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Abstract-In many fields, spatial interpolation is used to evaluate physical data in a continuous 
domain. The many different techniques offer different performances, according to the characteristics 
of initial data points. The aim of this paper is to provide help in choosing and evaluating the 
technique that best suits the data set: a few indices measure the quality of interpolation by different 
viewpoints. An extensive test-case is reported, involving four different interpolation methods. Data 
sets are generally connected with environmental topics or taken from literature. @ 1900 Elsevier 
Science Ltd. All rights reserved. 
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1. INTRODUCTION 

The generation of continuous surfaces starting from irregularly distributed data is a task for many 
disciplines. There is a variety of methods which can perform this task, but the difficulty lies in 
the choice of the one that best reproduces the actual surface. 

Each method has its own advantages and drawbacks, which depend strongly on the charac- 
teristics of the set of point data: a method that fits well with some data can be unsuited for a 
different set of data points, or if measured in different locations of the same surface. Thus, it is 
important to give a few criteria to decide if the method chosen is suited for the point data set. 
Nevertheless, it is important to specify the aims of the interpolation, because different aims can 
produce different criteria of evaluation of the interpolation. 

In this paper, four different methods have been applied to several test cases, respectively: 
Inverse Square Distance Method, Kriging Method, Hardy’s Multiquadric Method, 
and Tension Finite Difference Method. Each method was tested with different parameters, 
so that the sensitivity of the method to its parameters can also be evaluated. Names can be 
misleading, but these methods will be discussed in detail in the following. 

Test cases have been taken mainly from environmental studies. To compare results of different 
interpolation schemes, it was decided to analyze the related grids obtained at regularly spaced 
points. Moreover, Franke point data sets [I] were used to improve the methods’ comparison. 

The authors gratefully acknowledge P. Annoni and S. Maran, who helped in suggesting and validating the com- 
parison methodology proposed. Financial support for the project was provided by ENEL DTI (Italian National 
Electric Power Authority). 
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2. INTERPOLATION METHODS 

The four interpolation methods were chosen mainly for the availability of their source codes 
and will be briefly explained in this section. The interested reader can find specific details in the 
quoted references. This section is not necessary for general understanding of this paper, and can 
be skipped. 

For the sake of clarity, the method classification quoted in [2] will be used. In this clss- 
sification, spatial interpolation is divided into two main categories; point interpolation and 
area interpolation (we are interested only in the first). Point interpolation is divided into two 
subcategories; exact methods and approximate methods, respectively, whether or not they 
preserve the original point values. 

In that sense, we have used two exact methods, Kriging and Hardy’s Multiquadric, and two 
approximate ones, Inverse Square Distance and Tension Finite Difference. Note that the charac- 
teristics of preserving the point values depend strongly on the particular implementation of the 
method. 

Inverse Square Distance Method 

The principle behind this method [3] is to give more weight to nearby points than to distant 
points. Stating f(z, y) the analytical expression of the surface, we have: 

(1) 

where N is the number of data points, Wj is point j value, dj is the Euclidean distance with 
point j, and w(d) is the weighting function. In our example, w(d) has this formula: 

if d 5 dmin, 

if dmin < d < dm,, 

if d > d,,,, 

(2) 

where dmin is minimum distance and d,,, is maximum distance. Index dmin prevents infinite 
weight values for d = 0, while index d,, avoids using too distant points. If no points fall into 
the circle of radius d,,,, average data value is taken. 

Reported here are a few considerations on the advantages and disadvantages of using this 
method. The main advantage is its simplicity; the second one is that this method leads to 
reasonable results for a wide variety of data, and, moreover, there is no problem with results 
exceeding the range of meaningful values. 

On the other hand, there are several drawbacks. First of all, the method is very sensitive to 
the weighting function. Second, the method can be affected by uneven data points distribution. 
Finally, the method has scarce predictive characteristics: for instance, global maxima and minima 
are always among data points. 

Kriging Method 

Kriging is a geostatistical method for point interpolation. It derives its name from D.G. Krige, 
who introduced the use of moving averages to avoid systematic errors in interpolation (41. The 
generalization of this method was developed by Matheron [5]. Kriging states the statistical surface 
as a regionalized variable, with a certain degree of continuity. The Kriging estimate is known as 
the Best Linear Unbiased Estimate (BLUE), because it is a linear combination of the weighted 
sample values, whose expected value for error equals zero and whose variance is a minimum. The 
implementation used in our paper is the simplified version of Kriging suggested by Trochu [6]. 
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The main characteristic of Kriging is the generalized covariance k(d). It was proved [7] that 
Kriging in the presence of a linear drift is equivalent to spline interpolation for the following 
generalized covariances: 

k(d) = d21n(d), 

{ 

d3, (one-dimensional case), 

(two-dimensional case), 

d, (three-dimensional case). 

