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The notion of isoclinism was introduced by P. Hall [2]. In [1] we have
proved that monomiality is an invariant of the families of finite isoclinic
groups. In this paper we consider a more general form of isoclinism,
called n-isoclinism, and we prove that strong-monomiality is a family-
invariant for finite n-isoclinic groups. Moreover, using a theorem of P. M.
Weichsel [7] we give short proofs for results of P. Hall [2] and J. Tappe
[6] on the irreducible characters of isoclinic groups. As a corollary we
obtain the above mentioned result on the M-group property proved in [1].

Notations are standard and can be found in Huppert’s book [4].
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1. 7-ISOCLINIC GROUPS

The notion of n-isoclinism of groups is implicit in a short note of P.
Hall [3] on verbal and marginal subgroups.

Let @=K;(@)>K3(G)> ... be the lower central series of the group G.
Each term of this series, being generated by commutator words, is a
verbal subgroup. An element g of @ is called a period of K4(@), if for all
simple commutators [g, ..., gn] € Ku(G) we have

[91, ceey @iy oooy g,.]=[g1, vees 1y ...,g,,], j=l, 2, ..,mn.

The set of all periods of a verbal subgroup X is called the marginal
subgroup of X. The marginal subgroup of K((@) is Z;1(G), where the
latter group is the (i —1)-th term of the upper central series of G:

1=Zo(@) < Zy(Q) = Z(G) < Zo(D) < ....
As is well-known, the subgroups Ki(G) and Z;(G) centralize each other,
gee [4] theorem III.2.11.
1.1. DerminrrioN. Two groups G and H are m-isoclinic, G H, if
there exist isomorphisms « and §:
a: G|Zn(G) > H|Zn(H)
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B: Knui(G) — Knn(H),
such that « induces 8 in the following sense: if g, € G, ¢=1,...,2+1 and
if hs € a(gi Za(@)), then
Blgr, - gnnal) ={ha, ..., n11].

The pair («, 8) is called an n-isoclinism between G and H. /!

It will be clear from this definition that an n-isoclinism induces also
an (n+ 1)-isoclinism. Hence we have for each rational integer n>1 an
equivalence relation with corresponding equivalence classes of groups
(families). If n=1, then G and H are called isoclinic groups.

In the following two lemma’s we state some results on n-isoclinic groups,
which were outlined by P. Hall [2] for n=1. For the proofs of these
lemma’s we recall that Z,(@) is the set of all periods of K,+1(G). Moreover,
if ¢ is a homomorphism of G, then clearly

¢([gl! coes Oml) = [95(91), veey ‘ﬁ(!h)]s g; € 3

1.2. LemMa. Let («,8) be an n-isoclinism of Gi and Q.. Then the
following holds:

a) If Za(G)<Hi1<G1 and &(H1/Zn(G1))=H3[/Zn(Gr), then Hy ~ H,.

b) B is an operator-isomorphism in the following sense: if ¢ € G,
g € (x(gl Zn(Gl)) and k’l € K/,H-l(Gl), kz =ﬂ(k1), then /3(91"1 klgl) =gz‘1 kz ga.

c) If N1 <] G1, N1<Kn+1(G1), then G1/.N1",T’ Gz/ﬂ(Nl)

Proor. a) If Z,(G1)<H,, then Z,(Gh)<Zy(H,).
Similarly Zn(G2)<Za(Hz). We define two isomorphisms

&1 Hy|Zu(H1) - HoZn(Hy)

,3: KﬂH(HI) -> Kﬂ+1(H2)’
as follows:

(k1 Zn(Hy)) =ho Zn(Hs), if by € Hy and ke € a(hy Za(Gh)),
Bller) = ks, if k1 € Kpia(Hy) and (k1) =Fe.

It can be easily checked that the pair (&, f) is an isoclinism between
H; and H;. We omit the verification.

b) Without loss of generality we may assume:
kl = [a].) A, ..., a’ﬂ+l] and k? = [bl’ bz: cery b‘n+1],

where a; € Gy and b; € x(ay Z,(Gh)).
Then

Blgrkagr) =B([g1 g, ---» G172 Ani1g1]) = 921 1gs, - .., g2  Dpsagal = g2 kaga.
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¢) Denote Gy=G1/N; and Ga=G3/8(N1). We define two isomorphisms
&: Gh|Zn(Gh) ~ G2/ Zn(Go) |

B: Kni(Gh) - Kn1(G2),
as follows: _ ~
&(G1 Zn(Gh)) = G2 Zn(G2), if g2 € a(g1/Zn(Gh)),

B((@, ..., Gn])=[b1, --., bns1], if by € (@i Za(Gy)).

