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Abstract

We use realistic two- and three-nucleon interactions in a hybrid chiral-perturbation-theory calculation of the charge-symmetry-breaking reaction
dd → απ0 to show that a cross section of the experimentally measured size can be obtained using LO and NNLO pion-production operators. This
result supports the validity of our power counting scheme and demonstrates the necessity of using an accurate treatment of ISI and FSI. It also
becomes evident that a full calculation requires the use of consistent chiral nuclear forces to overcome the visible model dependence of our result.
© 2006 Elsevier B.V. Open access under CC BY license.
1. For most purposes, hadronic isospin states can be con-
sidered as charge symmetric, i.e., invariant under a rotation
by 180◦ around the 2-axis in isospin space. Charge symmetry
(CS) is a subset of the general isospin symmetry, charge inde-
pendence (CI), which requires invariance under any rotation in
isospin space. In quantum chromodynamics (QCD), CS implies
that dynamics are invariant under the exchange of the up and
down quarks [1]. However, since the up and down quarks do
have different masses (mu �= md ) [2,3], the QCD Lagrangian is
not charge symmetric. This symmetry violation is called charge
symmetry breaking (CSB). The different electromagnetic inter-
actions of the up and down quarks break CI. Observing the
effects of CSB interactions therefore provides a probe of mu

and md .
Two exciting recent observations of CSB in experiments

involving the production of neutral pions stimulate our atten-
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tion. Many years of effort led to the observation of CSB in
np → dπ0 at TRIUMF. The CSB forward–backward asym-
metry of the differential cross section was found to be Afb =
[17.2 ± 8(stat) ± 5.5(sys)] × 10−4 [4]. In addition, the final
experiment at the IUCF Cooler ring reported a very convinc-
ing dd → απ0 signal near threshold (σ = 12.7 ± 2.2 pb at
Td = 228.5 MeV and 15.1 ± 3.1 pb at 231.8 MeV) [5]. The
dd → απ0 reaction violates CS since the deuterons and the
α-particle are self-conjugate under the CS operator, with a pos-
itive eigenvalue, while the neutral pion wave function changes
sign.

The study of CSB π0 production reactions presents an ex-
citing new opportunity to learn about the influence of quark
masses in nuclear physics, and to use effective field theory
(EFT) to improve our understanding of how QCD works [6].
This is because chiral symmetry of QCD determines the form
of pionic interactions. Electromagnetic CSB is typically of the
same order of magnitude as the strong one, and also can be han-
dled using EFT.

The EFT for the Standard Model at momenta comparable to
the pion mass, Q ∼ mπ , is chiral perturbation theory (χPT) [7].
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This EFT has been extended [8–13] to momenta relevant to pion
production, Q ∼ √

mπM with M the nucleon mass. (For a re-
view and further references, see Ref. [13].)

EFT with the operators of Ref. [14] was used to correctly
predict the sign of the forward–backward asymmetry in np →
dπ0 [9]. For the dd → απ0 reaction, we surveyed various
mechanisms using initial-state plane-wave functions and sim-
plified final-state wave functions [10]. In this simplified model,
we found that the formally leading-order (LO) production
mechanism is suppressed through symmetries in the wave func-
tions and studied other mechanisms. The contributions from
next-to-next-to-leading-order (NNLO) diagrams are too small
to account for the observed cross section—a cross section of
only 0.9 pb was found. We also included short-range pion emis-
sion, which contributes at N4LO through contact vertices whose
strengths are a priori unknown. We used resonance saturation,
by means of CSB effects in Z-diagrams, as motivated by a suc-
cessful phenomenological model [15] of the charge-symmetry-
conserving (CSC) reaction pp → ppπ0. For the simplified
wave functions, we then found a cross section of the observed
order of magnitude.

Our aim here is to take advantage of recent significant ad-
vances in four-body theory [16,17] that allow us to include the
effects of deuteron–deuteron interactions in the initial state, and
to use bound-state wave functions with realistic two- and three-
nucleon interactions. The calculations presented here are hy-
brid: the pion-production operators are constructed using EFT,
but the nuclear interactions used to obtain the wave functions
are not. No calculation of this kind can be considered to be
completely well-founded unless the operators and wave func-
tions are constructed from the same convergent EFT. However,
the interactions do include one-pion exchange, so their long-
range behavior is founded in EFT. Moreover, we employ several
potentials to gauge the sensitivity of the various production op-
erators to the shorter-ranged parts of the interaction. Indeed,
we will show below, that there is a visible model dependence
for some of the operators. Ultimately, we will therefore require
consistent, chiral nuclear forces for the calculation of the wave
functions.