In our case, we used the following formulas for the two-dimensional case [6]: 

(3) 

(4) 
I 0, if d > d,,,, 

where d,, is the maximum correlation distance considered, CO =0.60653066 and cl =0.18393972; 
and ~0 is the value for which k(d) function has its minimum, which equals -cl. The statistical 
surface is obtained with the formula: 

f(z, Y) = al + a25 + QY + c bjk(&), (5) 
j=l...N 

where ai, bj are calculated resolving the following linear system: 

- k(&,l) f4&,2) . . k(dl,N) 1 XI $11 bl Vl 

k(dz,l) k(&,d . . k(d2,N) 1 xz y2 h 212 

. . . . . . . . . . . . . . . . . . . . . . 

k(dN,l) k(dN,z) . . k(&,N) 1 XN yN bN = ‘t,N (6) 
1 1 . 1 0 0 0 al 0 

21 x2 . XN 0 0 0 a2 0 
- Yl Y2 . Y?l 0 0 0 a3 -0 

The first N equations express the condition that Kriging is an exact interpolator, while the 
further three find the coefficients of the plane that fits data points. 

Hardy’s Multiquadric Method 

This method was first formulated by Hardy [8] and was applied in different disciplines. The 
surface is made of the sum of several cones, whose vertex is placed in the data points. 

The formula of a cone is: 

f(x, y) = j/((x - x0J2 + (Y - y0Y) tan2 a, (7) 
where x0, ys are the coordinates of the vertex of the cone, and o is the slope of its surface. 

When we consider the whole surface, constituted by N cones with vertices in the data points, 
we obtain the following formula: 

f(XlY) = c cj\/(” - “jj2 + (Y - YJ2, 
j=l...N 

where cj are obtained, solving the linear system of N equations: 

(9) 

where vj is data value in point j, and d,,j is the Euclidean distance between points i and j. 
This method provides an elegant way to obtain a continuous surface by interpolation of scat- 

tered data. The disadvantages are mainly connected with the difficulty in solving the linear 
system: in fact, its size increases with the number N of data points. 
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Tension Finite Difference Method 

This method finds the surface that solves a differential equation, and at the same time, fits data 
points. From an operational point of view, a regular grid is defined and data values are assigned 
to the including cell, so that this method becomes no more exact. It was proposed by Brings [9] 
and developed by Smith [lo], inside the General Mapping Tool system [ll], a free software for 
scientific use. In formula: 

(I - T)A2f(z, Y) + TAf(z, Y) = 0, (IO) 

where A is the Laplacian operator, A2 is the biharmonic operator and T is a tension factor 
between 0 and 1. When T = 0, undesired oscillations and false local maxima and minima can 
be noted, while when T = 1, no maxima and minima are possible except at control data points. 
In [ll], a value of T 2 0.25 is suggested for potential field data, while a value of T Z 0.35 is 
preferable for steep topography data. 

Because the implementation considers a regularly spaced grid, the solution accuracy depends 
mainly on the grid dimension. In our examples, the number of data points (and hence of initialized 
grid cells) was always well under the number of grid cells. 

The parameter T plays an important role in determining the quality of interpolation; that is, 
by varying its value, it is possible to have better control of results. As mentioned above, the 
source code for this method was taken from General Mapping Tool software. 

3. COMPARISON OF DIFFERENT METHODS 

The aim of this paper is to provide a criterium for choosing the best (or at least a good) 
interpolation for the set of data values. It is not so easy to decide which interpolation is better 
by looking only at the corresponding contour lines, and often interpolated surfaces can be very 
different among various methods. 

First, there is the difficulty in defining the viewpoints according to which an interpolation can 
be said to be good, and different viewpoints can lead to different rankings of the methods. Here 
we considered two viewpoints, prediction and characterization, which will be explained in the 
following. 

