MATHEMATICS

ON n-ISOCLINIC GROUPS

BY

J. C. BIOCH

(Communicated by Prof. J. P. Murre at the meeting of June 19, 1976)

The notion of isoclinism was introduced by P. Hall [2]. In [1] we have proved that monomiality is an invariant of the families of finite isoclinic groups. In this paper we consider a more general form of isoclinism, called n-isoclinism, and we prove that strong-monomiality is a familyinvariant for finite n-isoclinic groups. Moreover, using a theorem of P. M. Weichsel [7] we give short proofs for results of P. Hall [2] and J. Tappe [6] on the irreducible characters of isoclinic groups. As a corollary we obtain the above mentioned result on the M-group property proved in [1].

Notations are standard and can be found in Huppert's book [4].

AOKNOWLEDGEMENT

I express my gratitude to Dr. J. Tappe, who drew my attention to a result of P. M. Weichsel on isoclinic groups.

1. n-ISOCLINIC GROUPS

The notion of n-isoclinism of groups is implicit in a short note of P. Hall [3] on verbal and marginal subgroups.

Let $G=K_{1}(G)>K_{2}(G)>\ldots$ be the lower central series of the group G. Each term of this series, being generated by commutator words, is a verbal subgroup. An element g of G is called a period of $K_{n}(G)$, if for all simple commutators $\left[g_{1}, \ldots, g_{n}\right] \in K_{n}(G)$ we have

$$
\left[g_{1}, \ldots, g_{j} g, \ldots, g_{n}\right]=\left[g_{1}, \ldots, g_{j}, \ldots, g_{n}\right], j=1,2, \ldots, n
$$

The set of all periods of a verbal subgroup X is called the marginal subgroup of X. The marginal subgroup of $K_{i}(G)$ is $Z_{i-1}(G)$, where the latter group is the $(i-1)$-th term of the upper central series of G :

$$
1=Z_{0}(G)<Z_{1}(G)=Z(G)<Z_{2}(G)<\ldots
$$

As is well-known, the subgroups $K_{i}(G)$ and $Z_{i}(G)$ centralize each other, see [4] theorem III.2.11.
1.1. Definition. Two groups G and H are n-isoclinic, $G \overbrace{n} H$, if there exist isomorphisms α and β :

$$
\alpha: G / Z_{n}(G) \rightarrow H / Z_{n}(H)
$$

$$
\beta: K_{n+1}(G) \rightarrow K_{n+1}(H)
$$

such that α induces β in the following sense: if $g_{i} \in G, i=1, \ldots, n+1$ and if $h_{i} \in \alpha\left(g_{i} Z_{n}(G)\right)$, then

$$
\beta\left(\left[g_{1}, \ldots, g_{n+1}\right]\right)=\left[h_{1}, \ldots, h_{n+1}\right] .
$$

The pair (α, β) is called an n-isoclinism between G and H.
It will be clear from this definition that an n-isoclinism induces also an ($n+1$)-isoclinism. Hence we have for each rational integer $n>1$ an equivalence relation with corresponding equivalence classes of groups (families). If $n=1$, then G and H are called isoclinic groups.

In the following two lemma's we state some results on n-isoclinic groups, which were outlined by P. Hall [2] for $n=1$. For the proofs of these lemma's we recall that $Z_{n}(G)$ is the set of all periods of $K_{n+1}(G)$. Moreover, if ϕ is a homomorphism of G, then clearly

$$
\phi\left(\left[g_{1}, \ldots, g_{n}\right]\right)=\left[\phi\left(g_{1}\right), \ldots, \phi\left(g_{n}\right)\right], g_{j} \in G
$$