The present study does not include all diagrams appearing
at NNLO. A complete analysis demands the inclusion of loop
diagrams. Their evaluation requires a careful treatment of di-
vergences as pointed out in Ref. [11], and understood only
recently [12]. For technical reasons, photon exchange is so far
only considered in the final-state wave function. In this Letter,
we concentrate on the important effects of initial- and final-
state interactions (ISI and FSI), and anticipate that the use of
the present incomplete set of operators should be sufficient to
get order-of-magnitude estimates and to demonstrate the tech-
nique.

2. We summarize the power counting of the previous study
[10], which contains explicit expressions for the operators. At
LO, there is only one contribution, represented by Fig. 1a: pion
rescattering in which the CSB occurs through the seagull pion-
nucleon terms linked to the nucleon-mass splitting. This con-
tribution stems from the chiral transformation properties of the
Fig. 1. Diagrams of np → dπ0; the solid circle indicates CSB.

quark operators that generate CSB, which are two: (i) the up-
down mass difference, which breaks chiral symmetry as a com-
ponent of a chiral four-vector; (ii) electromagnetic quark inter-
actions, which break chiral symmetry as components of a chiral
anti-symmetric rank-two tensor. In lowest order, there exist two
seagull operators involving a nucleon interacting with two pi-
ons, one of which is neutral. Their strengths are determined
by the quark-mass and electromagnetic contributions to the nu-
cleon mass splitting, δmN and δ̄mN , respectively. δmN is pro-
portional to ε(mu + md), where ε ≡ (mu − md)/(mu + md) ≈
1/3, while δ̄mN is the fine-structure constant α times a typi-
cal hadronic mass. The only existing constraint on these two
terms is δmN + δ̄mN = Mn − Mp = 1.29 MeV and the model
dependent estimate δ̄mN = −(0.76 ± 0.3) MeV based on the
Cottingham sum rule [21]. Verifying the theory requires that
the two terms be constrained independently. The most natural
reaction to study is πN scattering. Ref. [2] predicted a signifi-
cant difference between the π0p and π0n scattering lengths that
is not presently observable, as discussed in Ref. [18]. Effects
of these terms in the nuclear potential [19] are relatively small
or suffer from other unknowns as in πd scattering [20]. This
leaves the investigation of CSB in the two reactions, np → dπ0

and dd → απ0, as very promising possibilities. For definite-
ness, in this Letter we use the central value of the estimate
from the Cottingham sum rule. The leading diagram, Fig. 1(a),
is O[εm2

π/(f 3
πMQ)], where fπ = 92.4 MeV denotes the pion

decay constant and Q ≈ √
mπM a typical momentum.

We refer to this contribution as “pion exchange”. For com-
pleteness, we distinguish the parts proportional to δmN and
δ̄mN and denote the contributions by MPE = MPE,δmN

+
MPE,δ̄mN

.
There is no NLO contribution. At NNLO, suppressed by

O(mπ/M), there exists a recoil correction of the LO term (la-
beled Mrec = Mrec,δmN

+ Mrec,δ̄mN
). Its strength is also de-

termined by δmN and δ̄mN . Therefore, its contribution allows
us to estimate the size of NNLO contributions. The recoil cor-
rection to the πNN vertex is linear in the energy of the virtual
pion. Such operators were studied in Ref. [22] for the reactions
NN → NNπ , and we use the prescription provided there and
applied in Ref. [10]. Demonstrating the validity of this recipe
for a four-body environment deserves further study.