A previous analysis must have been done on point data characteristics. The spatial distribution 
and the variance of experimental data greatly influence the interpolation process, making it 
necessary to relate the quality of the interpolation to point data. In this context, some indices 
were defined to a give a first idea about point data characteristics in terms of spatial homogeneity 
and experimental surface roughness. For the sake of simplicity, spatial coordinates are normalized: 
this does not affect the generality of the following considerations. The characteristics considered 
for a point data set are the kind of spatial distribution and the level of surface roughness. For 
the first attribute, the uniform index u is defined, dependent on the number of point data N: 

u(N) = ~i=l...iv &...~ddi,j, s(N)) 
TN 7 01) 

where s(N) 

s(N) = +z 
and p(d, s) is 

P(4 s) = 
ifdss, 

ifd>s. (13) 

According to the formulas, u measures the average number of points that fall into the circles 
of radius s(N) centred in the data points. 

It can be noted that s(N) decreases with N. On average, a circle of radius s(N), randomly 
centred in the normalized square domain, contains x points (this can be obtained by comparing 
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circle area with domain area). As we said before, circles are always centred on data points, thus 
including at least the centre data point. Border effects (i.e., points whose circle overlaps the 
domain), decreasing for larger N, and circle positioning effects (i.e., inclusion of at least one 
point in the circles), increasing for larger N, must be taken into account. 

First of all, border effects can be accurately evaluated. The evaluation results in a formula 
that describes the average number of points in the circle as a function of N (in the appendix, the 
derivation of this formula is reported): 

8 
n(N)=r-- 

3fi 

+ lS&? - 17 
12N ’ 

with N > 4. (14) 

Then, to avoid considering circle positioning effects, we can modify the previous formula, not 
considering point i when it is the centre of the circle. It is equivalent to test with random point i 
the remaining N - 1 points; globally, N circles are used for a fictitious data set of N - 1 points. 
In that case, this new formula is obtained: 

u(N) = Ci=I...NC3~...Np(d,,j,s(N)) 
n(N - l)N (15) 

Index u, which ranges from 0 to (N - l)/n( N - l), is about 1 for uniform and random distribution, 
is less than 1 for uniform, not random, distribution, while it is more than 1 for not uniform 
and, possibly, not random distribution. Possibly, point data sets with index u Z 1 that have 
not a random uniform distribution can be found, but on average, u measures efficiently these 
characteristics of spatial distribution. 

Function r(d) is introduced to measure surface roughness. Here it is in formula: 

7.(d) = Ci&.N c;fll”:;;‘” ((Vi - ~j)Iv%J2) WT@i,j) 
Ci=l...N ~~f~‘,f~$<” w,(di,j) ’ (16) 

where w7(d) is 

wT(d) = Cd’, (17) 

and a, is the standard deviation of vi, d is an appropriate value of distance. This index measures 
how variables are spatially correlated. 

Let d, and d, be the distances between, respectively, the nearest and furthest pair of data 
points. 

With d greater than d,, r(d) nearly compares the variance of vi, weighted by pair distance, 
with the variance of vi itself. It can be noted that, if the term that depends on di,j is neglected, 
r(d) is N/(N - 1) and nears 1 (see the Appendix). 

Function r(d) is defined only for d, not less than d,, and it is more significant for values of d 
that consider a certain number of pairs of data points. 

From these considerations, a few indications on the interpretation of r(d) can be suggested. 
First, of all, r(d,) measures whether spatial distribution can explain value variance. If r(d,) g 1, 
on average there is no spatial correlation (i.e., near points have values that are not more correlated 
than distant points), or, at least, there is a correlation for pairs nearer than d,, that cannot be 
found with the current data set. If r(d,) is more than 1, there is, on average, an “inverse” 
correlation (i.e., distant points have values more correlated than near points), or, again, there is 
a correlation for pairs nearer than d,, not found with the current. data points. Finally, when r(d,) 
is less than 1, standard deviation is partially explained by spatial correlation (i.e., near points 
have values that are more correlated than distant points). Value r(s(N)) is another important 
index whose meaning is similar to that of r(dl), on a different, spatial scale: its advantage is that 
it takes into account the number N of data points. Finally, we considered d,, greater than s(N), 
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as the maximum value of d for which r(d) is always less than 70% of r(dz). We defined dp greater 
than s(N) to avoid unlikely computation with a little number of data pairs. The greater dp, the 
better the spatial correlation of the function. 

In any case, it is always useful to analyze the behaviour of the whole function to have a better 
idea of spatial data set correlation. Two examples of r(d) function are reported in Figures 1 
and 2. 