1.2. Lemma. Let (α, β) be an n-isoclinism of G_{1} and G_{2}. Then the following holds:
a) If $Z_{n}(G)<H_{1}<G_{1}$ and $\alpha\left(H_{1} / Z_{n}\left(G_{1}\right)\right)=H_{2} / Z_{n}\left(G_{2}\right)$, then $H_{1} \widetilde{n} H_{2}$.
b) β is an operator-isomorphism in the following sense: if $g_{1} \in G_{1}$, $g_{2} \in \alpha\left(g_{1} Z_{n}\left(G_{1}\right)\right)$ and $k_{1} \in K_{n+1}\left(G_{1}\right), k_{2}=\beta\left(k_{1}\right)$, then $\beta\left(g_{1}{ }^{-1} k_{1} g_{1}\right)=g_{2}^{-1} k_{2} g_{2}$.
c) If $N_{1} \triangleleft G_{1}, N_{1} \leqslant K_{n+1}\left(G_{1}\right)$, then $G_{1} / N_{1} \widetilde{n} G_{2} / \beta\left(N_{1}\right)$.

Proof. a) If $Z_{n}\left(G_{1}\right) \leqslant H_{1}$, then $Z_{n}\left(G_{1}\right) \leqslant Z_{n}\left(H_{1}\right)$.
Similarly $Z_{n}\left(G_{2}\right) \leqslant Z_{n}\left(H_{2}\right)$. We define two isomorphisms

$$
\begin{aligned}
\bar{\alpha}: H_{1} / Z_{n}\left(H_{1}\right) & \rightarrow H_{2} / Z_{n}\left(H_{2}\right) \\
\bar{\beta}: K_{n+1}\left(H_{1}\right) & \rightarrow K_{n+1}\left(H_{2}\right)
\end{aligned}
$$

as follows:

$$
\begin{gathered}
\bar{\alpha}\left(h_{1} Z_{n}\left(H_{1}\right)\right)=h_{2} Z_{n}\left(H_{2}\right), \text { if } h_{1} \in H_{1} \text { and } h_{2} \in \alpha\left(h_{1} Z_{n}\left(G_{1}\right)\right), \\
\bar{\beta}\left(k_{1}\right)=k_{2}, \text { if } k_{1} \in K_{n+1}\left(H_{1}\right) \text { and } \beta\left(k_{1}\right)=k_{2} .
\end{gathered}
$$

It can be easily checked that the pair ($\bar{\alpha}, \bar{\beta}$) is an isoclinism between H_{1} and H_{2}. We omit the verification.
b) Without loss of generality we may assume:

$$
k_{1}=\left[a_{1}, a_{2}, \ldots, a_{n+1}\right] \text { and } k_{2}=\left[b_{1}, b_{2}, \ldots, b_{n+1}\right]
$$

where $a_{j} \in G_{1}$ and $b_{j} \in \alpha\left(a_{j} Z_{n}\left(G_{1}\right)\right)$.
Then
$\beta\left(g_{1}^{-1} k_{1} g_{1}\right)=\beta\left(\left[g_{1}^{-1} a_{1} g_{1}, \ldots, g_{1}^{-1} a_{n+1} g_{1}\right]\right)=\left[g_{2}^{-1} b_{1} g_{2}, \ldots, g_{2}^{-1} b_{n+1} g_{2}\right]=g_{2}{ }^{-1} k_{2} g_{2}$.
c) Denote $\bar{G}_{1}=G_{1} / N_{1}$ and $\bar{G}_{2}=G_{2} / \beta\left(N_{1}\right)$. We define two isomorphisms

$$
\begin{aligned}
\bar{\alpha}: \bar{G}_{1} / Z_{n}\left(\bar{G}_{1}\right) & \rightarrow \bar{G}_{2} / Z_{n}\left(\bar{G}_{2}\right) \\
\bar{\beta}: K_{n+1}\left(\bar{G}_{1}\right) & \rightarrow K_{n+1}\left(\bar{G}_{2}\right),
\end{aligned}
$$

as follows:

$$
\begin{gathered}
\tilde{\alpha}\left(\bar{g}_{1} Z_{n}\left(\bar{G}_{1}\right)\right)=\bar{g}_{2} Z_{n}\left(\bar{G}_{2}\right), \text { if } g_{2} \in \alpha\left(g_{1} / Z_{n}\left(G_{1}\right)\right), \\
\bar{\beta}\left(\left[\bar{a}_{1}, \ldots, \bar{a}_{n+1}\right]\right)=\left[b_{1}, \ldots, b_{n+1}\right], \text { if } b_{i} \in \alpha\left(a_{i} Z_{n}\left(G_{1}\right)\right) .
\end{gathered}
$$

