(T_{1}{ }^{*}, G_{1}\right)$ and $F\left(T_{2}{ }^{*}, G_{2}\right)$, it follows that

$$
\begin{aligned}
F(T, G) & =F\left(T_{1}^{*}, G_{1}\right)+F\left(T_{2}^{*}, G_{2}\right)-1 \\
& \leqslant F\left(\left(T^{*}\right)^{\prime}, G_{1}\right)+F\left(\left(T^{*}\right)^{\prime \prime}, G_{2}\right)-1=F\left(T^{*}, G\right) .
\end{aligned}
$$

By the choice of T^{*}, we know that $F\left(T^{*}, G\right) \leqslant F(T, G)$. Hence $F\left(T^{*}, G\right)=$ $F(T, G)$, and we may make the following computation:

$$
\begin{aligned}
2 \gamma_{M}(G) & =2+E-V-F\left(T^{*}, G\right) \\
& =2+\left(E_{1}+E_{2}+1\right)-\left(V_{1}+V_{2}\right)-\left(F\left(T_{1}^{*}, G_{1}\right)+F\left(T_{2}^{*}, G_{2}\right)-1\right) \\
& =\left(2+E_{1}-V_{1}-F\left(T_{1}^{*}, G_{1}\right)\right)+\left(2+E_{2}-V_{2}-F\left(T_{2}^{*}, G_{2}\right)\right) \\
& =2 \gamma_{M}\left(G_{1}\right)+2 \gamma_{M}\left(G_{2}\right) .
\end{aligned}
$$

Division by 2 then completes the proof.
As an application of Theorem 2, we exhibit, for every natural number n, a connected graph G_{n} with $\gamma_{M}\left(G_{n}\right)=2 \gamma\left(G_{n}\right)=2 n$. Let n disjoint copies of the graph $K_{3,3}$ be joined together by $n-1$ additional edges so as to form a connected graph G_{n}. By the result of Battle, Harary, Kodama, and Youngs, $\gamma\left(G_{n}\right)=n \gamma\left(K_{3,3}\right)=n$. Also, since $\gamma_{M}\left(K_{3,3}\right)=2$ (see [6]), $\gamma_{M}\left(G_{n}\right)=n \gamma_{M}\left(K_{\mathbf{a}, 3}\right)=2 n$, by Theorem 2.

Theorem 3. If G has a 2 -cell imbedding for which some vertex appears in the boundary of at least three distinct faces, then $\gamma(G) \neq \gamma_{M}(G)$.

Proof. In [2, Theorem 3.2(iii)], Duke has shown that, if G has a 2 -cell imbedding T in S_{k} such that some vertex appears in the boundary of at least three distinct faces, then G also has a 2 -cell imbedding in $S_{\text {le } 11}$. Hence $\gamma(G) \neq \gamma_{M}(G)$.

3. An Analog of Kuratowski's Theorem

We are now prepared to state our principal result.
Theorem 4. Let G be a connected graph. Then the following four statements are equivalent:
(i) $\gamma_{M}(G)=\gamma(G)$.
(ii) G has no subgraph isomorphic to a subdivision of H_{0} or H_{1}.
(iii) G is a cactus whose cycles are vertex disjoint.
(iv) $\gamma_{M}(G)=0$.

Proof. We establish the circular set of implications:

$$
\text { (ii) } \Rightarrow \text { (iii) } \Rightarrow \text { (iv) } \Rightarrow \text { (i) } \Rightarrow \text { (ii). }
$$