‘T 

s ~i_:‘“~I~ 
- . _-+___ . .- -_I--_.._._.~__+____+_ 1 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

d 
Figure 1. Roughness function r(d) example. 

d, Not Defined 

0.4 -. / 
0.2 

0 
1 d,; : s(N) d, : 
-_._______i_,__. i ._I_ . .-( ._.._. __._-_ _+___..__ .._ , ..__ ,_._ f 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

d 
Figure 2. Roughness function r(d) example. 

After the evaluation of point data characteristics, it is important to decide how to measure the 
quality of interpolation. As we mentioned before, we chose two viewpoints. Prediction states 
that the best interpolation is the one that minimizes the prediction error in an unknown point. 
Characterization states that the resulting surface must globally look like the actual surface 
(i.e., a steep actual surface must lead to a resulting steep surface and so on). Often prediction 
and characterization can be in conflict: for instance, in very rough surfaces the best estimate can 
be the average of data points, thus resulting in a flat surface. 

Prediction 

Prediction tells that the best interpolation is the one that minimizes the prediction error in 
an unknown point. But, unfortunately, we have no knowledge of the true value in unsampled 
points. Thus, the idea is to simulate this situation. We considered each data point and executed 
the interpolation ignoring it; then the interpolated value for this point was compared with the 
true value. This procedure is called crossvalidation [12,13]. We thus had two sets of iV data, 
the measured values and the calculated ones. To judge how calculated values fit measured ones, 
we used Theil decomposition [14] and then analyzed its terms (R2, bias, slope, residuals). The 
most important factor is R2, called expected variance, which tells the degree of prediction of the 
model. R2 is by definition a number less equal to 1, and the more it nears 1, the better the fitting 
between measured and calculated data. If R2 equals 0, the method has the same predictability 
of the average of data points, while if it is negative, it has a negative correlation. 
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In formula, 

R2 = 1 _ Ci=l...N (‘: - ‘8)” 

Ci&.,U$ - f1°J2’ 
(18) 

where ~0 are observed values and Y, are calculated values, and overline indicates average value. 
As a final indicator of prediction performances, we used R2 between observed and crossvalidated 

data, namely Ri. 

Characterization 

Characterization states that the resulting surface must globally look like the actual surface. 
Even in this case, unfortunately, we do not know the actual surface; we know only sampled point 
values. The idea is to associate some statistical characteristics, evaluated for a subset of the 
actual surface (the sampled set) to the whole surface: from a statistical point of view, that means 
that sampling was clone randomly, so that statistical indices can be compared. This is not always 
the case, but that seemed a good approach to general problems. 

We introduced an index to describe surface roughness of a set of data points. We defined the 
same roughness index (adapted to the interpolated surface) calculated on grid points: 

where Vj is grid value in j, X and Y are grid node coordinates (integer numbers), and Di,j is 
the distance between point data i and grid data j. 

In this case, we considered both point and grid data sets, in a mixed formula. We recall that 
point data are experimental values, while grid data are obtained by interpolation on a regular 
grid. 

The idea is that function R(d) should be similar to function r(d), or again, a surface with R(d) 
similar to r(d) should have a greater probability of being the exact surface that produced our set 
of point data. The comparison between R(d) and r(d) was done by sampling the functions for a 
few values of d, say di, greater than s(N). The two sets of data, r(d,) and R(di) were compared 
again with Theil decomposition and corresponding parameters were evaluated. Even in this case, 
visual analysis of these functions can help the understanding of the interpolation characteristics. 

As a final indicator of characterization performances, we calculated the explained variance 
between r(di) and R(di), namely R:. 

To summarize the previous concepts, two indices help in evaluating prediction and characteri- 
zation performances of the interpolation method used. Prediction index is R$ while characteri- 
zation index is Rz. The more they near 1, the better the interpolation. The indices u and r(d) 
of point data set ccan suggest if Ri and Rz values can be considered good, even if they do not 
approach 1. 

As a final indicator, the use of Rt, defined as the average of indices Rz and Rz, was suggested: 

Rf = 
R; + R; 

2 

We were interested in positive values of R2 indices, negative values indicating that the interpo- 
lation model is totally inefficient in reproducing experimental data. That is why we chose to 
consider-l as a lower bound for all these indices. 