Now ($\bar{\alpha}, \bar{\beta}$) is an n-isoclinism between \bar{G}_{1} and \bar{G}_{2}, since (α, β) is an isoclinism between G_{1} and G_{2}.
1.3. Lemma. Let G be a group with subgroups H, K and let N be a normal subgroup of G. Then
a) $H \widetilde{n} H Z_{n}(G)$. In particular if $G=H Z_{n}(G)$, then $G \widetilde{n} H$.

Conversely, if $|G| Z_{n}(G) \mid<\infty$ and $G \underset{n}{\sim} H$, then $G=H Z_{n}(G)$.
b) $G / N \widetilde{n} G /\left(N \cap K_{n+1}(G)\right)$. In particular, if $N \cap K_{n+1}(G)=1$, then $G \underset{n}{ } G / N$.

Conversely, if $\left|K_{n+1}(G)\right|<\infty$ and $G \widetilde{n} G / N$, then $N \cap K_{n+1}(G)=1$.
Proof. a) We define $\alpha\left(h Z_{n}(H)\right)=h Z_{n}\left(H Z_{n}(G)\right)$. Since $Z_{n}\left(H Z_{n}(G)\right)=$ $=Z_{n}(H) Z_{n}(G), \alpha$ is an isomorphism of $H / Z_{n}(H)$ onto $H Z_{n}(G) / Z_{n}\left(H Z_{n}(G)\right)$, and α induces the identity on $K_{n+1}(H)=K_{n+1}\left(H Z_{n}(G)\right)$. Thus $H \widetilde{n} H Z_{n}(G)$, and if $G=H Z_{n}(G)$, then $G \widetilde{n} H$. Conversely, if H is a subgroup of G such that $G \sim_{n} H$, then we may assume by part a), that $H>Z_{n}(G)$, so that $Z_{n}(H)>Z_{n}(G)$. Since $H / Z_{n}(G) \simeq H_{1} / Z_{n}(H), H_{1}<H$, this implies $H_{1}=H$ and $Z_{n}(H)=Z_{n}(G)$, so that $G / Z_{n}(G) \simeq H / Z_{n}(G)$. Thus, if $|G| Z_{n}(G) \mid<\infty$, then $G=H Z_{n}(G)$.
b) We denote $G=\bar{G} / N$ and $\bar{G}=G /\left(N \cap K_{n+1}(G)\right)$. If $k_{1} \in K_{n+1}(G)$ and $k_{2} \in K_{n+1}(G)$, then $K_{1}=k_{2} \Leftrightarrow \tilde{k}_{1}=\tilde{k}_{2}$.

We have therefore,

$$
\left[\bar{g}_{1}, \ldots, \bar{g}_{j} \bar{g}, \ldots, \bar{g}_{n+1}\right]=\left[\bar{g}_{1}, \ldots, \bar{g}_{j}, \ldots, \bar{g}_{n+1}\right]
$$

if and only if

$$
\left[\tilde{g}_{1}, \ldots, \tilde{g}_{j} \tilde{g}, \ldots, \tilde{g}_{n+1}\right]=\left[\tilde{g}_{1}, \ldots, \tilde{g}_{j}, \ldots, \tilde{g}_{n+1}\right]
$$

This implies: $\bar{g} \in Z_{n}(\bar{G})$ if and only if $\tilde{g} \in Z_{n}(\bar{G})$.
If $\alpha\left(\bar{g} Z_{n}(\bar{G})\right)=\tilde{g} Z_{n}(\tilde{G})$, then α is an isomorphism of $\bar{G} / Z_{n}(\bar{G})$ onto $\tilde{G} / Z_{n}(\tilde{G})$. Let $k \in K_{n+1}(G)$ and denote $\beta(\bar{k})=\tilde{k}$.