Now (&, f) is an n-isoclinism between G; and G, since («, 8) is an isoclinism
between Gy and Go.

1.3. Lemma. Let G be a group with subgroups H, K and let N be
a normal subgroup of G. Then

a) H — HZy(G). In particular if G =HZu(G), then G H.
Conversely, if |G/Z4(G) <00 and G - H, then G=HZ,(R).
b) G/N — Q/(N N Kpu(@). In particular, if N N Kpa(G)=1, then
G~ GIN.
Conversely, if |Kas1(G)|<oo and G ~~ G/N, then N N Ky (G)=1.

Proor. a) We define a(hZy(H))=hZs(HZn(G)). Since Zn(HZy(G))=
=Zn(H)Zn(@), « is an isomorphism of H|Z,H) onto HZ,(G)|Zn(HZn(R)),
and « induces the identity on Ky1(H) = Kp+1(HZn(G)). Thus H ~ HZ,(G),
and if G=HZy(Q), then G - H. Conversely, if H is a subgroup of &
such that G — H, then we may assume by part a), that H > Z,(G), so that
Zo(H)>Zy(G). Since H|Zn(G)~ H1/Zy(H), Hi<H, this implies H=H
and Z,(H)=2Zx(G), so that G/Zy\G) =~ H|Zy(GF). Thus, if |G/Zx(G)| < oo,
then G=HZ,(G).

b) We denote @=G/N and G=G/(N N Knp1(@)). If ¥ € Kpi1(G) and
kz € Kn+1(G), then k1 =k2 <> El = Eg.

We have therefore,

[!71: sevy -19-, ceey §n+1]=[§1, seny 9-1, ceey 9-n+1]
if and only if

[gl, seey ﬁjg: seey gn+1]=[§1, erey g~], seey gﬂ+1]'

This implies: § € Z4(@) if and only if § e Z,(G).

If 2(§Zn(G)) = §Zn(@), then & is an isomorphism of G/Z,(F) onto G/Za(G).
Let k€ Kp41(G@) and denote B(k)=Fk.

Then § defines an isomorphism of K, (@) onto K1 (@) and g8 is induced
by « in the sense of definition 1.1.

Conversely, if N < @ and G - G/N, then

Knn(Q) =~ K,H.l(G/N) =K”+1(G)N/N o~ K»+1(G)/(N N Kuny(G)).
Thus, if |Kni(G)|<oo, then N N Knn(@)=1.
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The relationship of n-isoclinic groups is made clear by the following
theorem, which can be obtained by a direct generalization of a result
of P. M. Weichsel [7].

1.4. TrEOREM. Let G' and H be finite groups. Then G and H are
n-isoclinic if and only if there exist finite groups C, Z¢q, Zg, C¢ and Cgy
such that G ~ C/Zy and H ~ C|Z¢ and the following two (equivalent)
properties hold:

a) @ ~ClZy +C~ Clg~H

b) Cl|Zyx C|Kp1(C) 5 On=C=~C¢ 5 C|Zgx C|Kp1(C), where Oy and
C¢ are subgroups of Cf/ZyxC|Kyu(C) and C/Zgx C[Kp1(C) re-
spectively.

Proor. One part of the theorem is trivial. Assume now G — H, and
let # be the isomorphism between K,.1(G) and K, (H) given in defi-
nition 1.1. Finally, let C be the direct product of @ and H with identified
factor groups G/Z(G) and H|Z,(H):

C:=G \H.
If
Zi:={(1, 2)|z € Zu(H)} and Z¢:={(z, 1)|z € Zn(R)},

then we have
ClZy ~ G and C|Zg >~ H, where Zy ~ Z,(H) and Z¢ ~ Zp(G).
a) It follows from definition 1.1 that K.1(C) is generated by elements

of the form

([gl, ceny gn+1]> ﬂ([glr ceey g’fH'l]))'
We claim that

Kn+1(0) N ZH=Kn+1(C) NZg=1.

For, if (1,2)=(g, h) € Kp41(C), then g=1 and since g is an isomorphism,
also h=1. Similarly for K,;1(C) N Zg. By lemma 1.3b we therefore have
OlZu ~ C~ ClZe.

b) Let
Ce:={cZ¢, cKnu(C))|ce C}.

C¢ is a group which is isomorphic to C, since K,+1(C) N Zg=1. Moreover,
it follows from lemma 1.3a that Ce—~ C/Zg x C[Ks+1(C), for we have,
as we will show,

O Zn(C|Zg x C| K p11(C)) = 0| Zg x C|Kns1(C).