4. RESULTS 

The simulation was performed on 15 data sets, concerning a few environmental test cases. For 
the sake of simplicity, all data sets have the z,y coordinates normalized. It must be said that 
the same scale factor was used for both x and y direction. 
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Moreover, 18 data sets, obtained from three sets of points and six different generating functions 
taken from literature [1,15] were tested. This allows a more concrete possibility of comparing the 
study results. Even in this case, the interpolation domain ranges from 0 to 1 for both z and Y 
coordinates. Reported here are the generating functions: 

fl(x, y) = 0.75e(-((9”-2)2+(9Y-2)2)/4) + 0.75e(-(9”+1)2/49-(9”+1)/10), 

+ 0.5e(-((g”-7)2+(gY-3)2)/4) _ 0.2e(-(9"-4)2-(gY-7)2) 

1 
fs(z, Y) = - (tanh(9y - 9%) + 1) , 

9 

All data sets can be requested via e-mail at the following address: 103i’caru@s1. cise. it. In 
Tables 1 and 2, point data set indices are reported for both environmental and literature test 

f3(17Y) = 
1.25 + cos(5.4~) 
6 (1 + (32 - 1)2) ’ 

f4@,~51) = -e- 
1 (81/16)((z-0.5)2+(y-0.5)2) 

3 Y 

US = -e- 
1 (81/4)((z-0.5)‘+(y-0.5)‘) 

3 7 

fs(z, Y) = $64 - 81 ((z - 0.5)2 + (Y - 0.5)2) - 0.5. 

(21) 

cases. For literature cases, a few points are outside the square domain; thus, to compute correctly 
uniform index u, x, and y coordinates were normalized, with respect to the square domain ranging 
from -0.1 to 1.1 in both directions, which contains all data points. 

Table 1. Environmental test cases. 

TX 86 air temperature 0.8870 0.9917 0.8968 N.D. 

For each data set, the following methods were applied: 

1. Inverse Square Distance method (from now on WD) with dmin = 0.001 and with five 
different values of d,, (0.10, 0.20, 0.40, 0.80, 1.50); 

2. Kriging method (from now on KR) with five different values of d,,,(O.lO, 0.20, 0.40, 0.80, 
1.50); 
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Table 2. Literature test cases. 

117 

Case N H- Al 100 

1 A5 1 100 

1 C6 1 25 

Table 3. Environment 

0.7032 0.9154 0.2762 0.4983 

0.7032 0.8867 0.2723 0.5905 

0.7032 0.9789 0.2813 0.4329 

0.7032 1.0479 0.3227 0.4466 

0.7032 1.1675 0.9561 N.D. 

0.7032 0.9262 0.1727 0.4959 

1 cases: average interpolation indices per test case. 

CS 1 -0.6017 1 -1.0000 1 -0.8009 1 

03 0.6853 -0.2762 0.2046 

PA 0.4676 -0.7237 -0.1281 

PG 0.2195 -1.0000 -0.3903 

PR 0.6561 0.5801 0.6181 

QU 0.9251 0.8759 0.9005 

SA 0.7589 0.7950 0.7770 

so 0.6101 0.4583 0.5342 

TM 1 -0.2101 1 -1.0000 1 -0.6050 I 

TX 1 -0.0848 1 -0.9707 1 -0.5277 1 
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Table 4. Literature cases: average interpolation indices per test case. 

3. Hardy’s Multiquadric method (from now on MQ), with no parameters; 
4. Tension Finite Difference method (from now on TM), with five different values of T (0.00, 

0.20, 0.40, 0.70, 1.00). 

Globally, 16 different method versions were executed for each test case. For each execution, a 
regular grid of 26 x 26 values, with a step of 0.04 units in both x and y directions, was generated. 
Method versions will be indicated with the first letter of method, followed by three digits for the 
parameter value. 

In Tables 3 and 4, the average value obtained by the 16 method versions for indices R$ Rz, and 
RF is reported for both environmental and literature test cases. For literature cases, for which 
the actual surface is known, another index, Rz, was introduced, obtained via Theil decomposition 
by comparing surface values and grid values for all 26 x 26 cell values. 

Looking at Tables 1 and 2, the test cases that seem easier for interpolation (U almost 1, r(d,) 
and r(S(N)) low, d, high) are BA, SA, QU, Al, Bl, A2, C2, and A3. Conversely, the cases that 
appear worse for interpolation (u possibly not very close to 1, r(d,) and r(S(N)) high, dp low or 
not defined) are CS, DB, SO, TX, PG, TM, B5, and C5. On average, these considerations are 
confirmed by indices of Tables 3 and 4. 