Then β defines an isomorphism of $K_{n+1}(\bar{G})$ onto $K_{n+1}(\bar{G})$ and β is induced by α in the sense of definition 1.1.

Conversely, if $N \triangleleft G$ and $G \widetilde{n}^{-} G / N$, then

$$
K_{n+1}(G) \simeq K_{n+1}(G / N)=K_{n+1}(G) N / N \simeq K_{n+1}(G) /\left(N \cap K_{n+1}(G)\right)
$$

Thus, if $\left|K_{n+1}(G)\right|<\infty$, then $N \cap K_{n+1}(G)=1$.

The relationship of n-isoclinic groups is made clear by the following theorem, which can be obtained by a direct generalization of a result of P. M. Weichsel [7].
1.4. Theorem. Let G and H be finite groups. Then G and H are n-isoclinic if and only if there exist finite groups C, Z_{G}, Z_{H}, C_{G} and C_{H} such that $G \simeq C / Z_{H}$ and $H \simeq C / Z_{G}$ and the following two (equivalent) properties hold:
a) $G \simeq C / Z_{H} \widetilde{n}^{\sim} C \widetilde{{ }_{n}} C / Z_{G} \simeq H$
b) $C / Z_{H} \times C / K_{n+1}(C) \widetilde{n}_{n} \simeq C \simeq C_{G} \widetilde{n} C / Z_{G} \times C / K_{n+1}(C)$, where C_{H} and C_{G} are subgroups of $C / Z_{H} \times C / K_{n+1}(C)$ and $C / Z_{G} \times C / K_{n+1}(C)$ respectively.

Proof. One part of the theorem is trivial. Assume now $G \widetilde{n}_{n} H$, and let β be the isomorphism between $K_{n+1}(G)$ and $K_{n+1}(H)$ given in definition 1.1. Finally, let C be the direct product of G and H with identified factor groups $G / Z_{n}(G)$ and $H / Z_{n}(H)$:

$$
C:=G \curlywedge H .
$$

If

$$
Z_{H}:=\left\{(1, z) \mid z \in Z_{n}(H)\right\} \text { and } Z_{G}:=\left\{(z, 1) \mid z \in Z_{n}(G)\right\},
$$

then we have

$$
C / Z_{H} \simeq G \text { and } C / Z_{G} \simeq H, \text { where } Z_{H} \simeq Z_{n}(H) \text { and } Z_{G} \simeq Z_{n}(G)
$$

a) It follows from definition 1.1 that $K_{n+1}(C)$ is generated by elements of the form

$$
\left(\left[g_{1}, \ldots, g_{n+1}\right], \beta\left(\left[g_{1}, \ldots, g_{n+1}\right]\right)\right)
$$

We claim that

$$
K_{n+1}(C) \cap Z_{H}=K_{n+1}(C) \cap Z_{G}=1
$$

For, if $(1, z)=(g, h) \in K_{n+1}(C)$, then $g=1$ and since β is an isomorphism, also $h=1$. Similarly for $K_{n+1}(C) \cap Z_{G}$. By lemma 1.3 b we therefore have
b) Let

$$
C / Z_{H} \widetilde{n} C \widetilde{n} C / Z_{G}
$$

$$
C_{G}:=\left\{\left(c Z_{G}, c K_{n+1}(C)\right) \mid c \in C\right\} .
$$

C_{G} is a group which is isomorphic to C, since $K_{n+1}(C) \cap Z_{G}=1$. Moreover, it follows from lemma 1.3a that $C_{G} \widetilde{n} C / Z_{G} \times C / K_{n+1}(C)$, for we have, as we will show,

$$
C_{G} Z_{n}\left(C / Z_{G} \times C / K_{n+1}(C)\right)=C / Z_{G} \times C / K_{n+1}(C) .
$$

Therefore, let $x=\left(c_{1} Z_{G}, c_{2} K_{n+1}(C)\right)$ be an element of the direct product of the groups C / Z_{G} and $C / K_{n+1}(C)$.

