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The operational semantics for parallel programs in [1], [2], [7], [S] and 
elsewhere is based on the interpretation of parallel computations as nondeter- 
ministic sequential executions of parallel processes. In this context, properties of 
programs are studied as properties of the resulting Gnitely branching computation 
trees. In this paper we show that relative to a suitably defined type struc@e on 
such trees, parallel programs have a natural interpretation as formulas of Peano 
arithmetic (referred to below as PA) and that the computation trees of 
deadlockfree parallel programs determine intuitionistic fans which code their 
own spread laws. We also show that the choice sequences of these fans 
characterize the partial correctness of such programs. Arithmetical formulas 
associated with sequential programs have been studied in [3] and [4]. 

1. A type structure for paraRe pgrams 

IA 272e language PL 

The class of programs considered in this paper is similar to the class of 
programs studied in [7], [8], and [1], restricted to successot and predecessor 
arithmetic as in [9]. The language is slightly weaker than that in [S] because of 
restrictions on the occurrences of await statements, but is stronger than that in [l] 
because of the broader class of await statements allowed. Programs are 
constructed inductively as certain types of ‘program statements from atomic 
statements as follows: 
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is an (atomic) program statement. 

l.l.2 If x is a variable and o is x, (x + 1), or (x - l), then [x/v] is an (atomic) 
program statement. 

l&3. If Pl, . . . , PR are program statements, then WPl, . . . , Pn) is a 
program statement. 

LLdo If C(x1,. . . , xn) is a quanti6er4ree formula of PA, Pl and P2 are 
program statements, and xl, . . . , xn are among the variables of Pl and P2, then 

C, Pl, P2) is a program statement. 

l&5. If C(x1,. . . , xn) is a quantifrerfree formula of PA, Pl is a program 
statement,andxl,..., xn are among the variables of Pl,. then whk(C, Pl) is a 
program statement. 

I&& If Pl, . . . , PR are program statements, then paraiM(P1,. . . , h) is a 
program statement. 

Ll.7. If C(x1; . . . , xe) is a quarMer=free formula of PA, Pl is a program 
statement constructed by means of 1.1.1-1.1.5 and xl, . . . , xn are among the 
variables of Pl, then swait(C, Pl) is a program statement. 

The following program statements are programs: 

?alsm The statement is a program. 

lL9. All assignment statements [x/v] are programs. 

l&lo. ifP1 , . . . , R are newer await statements nor compose statements, then 
1 ,...,At)isaprogram. 

l&U. !f Pl curd P2 are not await statements, then if(C, Pl, P2) is a program. 

l.l.lZ. If Pl is not nuBi and is not an await or while statement, then wbik(C, Pl) 
isajwqgram. 

laLl3. If Pl ,.. ., 2% are programs or await statements, then parakl(P1,. . . , 
Pn) is a program. 

The condition in 1.1.10 that pi is not a compose statement amounts to 
assuming that composition is associative. We also assume that the program 

has the same meaning as wMe(C A C, Pl) and do not 
merits. Sometimes we write (Pl//P2) as an abbreviation 

(Pl, P2) and treat ((Pl//P2)/.09) and (Pl/l(P2/lP3)) as synonymous 
with (Pl//P2//P3). Every program statement that enters into the inductive 
construction of a program P at some stage is called a component of P. 

In order to be able to describe the program components occurring in the 
computation trees of parallel programs diagrammatically, we defme the type of a 
program statement. 
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lm2.1. 

le2.2. 

L2.3. 

li4. 

102S. 

types- 

The natural numbers 1,2,. . . are atomic types. 

Every atomic type is a type. 

Iftisatype,then(l,t)and(2,t)aretypes. 

If tl and t2 are types, then (3, (tl, t2)) is a type. 

If tl , . . . , m are types, then (4, (tl, . l l , tn)) and (5, (tl, . . m s ln)) are 

IA 27ie type t(P) of a program statement P . 

13.r. 

l&2. 

13e3. 

13.4. 

13as. 

13.6. 

13.7. 

t(d) = 1. 

t([x/u])=2,3,.... 

t(wllile(C, Pl)) = (1, t), where t(P1) == t. 

t(await(C, Pl)) = (2, t). where t(P1) = t. 

t(iiC, Pl, P2)) = (3, (tl, t2)), where t(P1) = tl and t(P2) = t2. 

t(ampose(P1, . . . , Pn)) = (4, (tl, : . . , tn)), where t(Pi) = ti. 

t(paraReI(Pl, . . . , Pn)) = (5, (tl, . . . , i9t)), where t(Pi) = ti. 

We call two types disjoint if they ‘share’ no atomic types except possibly the 
type 1. The spec& types of the different occurrences of assignment statements in 
the analysis of a program P are intended to be context-dependent and are to be 
chosen so that all occurrences of assignment statements have disjoint types. 

13.8. Lemma. For any program P there exists a choice of atomic types for the 
dktinct’occurrences of the atomic statements in P which produces disjoint types for 
the distinct components of P. 

proof, By an induction on programs. The result holds because a program has 
only finitely many possible components and because the supply of atomic types is 
infinite. q 

From now on we work with programs whose distinct occurrences of atomic 
components have been assigned disjoint types. We assume as given an effective 
system G of Giidel numbers for finite sequences and finite sequences of finite 
sequences, etc., of natural numbers and can therefore think of a type t as a 
natural number G(t), whenever convenient. Types will be used to describe the 
currently active component in the course of a run of a program P. We usually 
write t in place of G(t). 
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We base the definition of the currently active component of a program on the 
of an execution scheme. These schemes describe the possible program 

annponents of the nodes of computation trees of parallel programs. 