In Tables 5 and 6, average methods and versions performances are reported for both environ- 
mental and literature test cases. Average method performances were calculated by averaging 
interpolation indices for a single method, varying its parameter, on all experimental cases. On 
the contrary, version performances were calculated by averaging interpolation indices on all test 
cases, fixing the method and its parameter. Even in this case, Ri is also reported, for litera- 
ture data. Method ranking changes meaningfully in the two classes of test cases. This happens 
because some methods work better with difficult test cases, but have worse performances with 
simpler data sets. Literature data are on average simple cases, while environmental data can 
have difficult situations to interpolate. 
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Table 5. Environmental cases: average interpolation indices per method version. 
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1 K040 1 0.3114 1 0.0026 1 0.3140 1 

1 K080 1 0.3917 1 0.0859 1 0.4776 1 

1 K150 1 0.4074 1 0.0568 1 0.4642 1 

I I I I 

Table 6. Literature cases: average interpolation indices per method version. 

Method 1 R% 1 R; 1 R: 1 Rtz 
KOlO 0.5065 0.2674 -0.2926 -0.0126 

K020 0.7780 0.4919 0.0516 0.2717 

K040 0.9635 0.7929 0.5910 0.6920 

K080 1 0.9769 1 0.9013 1 0.6259 1 0.7636 1 

K150 1 0.9804 1 0.9314 1 0.6205 1 0.7636 1 

MOO0 1 0.9582 1 0.8803 1 0.6311 1 0.7557 I 

TOO0 0.8869 0.6729 0.5104 0.5916 

WOlO 0.8916 0.7068 0.2493 0.4780 

WO20 1 0.8545 1 0.6699 1 0.0406 / 0.3552 1 

WO40 1 0.8128 1 0.6111 1 -0.1472 1 0.2320 1 

WO80 1 0.7905 1 0.5603 1 -0.2294 1 0.1654 1 

w150 0.7882 0.5620 -0.2454 0.1583 

KR 0.8410 0.6770 0.3193 0.4981 

MQ 1 0.9582 1 0.8803 1 0.6311 1 0.7557 1 

TM 1 0.8463 I 0.6320 I 0.3103 I 0.4711 1 

WD 1 0.8275 1 0.6220 1 -0.0664 1 0.2778 1 
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Table 7. Environmental cases: best/worst interpolations. 

TO70 1 0 0 0 1 0 1 0 

WO80 0 0 0 0 0 1 

w150 1 0 1 1 2 3 

In Tables 7 and 8, the number of best and worst cases for methods and versions are reported 
for both environmental and literature test cases. Again, for literature data, this information is 
also reported for Rz. Method ranking is less different than in Tables 5 and 6 for the two classes of 
test cases. That means that parameter tuning can have great influence on method performances. 

Thus, a few considerations can be obtained for methods WD, KR, and MT, the ones that 
depend on a parameter value. WD works well with low values of d,,,, because the effect of 
smoothing is reduced. KR works well with high values of d,,,, because all spatial correlation is 
considered. MT, on average, works well with low values of T, even if best cases are more often 
obtained for high values of T. 

In any case, all the remarks obtained from analysis of Tables 5-8 are not meant to suggest to 
the reader a general methods ranking, but only a means of interpretation of proposed indices. 

At the end of this section, it seems useful to present the analysis of a single test case. Case Bl 
was chosen for two reasons. First, the knowledge of actual surface can help evaluating the results, 
second, case Bl shows different performances when different evaluation criteria are adopted. In 
Table 9, the interpolation indices for all 16 versions are reported. In Figures 3-6, the resulting 
surface, obtained by four interpolation method versions, compared with the actual surface, are 
shown. In these figures, shaded colours indicate the actual surface, contour lines indicate the 
interpolated surface, and markers indicate sampled points. 

5. CONCLUSIONS 

Spatial interpolation is a technique used to evaluate physical data in a continuous domain. In 
this paper, a comparison of interpolation methods was proposed. 

First of all, the point data set is analyzed in order to obtain useful information for the inter- 
polation process.A few indices can suggest if methods are likely to produce a good interpolated 
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Table 8. Bl Literature cases: best/worst interpolations. 