Then $x=y z$, where $y=\left(c_{1} Z_{G}, c_{1} K_{n+1}(C)\right) \in C_{G}$, and $z=\left(Z_{G}, c_{1}{ }^{-1} c_{2} K_{n+1}(C)\right)$. Since $Z_{n}\left(C / K_{n+1}(C)\right)=C / K_{n+1}(C)$ and Z_{G} is the identity of C / Z_{G} it follows that $z \in Z_{n}\left(C / Z_{G} \times C / K_{n+1}(C)\right)$.

Similarly: $C \simeq C_{H} \widetilde{n} C / Z_{H} \times C / K_{n+1}(C)$.

2. the irreducible characters of isoclinic groups

In this section we consider only finite groups. If G is a group, then $\operatorname{Irr}(G)$ denotes the set of all irreducible complex characters of G. The number of the irreducible characters of G of degree d is denoted by $r_{d}(G)$. Suppose G and H are isoclinic groups. If H is a factor group of G, then the irreducible complex characters of G can be computed from the set $\operatorname{Irr}(H)$, see [1] lemma II.2.3. We state this result in a more explicit form in lemma 2.1. As a corollary of this lemma and theorem l.4b we obtain results of P. Hall [2] and J. Tappe [6] on the irreducible characters of isoclinic groups.
2.1. Lemma. Let G and G / N be isoclinic groups. If $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ is the set of irreducible characters of the (necessarily abelian) group N, then each λ_{i} can be extended to a linear character $\hat{\lambda}_{i}$ of G. If $\left\{\chi_{1}, \ldots, \chi_{n}\right\}$ is the set of irreducible characters of G with $N<\operatorname{ker} \chi_{i}$, then $\chi_{j} \hat{\lambda}_{i}=\chi_{k} \hat{\lambda}_{t}$ if and only if $j=k$ and $i=t$, and

$$
\operatorname{Irr}(G)=\left\{x_{j} \hat{\lambda}_{i} \mid j=1,2, \ldots, n, i=1,2, \ldots, m\right\}
$$

Hence we have $r_{d}(G)=|N| r_{d}(G \mid N)$.
Proof. N is a central subgroup of G, for $[G, N]<N \cap G^{\prime}=1$. If $\lambda \in \operatorname{Irr}(N)$, then λ has an extension $\bar{\lambda}$ to $G^{\prime} N=G^{\prime} \times N$, such that ker $\bar{\lambda}>G^{\prime}$. Thus λ can be viewed as an irreducible character of a subgroup of G / G^{\prime}, and thus λ has an extension to G. Let $\operatorname{Irr}(N)=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$, and denote each extension of λ_{j} to G by λ_{j}. Then it follows (taking the restriction to N) by [4] theorem V.17.12b that the cardinality of the set $I(G):=$ $=\left\{x_{i} \lambda_{1} \mid x_{i} \in \operatorname{Irr}(G \mid N)\right\}$ equals $n m$. To prove that $I(G)=\operatorname{Irr}(G)$, assume that $\chi \in \operatorname{Irr}(G)$. Then $\chi \mid N=\chi(1) \mu, \mu \in \operatorname{Irr}(N)$. If $\hat{\mu}$ is the extension of μ to G, then we have by theorem V.17.12d of [4]:

$$
\chi=\hat{\mu} \chi_{j}, \chi_{j} \in \operatorname{Irr}(G / N)
$$

Since $m=|N|$ and $\hat{\lambda}_{l}(1)=1$, we therefore have $r_{a}(G)=|N| r_{a}(G \mid N)$. /|
Remark. The converse of the above lemma holds also. Thus, if N is a central subgroup of G, then the irreducible characters of N are simultaneously extendible to G if and only if $N \cap G^{\prime}=1$.