(ii) \Rightarrow (iii). By Kuratowski's theorem G is planar, since K_{5} contains both H_{0} and H_{1} as subgraphs, and $K_{3,3}$ has a subgraph $H_{1}{ }^{\prime}$ isomorphic to
a subdivision of H_{1}. Any block B of G which is not an edge must be a cycle, since by well-known properties of blocks (see, for cxample [4]) B would otherwise have an edge common to two cycles, implying that G has a subgraph isomorphic to a subdivision of H_{1}, contrary to (ii). Thus G is a cactus. Furthermore, the cycles of G are vertex disjoint, since otherwise G would contain a subgraph isomorphic to a subdivision of H_{0}, again violating (ii).
$(i i i) \Rightarrow(i v)$. Let G be a cactus with (disjoint) cycles $C_{i}, i=1,2, \ldots, n$. Then $\beta\left(C_{i}\right)=1$, and since $\gamma_{M}\left(C_{i}\right) \leqslant\left[\beta\left(C_{i}\right) / 2\right]$, as noted earlier for connected graphs in general, then $\gamma_{M}\left(C_{i}\right)=0, i=1,2, \ldots, n$. The equation $\gamma_{M}(G)=\sum_{i=1}^{n} \gamma_{M}\left(C_{i}\right)=0$ now follows from Theorem 2 .
$(i v) \Rightarrow(i)$. This is immediate, since $0 \leqslant \gamma(G) \leqslant \gamma_{M}(G)$.
(i) \Rightarrow (ii). We establish the contrapositive of this implication.

Fig. 2. The case H_{0}.
The case H_{0}. Assume that G contains a subgraph $H_{0}{ }^{\prime}$ which is isomorphic to a subdivision of H_{0}. It is possible to choose a 2 -cell imbedding T for G so that the vertex v_{0} common to the two cycles of $H_{0}{ }^{\prime}$ is in the boundary of at least three distinct faces (f_{1}, f_{2}, and f_{3} in Fig. 2): we use Theorem 1 to obtain two faces containing v_{0}, each bounded by a cycle of H_{0}^{\prime}. Since v_{0} has degree at least four, it must appear in the boundary of at least one other face. Applying Theorem 3, we see that $\gamma(G) \neq \gamma_{M}(G)$.

The case H_{1}. Assume now that G contains a subgraph $\Pi_{1}{ }^{\prime}$ isomorphic to a subdivision of H_{1}. Again using Theorem 1, we select a 2 -cell imbedding T for G as shown in Fig. 3. Here Theorem 1 guarantees that we can bound one face, $f_{3}=\left(v_{0} v_{1} \cdots v_{i-1} v_{i} v_{i+1} \cdots v_{n}\right)$, with a cycle of H_{1}^{\prime}. We consider two subcases:

Subcase 1. In the imbedding T for G, suppose that edge $v_{0} v_{n+1}$ is in the boundary of two distinct faces, f_{1} and f_{2} (see Fig. 3). Then v_{0} is in the

Fig. 3. The case H_{1},
boundary of these two faces and is also in the boundary of the face f_{3}, so that $\gamma(G) \neq \gamma_{M}(G)$, by Theorem 3.

Subcase 2. Now suppose that directed edges (v_{0}, v_{n+1}) and (v_{n+1}, v_{0}) occur in the boundary of the same face of T :

$$
\left(v_{n+1} v_{0} v_{n} \cdots v_{0} v_{n+1} \cdots v_{i+1} v_{i} v_{n+j} \cdots\right) .
$$

Then we have, in particular, $P_{v_{0}(T)}:\left(v_{n+1}, v_{n}, v_{1}, \ldots\right)$ and $P_{v_{i}(T)}$: ($v_{i-1}, v_{i+1}, v_{n+j}, \ldots$); see Fig. 3, where $f_{1}=f_{2}$ for this subcase. We modify the imbedding T for G to T^{\prime} for G as follows:

$$
P_{v\left(T^{\prime}\right)}= \begin{cases}\left(v_{n}, v_{n+1}, v_{1}, \ldots\right), & \text { if } \quad v=v_{0} ; \\ \left(v_{i-1}, v_{n+3}, v_{i+1}, \ldots\right), & \text { if } v=v_{i} ; \\ P_{v(T)}, \text { otherwise. } & \end{cases}
$$