121 

Table 9. Bl literature case interpolation indices. 
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Figure 3. Bl literature case interpolation by Kriging method (dmax = 0.4). 

surface, or if data do not show a significant spatial correlation. In any case, these indices can 
also suggest which kind of method would probably have better performances. 

After creating the grid, other indices can be used to judge the interpolation performances, 
evaluated from different viewpoints. Sometimes, different purposes can result in different method 
ranking. 

This approach seems to give a means of evaluating the whole interpolation process in order 
to choose a good method. In any case, this approach is not meant as a substitution for the 
judgment of experts in the fields investigated, who can use different and often more reliable 
criteria in evaluating a specific case. 

APPENDIX 
The derivation of formulas for calculation of uniform index u and for roughness index r(d) are 

here reported. 

Uniform Index u 

The average number of points that fall into a circle of radius s(N) in the normalized square 
domain is obtained comparing the circle area, ns2(N), with the domain area, 1. But the area 
that overlaps the domain can be less than .rrs2(N), because of border effects. We introduced the 
function g(x, y, N) that measures the circle area inside the domain, as a function of x, y and of 
the number of data points N. It is defined differently according to the subregion in which it 
is considered. For convenience, the square domain is divided into four different subregions, as 
in Figure 7. To avoid a misleading definition of subregions, s(N) should be less than 0.5, thus 
resulting in N 2 4. 
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0.1 0.2 0:3 0:4 0% 0.6 0:7 0:8 170 
Figure 4. Bl literature case interpolation by Hardy’s multiquadric method. 

In subregion a, the circle is completely inside the domain; in b, the circle has a sector outside 
the domain; in c, the circle contains a vertex of the domain, and in subregion d, the circle has 
two sectors outside the domain. The following formula is computed for the shaded subregions 
(the others are symmetric): 

with (z, y) E a, 
~tzv5=F+lrccos(z) with (z, y) E b, 

d~cl Y, w = 31r/4+zy+z~/2+y~-(arccos(z)/2)-(arccos(y)/2) 
N with (2,~) E c, 

(22) 

with (z,~) E d. 

These equations are obtained with trigonometric formulas. Thus, integrating g(z, y, N) over 
the domain, we obtain: 

1 1 

n(N) = N 
ss 

s(z, Y, N dz dy. (23) 
0 0 

The tedious calculations to obtain the simplified expression of n(N) presented in the paper are 
not reported here, but can be verified by the interested reader. 

Roughness Index r(d) for w,(d) = 1 

The index r(d) is here evaluated for d > d,,,, and w,(d) ZE 1. In this case, we obtain the 
simplified formula: 

r(d) = Ci=l...N C;f;...N("z - d2 
2N(N - l)(TZ (24) 
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Figure 5. Bl literature case by tension finite method (T = 0.4). 

Introducing the obvious identity: 

(Vi - Vj) G ((Vi - v) - (“j - v)) 

we obtain a new formulation for the expression: 

r(d) = 

1.i 

1.1 

1.c 

0.E 

0.E 

0.7 

0.E 

0.5 

0.4 

0.2 

0.i 

0.1 

0.c 

(25) 

Ci=l...N C~~t...N(wi-~)2+Ci=l...N c;fi,.J&j 412-2 Ci=l...N C;ff...N(wwwj -3 
2N(N - 1)0,2 

(24 
First and second terms of the numerator can be simplified in this way: 

j#i j#i 
C (Wi -V)2 = C (Vi -V)2 C 1 = N(N - 1)0,2 (27) 

i=l...N j=i...N i=l...N j=a...N 

while the third t,erm is 
ifi i#i 

-2 c 2 (vi-@)(Wj_-_)=- 
I  

2 C (Wi -ti) C (Wj -V) 

i=l...N j=i...N i=l...N j=l...N 

= -2 C (Vi -TT) C (Wj -i7) - (Vi -0) = -2 C (Vi - V) (0 - (Vi - C)) (28) 

i=l...N j=l...N i=l...N 

= +‘2 c (Wi - vy = +m& 
i=l...N 

Thus, adding the three terms, the formula is 

r(d) = 
N(N - $7,” + N(N - l)a,2 + 2Na,2 2N2a2 N 

2N(N - 1)~: = 2N(N - ;)a; =N_l. (29) 
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Figure 6. I31 literature case by inverse square distance method (d,,, = 0.4). 

II-- C 

d 

b 

b ‘-j$-$ 

Figure 7. Subregions of the normalized square domain. 
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