Therefore, let x=(c1Zg, c2 Kna1(C)) be an element of the direct product
of the groups C/Z¢ and C/K,u(C).
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Then = =yz, where y=(c1Z¢, c1Ka+1(C)) € Cg, and 2= (Zg, ¢171c2K11(C)).
Since Zn(C/Kn+1(C))=C|Kp:1(C) and Zg is the identity of C/Z¢ it follows
that z € Z,(C/Zg x C/Kp1(C)).

Similarly: C ~ Cx = C|Zg x C[Kp(C).

2. THE IRREDUCIBLE CHARACTERS OF ISOCLINIC GROUPS

In this section we consider only finite groups. If @ is a group, then
Irr (G) denotes the set of all irreducible complex characters of G. The
number of the irreducible characters of G of degree d is denoted by 74(G).
Suppose G and H are isoclinic groups. If H is a factor group of G, then
the irreducible complex characters of G can be computed from the set
Irr (H), see [1] lemma II.2.3. We state this result in a more explicit form
in lemma 2.1. As a corollary of this lemma and theorem 1.4b we obtain
results of P. Hall [2] and J. Tappe [6] on the irreducible characters of
isoclinic groups.

2.1. LemMa. Let @ and G/N be isoclinic groups. If {4, ..., Am} is the
set of irreducible characters of the (necessarily abelian) group N, then
each J; can be extended to a linear character ﬁ., of @. If {X1, ..., Xn} is the
set of irreducible characters of @ with N <ker %;, then 2;4 =X 4, if and
only if j=Fk and ¢=¢, and

Irr (Q)={tA)j=1, 2, ..., m, $=1,2, ..., m}.
Hence we have r4(G)=|N|r4(G/N).

Proor. N is a central subgroup of @, for [G, N]<NNG'=1. If
A € Irr (N), then A has an extension 1to @ N =G x N, such that ker 1> @'.
Thus 4 can be viewed as an irreducible character of a subgroup of G/G’,
and thus A has an extension to Q. Let Irr (N)={A, ..., An}, and denote
each extension of 4 to G by 4;. Then it follows (taking the restriction
to N) by [4] theorem V.17.12b that the cardinality of the set I(G):=
= {Xs M4|2%s € Irr (G/N)} equals nm. To prove that I(G)=1Irr (G), assume that
X € Irr (@). Then X|N=x(1)u, u € Irr (N). If 4 is the extension of x to G,
then we have by theorem V.17.12d of [4]:

X=p, % € Irr (G/N).

Since m=|N| and A4(1)=1, we therefore have r4(G)=|N|ra(G/N). ||

REMARK. The converse of the above lemma holds also. Thus, if N
is a central subgroup of @G, then the irreducible characters of N are
simultaneously extendible to @ if and only if NN G'=1.

As a corollary we obtain the following results of P. Hall [2] and J.

Tappe [6].
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2.2. TeHEOREM. Let G and H be isoclinic groups. Then

a) (P. Hall) |H|rg(@)=|@|rqa(H).

b) J. Tappe) The matrices of the irreducible complex representations
of G and H only differ by scalar factors.

ProoF. a) By theorem 1.4a there exist groups C, Zy and Z¢ such
that

By lemma 2.1 and (1) we obtain the desired result:

r@) _ ralC)\Zxl _\ZG)| _ 16|
ro)  raO)\el  EE)]  H|'

b) If y1 and ya are irreducible characters of G and H respectively,
then there exist linear characters 4, and is of C such that

21 A=z Ae.

The matrices of the irreducible representations of G and H differ therefore
only by scalar factors. /!

ReMARK. Theorem 2.2 can also be proved via theorem 1.4b and
lemma II.2.2 of [1].

3. INVARIANTS OF THE FAMILIES OF FINITE ISOCLINIC GROUPS

In [1] we have proved that the following hierarchy of classes of finite
groups is invariant under isoclinisms: abelian, nilpotent, supersolvable,
strongly-monomial, monomial, solvable.

The only non-trivial result here is that monomiality is an invariant
of the families of isoclinic groups. However, since a finite group is monomial
if and only if its irreducible complex matrix representations can be trans-
formed into monomial form, this is now a direct consequence of theorem
2.2b, see also [6].

In general, nilpotency, supersolvability and solvability are invariants
of the families of n-isoclinic groups. It is not known, whether monomiality
is such an invariant if n>2. We have however, the following result.