At the same order new parameters appear. In particular,
a term arises in which a one-body CSB operator (∝ β1 + β̄3)
is sandwiched between initial- and final-state wave functions,
as illustrated in, e.g., Fig. 1(b). We refer to this as the one-body
term (M1b). The terms β1 = O(εm2

π/M2) and β̄3 = O(α/π)

arise from, respectively, the quark-mass-difference and electro-



A. Nogga et al. / Physics Letters B 639 (2006) 465–470 467
magnetic contributions to the isospin-violating pion–nucleon
coupling. Neither β1 nor β̄3 can be extracted from experiment
yet. To allow us to provide numerical results we estimate these
terms by modeling [23] β1 by π -η mixing, see Fig. 1(b),

(1)β1 = ḡη

〈
π0

∣∣H |η〉/m2
η,

where 〈π0|H |η〉 = −4200 MeV2 is the π–η-mixing matrix el-
ement [24], and ḡη = gηNNfπ/M the η-nucleon coupling con-
stant. An early analysis [25] using one-boson-exchange poten-
tials in NN scattering gave g2

ηNN/4π = 3.86 (used in Ref. [9]),
but the data show little sensitivity to η exchange and high-
accuracy fits can be achieved [26] using g2

ηNN/4π = 0. Indeed,
the possibility of a vanishing coupling constant had been raised
earlier. The detailed analysis of NN total cross sections and pp̄

data using dispersion relations [27] found that g2
ηNN/4π = 0.

This is consistent with extractions from the nucleon pole in the
amplitude πN → ηN that give [28] 0.5 > g2

ηNN/4π � 0. Pho-
toproduction reactions on a nucleon [29] (see their Fig. 2) yield
the small value g2

ηNN/4π = 0.1. To be consistent with our ear-

lier study [10], we use g2
ηNN/4π = 0.51 for the results shown

below, but also examine the effects of using g2
ηNN/4π = 0.10.

Both values are roughly consistent with the size expected using
power counting arguments [23]. We assume the sign predicted
by SU(3) symmetry, as in Ref. [10].

The effects of electromagnetic interactions as well as strong
CSB were included in computing the α-particle wave functions,
where the former effect is dominant. These interactions gener-
ate a small isospin T = 1 component of the wave function that
enables a non-zero contribution of CSC production operators.
To estimate the effects of the admixtures, we calculate the pro-
duction matrix element using the CSC counterpart of diagram
Fig. 1(b) (referred to as MWF).

A number of other CSB mechanisms enter at N3LO or
higher, including additional loop diagrams and short-range in-
teractions. The lowest order where four-nucleon contact inter-
actions start to contribute is N4LO, that is, O(mπ/M) below
NNLO. To estimate their strength, Ref. [10] evaluated certain
tree-level contributions as indicated by Fig. 1(c), which repre-
sents the exchange of heavy mesons (σ , ω, ρ) via a Z-graph
mechanism, with π–η mixing generating CSB at pion emis-
sion (Mσ , Mω and Mρ ). Another Z-graph (labeled as Mρω)
arises in which the CSB occurs in the heavy-meson exchange
via ρ–ω mixing along with strong pion emission at the vertex.
The Z-graphs are believed to be important because their inclu-
sion leads to a quantitative description of the total cross section
for the reaction pp → ppπ0 near threshold [15]. Our present
results use the coupling constants and parameters of Ref. [10],
see their Table 1. However, in the future it will be necessary to
reassess the procedure in light of recent developments concern-
ing the treatment of divergences in EFT loop diagrams [12].

3. The various mechanisms generate pion-production ker-
nels that are sandwiched between final- and initial-state wave
functions to provide a transition matrix element M. We re-
strict our analysis to Td = 228.5 MeV, as the effects of a small
change in energy are captured mainly by the change in the
Table 1
Complex dd → απ0 amplitudes at Td = 228.5 MeV in units of 10−4 fm−2.
PWA denotes the plane-wave approximation. ISI results also include the initial-
state interaction

PWA ISI

CDB + TM99 AV18 + TM99 CDB + TM99 AV18 + TM99

MPE,δmN
0.35 −0.07 −1.51 + i1.87 −0.76 + i0.74

MPE,δ̄mN
0.06 −0.01 −0.28 + i0.35 −0.14 + i0.14

MPE 0.41 −0.08 −1.79 + i2.22 −0.90 + i0.88

Mrec,δmN
0.41 0.34 −0.81 + i0.74 −0.63 + i0.59

Mrec,δ̄mN
0.08 0.06 −0.15 + i0.14 −0.12 + i0.11

Mrec 0.49 0.40 −0.96 + i0.88 −0.75 + i0.70

M1b 1.76 1.60 −2.51 + i1.84 −1.94 + i1.60

Mσ 0.46 0.31 −0.56 + i0.64 −0.32 + i0.42
Mω 0.51 0.38 −0.53 + i0.44 −0.35 + i0.34
Mρ 0.24 0.15 −0.33 + i0.34 −0.18 + i0.19
Mρω 1.17 0.87 −1.32 + i1.51 −0.84 + i1.07