As a corollary we obtain the following results of P. Hall [2] and J. Tappe [6].
2.2. Theorem. Let G and H be isoclinic groups. Then
a) (P. Hall) $|H| r_{a}(G)=|G| r_{a}(H)$.
b) (J. Tappe) The matrices of the irreducible complex representations of G and H only differ by scalar factors.

Proof. a) By theorem 1.4a there exist groups C, Z_{H} and Z_{G} such that

$$
\begin{equation*}
G \simeq C / Z_{H} \sim C \sim C / Z_{G} \simeq H \tag{1}
\end{equation*}
$$

By lemma 2.1 and (1) we obtain the desired result:

$$
\frac{r_{d}(G)}{r_{d}(H)}=\frac{r_{a}(C)\left|Z_{H}\right|}{r_{a}(C)\left|Z_{G}\right|}=\frac{|Z(G)|}{|Z(H)|}=\frac{|G|}{|H|} .
$$

b) If χ_{1} and χ_{2} are irreducible characters of G and H respectively, then there exist linear characters λ_{1} and λ_{2} of C such that

$$
\chi_{1} \lambda_{1}=\chi_{2} \lambda_{2} .
$$

The matrices of the irreducible representations of G and H differ therefore only by scalar factors.

Remark. Theorem 2.2 can also be proved via theorem 1.4b and lemma II.2.2 of [1].

3. invariants of the familles of finite isoclinic aroups

In [l] we have proved that the following hierarchy of classes of finite groups is invariant under isoclinisms: abelian, nilpotent, supersolvable, strongly-monomial, monomial, solvable.

The only non-trivial result here is that monomiality is an invariant of the families of isoclinic groups. However, since a finite group is monomial if and only if its irreducible complex matrix representations can be transformed into monomial form, this is now a direct consequence of theorem 2.2 b , see also [6].

In general, nilpotency, supersolvability and solvability are invariants of the families of n-isoclinic groups. It is not known, whether monomiality is such an invariant if $n>2$. We have however, the following result.
3.1. Theorem. If G and H are finite n-isoclinic groups, then G is strongly-monomial if and only if H is strongly-monomial.

Proof. A group G is called strongly-monomial (an \tilde{M}-group), if G and all its subgroups are monomial. Let S be the set of all ordered pairs (G_{1}, G_{2}), where G_{1} and G_{2} are finite solvable groups.

We write $\left(G_{1}, G_{2}\right)<\left(H_{1}, H_{2}\right)$, if $\left|G_{1}\right|<\left|H_{1}\right|$ and $\left|G_{2}\right|<\left|H_{2}\right|$, while at least one of the inequalities is strict. Consider the following subset of S :

$$
S_{0}:=\left\{\left(G_{1}, G_{2}\right) \in S \mid G_{1} \widetilde{n}_{n} G_{2}, G_{1} \text { an } \tilde{M} \text {-group, } G_{2} \text { not an } \tilde{M} \text {-group }\right\}
$$

Let (G, H) be a minimal counterexample. Then $(G, H) \in S_{0}$ and there is no element $\left(G_{1}, H_{1}\right) \in S_{0}$ such that $\left(G_{1}, H_{1}\right) \prec(G, H)$.

Step 1. H is a minimal (solvable) non- M-group, that is: H is nonmonomial, but each proper subgroup and each proper factor group of H is monomial.

Proof of step 1. If H is monomial, then H has a non-monomial proper subgroup H_{2}. By lemma 1.2a there exists $H_{1} \leqslant G$ such that $H_{1} \widetilde{n} H_{2}$. Therefore $\left(H_{1}, H_{2}\right) \in S_{0}$ and $\left(H_{1}, H_{2}\right) \prec(G, H)$. Contradiction. Similarly, each proper subgroup of H is monomial. Let H / N be a proper nonmonomial factor group of H. Then by lemma 1.2 b there exists a factor group G / N_{1} such that $G / N_{1} \widetilde{n} H / N_{2}$. Since $\left(G / N_{1}, H / N_{2}\right) \in S_{0}$ this yields again a contradiction.