3.1. TuroreEM. If G and H are finite n-isoclinic groups, then G is
strongly-monomial if and only if H is strongly-monomial.

ProoF. A group G is called strongly-monomial (an M-group), if G
and all its subgroups are monomial. Let S be the set of all ordered pairs
(Gh, G2), where G1 and @y are finite solvable groups.

We write (G, Gq) < (Hi, Hy), if |Gh} < |H,| and |Gy < |H3|, while at least
one of the inequalities is strict. Consider the following subset of S:

So:={(G1, Go) € 8|G1 5~ Gz, Gy an M-group, G; not an M-group}.
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Let (G, H) be a minimal counterexample. Then (G, H) € 8y and there is
no element (Gh, Hi) € 8o such that (Gh, H:) < (G, H).

Step 1. H is a minimal (solvable) non-M-group, that is: H is non-
monomial, but each proper subgroup and each proper factor group of H
is monomial.

Proor orF sTEP 1. If H is monomial, then H has a non-monomial
proper subgroup Hs. By lemma 1.2a there exists H; < G such that Hy — H,.
Therefore (Hy, Hz) € So and (H,, Hp) < (G, H). Contradiction. Similarly,
each proper subgroup of H is monomial. Let H/N be a proper non-
monomial factor group of H. Then by lemma 1.2b there exists a factor
group G/N, such that G/Ni~- H/N,. Since (G/N1, H/Ns) € 8y this yields
again a contradiction.

Our proof is now based on the structure of the solvable minimal non-
M-group H. By theorem 1.4 of D. T. Price [5] the group H has a normal
p-subgroup F such that:

al) F is extra-special of exponent p, p prime, p=2.

a2) F is an extra-special 2-group, but not dihedral.

b) H=FA, where 4 acts trivially on Z(F) and irreducibly on F/Z(F).
c) Either 4 is a p’-group or p=2 and A4/0z/(4) is a cyclic 2-group.
d) Op(H)=1.

e) If A is of odd order, then 4 is of prime order.

SteP 2. F< K (H).

Proor orF sTEp 2. Since [F, A] is an A-invariant subgroup of F, we
have either F'[F, A1=F or [F, A\<F' =Z\F)<Z(H). If [F, Al<Z(H),
then [F, O,(4))< Z(H), so that O,(4)Z(H) <| H. This yields 0,(4) < H,
and thus 0,/(4)<Op(H)=1. But if Op:(4)=1, then H is a p-group. For,
if 4 is a p’-group, then A=0,(4)=1, and if p=2 and 4/0;(4) is a
cyclic 2-group, then O;-(4)=1 would imply that 4, whence also H, is a
cyclic 2-group. Therefore, we have F=F'[F, A], F'=Z(F) < Z(H), so that
F'=[F, AY.

Conclusion: F=[F, A] and F<H'.

This implies F =[F, A}<[H', H]= K3(H). With induction it follows that
F< Ky (H).

StEP 3. @ is not an M -group.

Proor oF sTtEP 3. F/Z(F) is a chief section of H. Since F < Ky1(H),
there exists by lemma 1.2b a group F; <@, such that F; ~ F and such
that Fy/Z(F,) is a chief section of @. Since Z(F) is a central subgroup
of H we have by the same lemma that Z(F)) is a central subgroup of G.
It has been proved by Price [5] theorem 4, that Z(¥) has a so-called
ramified character A, that is: 4 is an H-invariant character of Z(F) such
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that the induced character AF equals ex, where x € Irr (F) and e2=[F: Z(F)].

It will be clear now that F1/Z(F;) is a chief section of G with at least
one ramified character. But this contradicts theorem 1.3 of [5] stating
that an M-group has no chief sections with a ramified character. [/

Erasmus University, Rotterdam,
The Netherlands

REFERENCES

1. Bioch, J. C. —~ Monomiality of groups, Thesis, Leiden, 1975.

2. Hall, P. - The classification of prime-power groups, J. reine und ang. Math.
182, 130-141 (1940).

3. Hall, P. - Verbal and marginal subgroups, J. reine und ang. Math. 182, 156-157
(1940).

4. Huppert, B. ~ Endliche Gruppen I, Springer Verlag, Berlin-Heidelberg 1967.

5. Price, D. T. — Character Ramification and M-Groups, Math. Zeits., 130, 325-337
(1973).

6. Tappe, J. - On isoclinic groups, Math. Zeits., 148, 147-153 (1976).

7. Weichsel, P. M. ~ On isoclinism, J. London Math. Soc., 38, 63-65 (1963).