MWF −0.15 −0.14 +0.51 − i0.13 +0.41 − i0.14

phase-space factor. The cross section is related to the matrix
elements by

(2)σ = 4.303 pb
∣∣M× 104 fm2

∣∣2
.

We present our new results in stages. First we introduce re-
alistic bound-state wave functions, while continuing to use the
plane-wave approximation (PWA). The techniques to solve the
four-body problem have been presented by Nogga et al. [16].
To be specific, we present results using both the AV18 [30]
and CD-Bonn 2000 [26] two-nucleon potentials combined with
a properly adjusted Tucson–Melbourne (TM99) [31] three-
nucleon force. The combination guarantees that the α-particle
binding energy is reproduced with high accuracy. Additional
calculations using the Urbana-IX [32] three-nucleon potential
resulted in essentially identical results and will be presented
elsewhere [33].

Table 1 summarizes our results for the transition amplitudes
that add to M, labeled according to the various mechanisms de-
scribed above. The one-body term is predicted rather model in-
dependently. Using these matrix elements for the one-body op-
erator leads to a cross section of 10–13 pb, which is accidentally
in good agreement with the experiment. Compared to our toy-
model calculation [10], we find an increase of the cross section
by a factor of 10, showing that the high-momentum tail of the
wave function is important, especially for the one-body term.
Using the smaller, but also realistic, coupling g2

ηNN/4π = 0.10
would reduce the resulting cross section by a factor of 5. The
one-body term is formally subleading. However, the toy-model
calculation showed that the pion-exchange term is suppressed
due to the symmetry of the α-particle wave function. This re-
sult persists for the realistic α-particle wave functions: the am-
plitude does not vanish exactly, but remains smaller than the
one-body term. This term is quite sensitive to the chosen nu-
clear interaction, pointing to sensitivity to the short-range part
of the potential and to the small components of the α-particle
wave function.

Since the LO term is suppressed and the one-body term is
not well constrained by resonance saturation, it is interesting
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to look at the pion-recoil term. Its parameters are better de-
termined than β1, since they are related to the nucleon mass
difference and the Cottingham sum rule. Our calculation may
therefore give a trustful estimate of the size of the NNLO contri-
butions. The results are a rather model-independent amplitude
of approximately 1/3 the size of the one-body term and are in
line with the power counting.

In contrast, we find that all the Z-graphs give unexpect-
edly large contributions, especially the ρ–ω exchange operator.
Also, the contributions add constructively, so that their sum
tends to overwhelm the one-body term. This model of reso-
nance saturation thus gives results in vast disagreement with
the power counting.

CSB effects on the final-state wave functions (MWF) are
smaller than pion recoil and insensitive to the chosen nuclear
interaction, indicating that these terms are well constrained us-
ing phenomenological interactions.

4. The next step is to present the effects of including the
ISI. The correct treatment of this involves the solution of the
four-body scattering problem at center-of-mass energies greater
than 200 MeV. In spite of the tremendous progress achieved
in recent years on the solution of the four-nucleon problem
[17,34], advances in obtaining exact solutions are limited to
energies below the four-particle breakup threshold. To under-
stand our pion-production reaction it is necessary to go beyond
the distortions obtained through an effective optical-model po-
tential fitted to the elastic dd scattering data. This is because
important pion production occurs in which the deuterons inter-
act, break up, and then emit a pion. At very high energies the
use of Glauber approximation is justified, but in the threshold
energy regime for pion production the wave length associated
with the relative d + d on-shell momentum is close to the size
of the deuteron. Therefore we obtain an approximate solution
of the Yakubovsky [35] equation for the four-nucleon scattering
wave function that is made up of two terms: the first involves
the bound-state wave functions of the two deuterons times a
plane wave describing the relative motion between them; the
second requires the breakup of one of the deuterons followed
by the three-body scattering of the N + d system into the three-
particle continuum in the presence of the remainder spectator
nucleon.