Then v_{0} is in the boundary of at least the following three faces of T^{\prime} :

$$
\begin{aligned}
& \left(v_{n+1} v_{0} v_{1} \cdots v_{i-1} v_{i} v_{n+j} \cdots\right), \\
& \left(v_{0} v_{n+1} \cdots v_{i+1} v_{i} \cdots v_{i} v_{i+1} \cdots v_{n}\right),
\end{aligned}
$$

and

$$
\left(v_{0} v_{n} \cdots\right) .
$$

The latter two faces are distinct, since the removal of edge $v_{0} v_{n}$ from $T^{\prime \prime}$ leaves a 2 -cell imbedding of $G-v_{n} v_{0}$ with v_{0} and v_{n} in the boundary of a common face. Adding $v_{0} v_{n}$ within that face gives the two distinct faces described above, for a total of at least three distinct faces containing v_{0}. Now applying Theorem 3 again, we see that $\gamma(G) \neq \gamma_{M}(G)$. This completes the proof.

4. Applications

We use Theorem 4 to provide short proofs for two theorems of Duke [2, Theorems 4.1 and 4.3], relating the regional number $d(G)$ and the Betti number $\beta(G)$ of a connected graph G. We combine these two theorems into the following:

Theorem 5. Let G be a connected graph. Then:
(i) $d(G)=1$ if and only if $\beta(G)=0$;
(ii) $d(G)=2$ if and only if $\beta(G)=1$.

Proof. (i) if $\beta(G)=0$, then $\gamma_{M}(G) \leqslant[\beta(G) / 2]$ implies $\gamma_{M}(G)=0$, so that $\gamma(G)=0$. From $d(G)=1+\beta(G)-2 \gamma(G), d(G)=1$. Conversely, if $d(G)=1$, then $\beta(G)=2 \gamma(G)$, and $\gamma_{M}(G) \leqslant \beta(G) / 2=\gamma(G)$. Thus $\gamma_{M}(G) \leqslant \gamma(G)$, so that $\gamma_{M}(G)=\gamma(G)=0$, by Theorem 4, and $\beta(G)=0$.
(ii) if $\beta(G)=1$, then $\gamma_{M}(G) \leqslant[\beta(G) / 2]$ implies $\gamma_{M}(G)=0$, so again $\gamma(G)=0$. From $d(G)=1+\beta(G)-2 \gamma(G), d(G)=2$. Conversely, if $d(G)-2$, then $\beta(G)-2 \gamma(G)+1$, and $\gamma_{M}(G) \leqslant \beta(G) / 2=\gamma(G)+1 / 2$. Thus $\gamma_{M}(G) \leqslant \gamma(G)$, so again $\gamma_{M}(G)=\gamma(G)=0$, by Theorem 4, and $\beta(G)=1$.

It is evident that, when (i) is satisfied, G is a tree; when (ii) holds, G is a planar graph having exactly one cycle.

References

1. J. Battle, F. Harary, Y. Kodama, and J. W. T. Youngs, Additivity of the genus of a graph, Bull. Amer. Math. Soc. 68 (1962), 565-568.
2. R. A. Duke, The genus, regional number, and Betti number of a graph, Canad. $J_{\text {. }}$ Math. 18 (1966), 817-822.
3. J. R. Edmonds, A combinatorial representation for polyhedral surfaces, Notices, Amer. Math. Soc. 7 (1960), 646.
4. F. Harary, "Graph Theory," Addison-Wesley, Reading, Mass., 1969.
5. E. A. Nordhaus, B. M. Stewart, and A. T. White, On the maximum genus of a graph, J. Combinatorial Theory B, 11, No. 3 (1971), 258-267.
6. R. D. Ringeisen, The maximum genus of a graph, Ph.D. Dissertation, Michigan State University, July, 1970.
7. J. W. T. Youngs, Minimal imbeddings and the genus of a graph, J. Math. Mech. 12 (1963), 303-315.

[^0]: * Research supported in part by Western Michigan University (Faculty Research Fellowship).