Our proof is now based on the structure of the solvable minimal non-M-group H. By theorem 1.4 of D. T. Price [5] the group H has a normal p-subgroup F such that:
al) F is extra-special of exponent p, p prime, $p=2$.
a2) F is an extra-special 2 -group, but not dihedral.
b) $\quad H=F A$, where A acts trivially on $Z(F)$ and irreducibly on $F / Z(F)$.
c) Either A is a p^{\prime}-group or $p=2$ and $A / O_{2^{\prime}}(A)$ is a cyclic 2 -group.
d) $O_{p^{\prime}}(H)=1$.
e) If A is of odd order, then A is of prime order.

Step 2. $\quad F<K_{\infty}(H)$.
Proof of ster 2. Since $[F, A]$ is an A-invariant subgroup of F, we have either $F^{\prime}[F, A]=F$ or $[F, A] \leqslant F^{\prime}=Z(F) \leqslant Z(H)$. If $[F, A]<Z(H)$, then $\left[F, O_{p^{\prime}}(A)\right]<Z(H)$, so that $O_{p^{\prime}}(A) Z(H) \triangleleft H$. This yields $O_{p^{\prime}}(A) \triangleleft H$, and thus $O_{p^{\prime}}(A)<O_{p^{\prime}}(H)=1$. But if $O_{p^{\prime}}(A)=1$, then H is a p-group. For, if A is a p^{\prime}-group, then $A=O_{p^{\prime}}(A)=1$, and if $p=2$ and $A / O_{2^{\prime}}(A)$ is a cyclic 2 -group, then $O_{2^{\prime}}(A)=1$ would imply that A, whence also H, is a cyclic 2-group. Therefore, we have $F=F^{\prime}[F, A], F^{\prime}=Z(F)<Z(H)$, so that $F^{\prime \prime}=[F, A]^{\prime}$.

Conclusion: $F=[F, A]$ and $F<H^{\prime}$.
This implies $F=[F, A]<\left[H^{\prime}, H\right]=K_{3}(H)$. With induction it follows that $F<K_{\infty}(H)$.

Step 3. G is not an \mathscr{M}-group.
Proof of step 3. $F / Z(F)$ is a chief section of H. Since $F<K_{n+1}(H)$, there exists by lemma 1.2 b a group $F_{1}<G$, such that $F_{1} \simeq F$ and such that $F_{1} / Z\left(F_{1}\right)$ is a chief section of G. Since $Z(F)$ is a central subgroup of H we have by the same lemma that $Z\left(F_{1}\right)$ is a central subgroup of G. It has been proved by Price [5] theorem 4, that $Z(F)$ has a so-called ramified character λ, that is: λ is an H-invariant character of $Z(F)$ such
that the induced character λ^{F} equals $e \chi$, where $\chi \in \operatorname{Irr}(F)$ and $e^{2}=[F: Z(F)]$.
It will be clear now that $F_{1} / Z\left(F_{1}\right)$ is a chief section of G with at least one ramified character. But this contradicts theorem 1.3 of [5] stating that an \tilde{M}-group has no chief sections with a ramified character.

Erasmus University, Rotterdam, The Netherlands

REFERENCES

1. Bioch, J. C. - Monomiality of groups, Thesis, Leiden, 1975.
2. Hall, P. - The classification of prime-power groups, J. reine und ang. Math. 182, 130-141 (1940).
3. Hall, P. - Verbal and marginal subgroups, J. reine und ang. Math. 182, 156-157 (1940).
4. Huppert, B. - Endliche Gruppen I, Springer Verlag, Berlin-Heidelberg 1967.
5. Price, D. T. - Character Ramification and M-Groups, Math. Zeits., 130, 325-337 (1973).
6. Tappe, J. - On isoclinic groups, Math. Zeits., 148, 147-153 (1976).
7. Weichsel, P. M. - On isoclinism, J. London Math. Soc., 38, 63-65 (1963).