Such an approximation is based on the lowest-order terms in
the Neumann series expansion of the four-particle Yakubovsky
equation, leading to the following expression for the scattering
wave function,

(3)
∣∣Ψ ρ0

〉 � ∣∣φρ0
〉 +

∑

j

∑

iρ

G0tiG0U
ρ
ij δ̄ρρ0

∣∣φρ0
j

〉
,

where ρ denotes one of the seven two-body partitions, four of
(3)+1 type and three of (2)+(2) type, and i is a pair interaction
that is internal to ρ; j is both internal to ρ and ρ0. The initial-
state wave function component |φρ0

j 〉 carries the appropriate
bound-state wave function components of the target and projec-
tile times a relative plane wave between their respective center
of mass. As usual, ρ0 specifies the two-body entrance channel,
δ̄ρρ0 = 1 − δρρ0 , G0 is the four-free-particle Green’s function
and ti the t -matrix for pair i. If ρ0 corresponds to a 2 + 2 ini-
tial state, then ρ can only be a (3) + 1 two-body partition and
U

ρ
ij is the solution of the three-body Alt, Grassberger and Sand-

has (AGS) [36] equation for the three-particles that make up
subsystem ρ. The first term in Eq. (3) corresponds to the initial-
state wave function; the second term requires the breakup of
one of the bound pairs followed by the scattering of either one
of the particles from the remaining bound pair, leading to four
free particles in the continuum. The particle-pair scattering into
the continuum takes place in the presence of the fourth one, and
therefore, by energy conservation, the total energy available is
the total four-body center-of-mass energy minus the relative ki-
netic energy of the fourth particle relative to the center of mass
of the other three. Thus the four-body scattering wave func-
tion we construct contains all orders in the pair interaction but
also three-particle correlations in first-order perturbation at all
possible energies that are consistent with four-particle energy
conservation.

For four identical nucleons Eq. (3) may be written as

∣∣Ψ +
dd

〉 = |φdd〉 + 1√
12

(1 + P − P34P + P̃ )

(4)× (1 − P34)
∣∣ψ(12,3)4

dd

〉
,

where P = P12P23 + P13P23 and P̃ = P13P24 are permutation
operators whose appropriate combination generates the 6 (12)
components of the Yakubovsky wave function that are of 2 + 2
(1 + 3) type. The symmetrized d + d initial-state wave function
[10] |φdd〉 is given by

|φdd〉 = 1√
6
(1 + P − P34P + P̃ )

(5)× ξd(12)ξd(34)Exp(12 − 34),

where ξd(ij) is the deuteron wave function for the pair (ij),
and Exp(12 − 34) represents the relative plane wave between
the two deuterons. The second term in Eq. (4) mandates the use
of a specific choice of wave-function component for nucleons
1, 2, 3 and 4,

(6)
∣∣Ψ (12,3)4

dd

〉 = G0〈12,3|U0(z)
∣∣(12)3

〉
ξd(34),

where connectivity increases from left to right and z = E −
4
3k2 + i0, k being the relative momentum between nucleon 4
and the center of mass of (123). The breakup operator U0 =
tG0U and the corresponding matrix element 〈12,3|U0(z) ×
|(12)3〉 represents the scattering of nucleon 3 from the bound
state of (12) leading to three free nucleons in the continuum
where nucleons 1 and 2 are last to interact through their respec-
tive t -matrix t . The operator U is the AGS three-body scattering
operator that satisfies the integral equation

(7)U = PG−1
0 + P tG0U,

from which one calculates Nd elastic scattering amplitudes.
The permutation operator P is the same as used in Eq. (4) and
corresponds to the sum of the two cyclic permutations of parti-
cles 1, 2 and 3. We extract from Eq. (4) the 3P0 partial wave in
the entrance channel to compute the threshold cross section for
dd → απ0.
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Details regarding the numerical solution of the scattering
problem and evaluation of the pion-production matrix-element
will be presented elsewhere [33]. Here, in Table 1, we simply
present the results for the transition amplitudes, which acquire
imaginary parts due to the presence of the initial-state inter-
action. Generally, we observe a significant enhancement of all
contributions to the amplitude.

It is immediately apparent that the pion-exchange term,
which is supposed to be LO, is now of the size of the NNLO
terms considered here, namely the pion-recoil and one-body op-
erators. It still shows a sizable model dependence, which could
visibly influence our final result for the cross section. A more
consistent treatment of nuclear interactions and production op-
erators will be necessary in the future.

The pion-recoil and one-body terms remain relatively model
independent. Both, therefore, can serve as an order-of-magni-
tude estimate of the cross section. Our results for these ma-
trix elements correspond to cross sections between 4.5 and
42 pb. Again, the one-body contribution is larger than the
pion-recoil term. Both would come close to each other for the
smaller choices of the strength of the one-body term. Our ex-
plicit calculation shows that the NNLO contribution provides
a strength consistent with the experiment. We stress that the
strong enhancement due to initial-state interactions and higher-
momentum components of the α-particle wave functions are
necessary to find NNLO contributions of the required size.

The ISI also enhances short-range contributions from
Z-graphs, but by far-smaller amounts. We still find relative con-
tributions much larger than expected from the power counting
and, again, all the contributions add up constructively. One pos-
sible explanation would be that there is simply no convergent
EFT for the reaction dd → απ0 and the Z-graphs would need
to be included as done in this work. However, if this was true
the value of the empirical cross section would be the result of
subtle cancellations amongst various terms from very different
origins, a very unlikely coincidence. The more likely interpreta-
tion is that the power counting works, but the Z-graphs simply
provide the wrong model to estimate the four-nucleon opera-
tors. If this is the case we may even drop them all together from
our investigations, since they are of high order.

5. This Letter extends our earlier study of the reaction
dd → απ0 by using realistic wave functions for the four-
nucleon ISI and FSI. We also provide numerical estimates for
some diagrams that lead to a cross section of the right order of
magnitude supporting the power counting given the suppression
of the LO. In addition, the present results allow us to identify
a few issues that deserve further study (in addition to the inclu-
sion of all diagrams up to NNLO).

• Given the dramatic influence of initial-state interactions, it
is of paramount importance that new experimental constraints
be obtained for the deuteron–deuteron interactions in the en-
ergy region close to the pion-production threshold. Besides data
on elastic dd scattering, also data on other pion-production re-
actions with the same initial 3P0 state are needed. The most
obvious examples are the CSC reactions dd →3 H/HeNπ re-
cently measured at COSY,2 which are an interesting alternative
to elastic dd scattering because only a few partial waves con-
tribute in the entrance channel.

• Another important issue is to better understand the role of
the Z-graphs used to estimate the size of four-nucleon opera-
tors. As shown above, their size is much larger than indicated
by their N4LO power-counting order. Thus, it is necessary to
reassess the procedure in light of recent developments in EFT,
especially concerning the treatment of divergences in loop dia-
grams [12]. Given the large number of experimental data, espe-
cially for pp → ppπ0, much insight can be obtained. For these
charge-symmetry conserving reactions, we can investigate the
convergence of the chiral expansion explicitly by comparing the
contributions of different orders.

• Finally, we found some dependence on the chosen nuclear
interaction model. This is probably related to the presumed in-
consistency between the chosen nuclear interaction and the pro-
duction operators. Such an inconsistency can only be resolved
by applying nuclear interactions based on chiral perturbation
theory [7,37] that need to be extended to higher cutoffs as out-
lined in Ref. [38].

The central result of this letter is that the inclusion of ISI
and FSI enhances the contribution of NNLO diagrams of the
production operator enough so that they are able to account for
the measured cross section. Together with the insight that the
LO is suppressed, this supports the EFT approach to this re-
action. However, to study the rate of convergence of the chiral
expansion for the charge-symmetry breaking reaction, a calcu-
lation to N3LO is necessary. Our current work demonstrates that
a careful treatment of the nuclear effects is required for a final
analysis.

In view of a planned measurement of the reaction dd → απ0

at higher energies at COSY [39]—where p waves will be
relevant—and of the experimental determination of Af b [4], we
will have an increased database on cross sections, which will al-
low us to disentangle the various contributions. Although much
remains to be done before any precise statements about the val-
ues of the parameters δmN , δ̄mN can be made, we are now at
threshold of understanding how the light-quark masses makes a
difference in nuclear physics.
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