In ozder to describe the interactions of the different components of a program 
P in the course of a run of P, we introduce the concept of the tagged and 

execution schemes of the components of P. Certah subschemes of an 
are %agged’ with the type of a scheme whose execution must be 
subscheme in question has been completely executed. The 

required tags cocfespond to while and compose statements and will always be of 
theform(1,24)0r(4,@1,..., u, l)), where u = t(S). If t = t(S) and E is auother 
execution scheme? t: E deuotes the fact that E has been tagged with t. Unless E is 

, @):E means that E has priority over S iu the execution of P. We allow 
strings of w to tag nested tagged schemes, i.e., we allow tz, tl : E, etc. These 
schemes correspond to the nestiug of while and wmpose statements. 

h&l. The execution scheme of nuN is aall. 

1.4.2 The execution schemes of t : ati are t :nuH and, if t = (4, (tl, . . . , u, 1)) 
and u = t(S), the execution schemes of S. 

1.4.3. The execution schemes of [X/V] are [X/U] and nuIL 

1.4.4. The execution schemes of t : [X/U] are t : [x/u] and the execution schemes 

24.5. The execution schemes of wmpuse(P1, P2) are compuse(P1, P2), t:P2, 
where t = @~IEPo@P~, nuil)), and the execution schemes of t: P2 and of Pl. 

l.4.6. The execution schemes of u :aunpuse(Pl, P2) are u :aq~@Pl, P2), 
ut:P2, where P = t(wP1, nuIl), and the execution schemes of ut: P2 and 
of u:Pl. 

l.4.7. The execution schemes of if(C, Pl, P2) are if(C, Pl, P2) and the execu- 
tion schemes of Pl and of P2. 

.8. The execution schemes of t : if'(C, Pl, P2) are t : if(C, Pl, PZ), t : Pl and 
t : P2, and the execution schemes of t : Pl and of t : P2. 

1.4.9. The execution schemes of wimik(C, Pl) are whik(C, Pl), t:Pl, where 
t = t(wHe(C, Pl)), together with the execution schemes of t : Pl, and nuU. 

L&lo. The execution schemes of u :whk(C, Pl) are u :whiIe(C, Pl), ut : Pl, 
where t = t(whik(C, Pl), the execution schemes of ut : Pl, and u : ndl. 

The execution schemes of 
n schemes of Pl. 

(C, Pl) are await(C, PI), and the 



1.4.n. The execution 
paraUeI(Q, R), where 
scheme of P2. 
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schemes of paraUel(P1, P2) are all schemes of the form 
Q is an execution scheme of Pl and R is an execution 

1.4.13. The execution schemes of t:paraRei(Pl, P2) are all schemes of the form 
t:paraIel(Q, R), where Q is an execution scheme of Pl and R is an execution 
scheme of P2. 

1.4.14. The execution schemes of tl ,--&z-1), tn:Pareallschemesofthe 
form tl, . . . , t(n - 1): Q, where Q is an execution scheme of tn : P. 

This definition extends in the obvious way to compose and parallel statements 
with more than two arguments. The following obvious lemma is essential for our 
programs-as-formulas interpretation: 

1.5. Lemma. Each program P E PL determines only fsnirely many d&tin& execu- 
tionsche~essl,..., Sn, and each Si occurs only finitely ofren in any ml&&&n 
of the execution s&mes determined by P. 

Ptaof. By an induction on programs. The only non-trivial case is that of a while 
scheme and the restriction in 1.4.2 ensures that every calculation of execution 
schemes terminates after finitely many steps. _ Cl 

Thus if t([x/x + 1]) =2, the execution schemes of the program Pl= 
whiIe(C, [x/x + 1]), for example, are Sl = P (by 1.4.9), S2 = (1,2): [x/x + 1] (by 
1.4.9), S3 = (1,2):nuU (by 1.4.4), and S4=nuU (by 1.4.9), and the execution 
schexrss of P2 = compose([x/x + 11, [y/y + 11) are Sl = P2 (by 1.4.5), S2 = 
(4, (2,1)): [y/y + 1] (by 1.4.5), S3 = (4, (2,l)):null (by 1.4.4), S4 = [x/x + 1] (by 
1.4.5), and SS = null (by 1.4.3). 

In certain calculations below, the information contained in the tags of the 
execution schemes occurring inside parallel statements is explicitly required. We 
therefore extend the notion of a type to execution schemes: 

1.6. The type of a tagged execution scheme of the form tl, . . . , tn : Q is the pair 
((6, tl, . . .p N, t(Q)>. 

For a correct coding of tagged and untagged execution schemes kr Section 4 we 
agree that whenever needed, an untagged execution scheme Q is represented by 
the term u = ((6, O), t(Q)>, so that the number G(u) describes both types of 
execution schemes. 

2. The next-node construction 

We structure the possible orders of execution of a parallel program P with 
initial input a in the form of a rooted tree Tr(P, a) whose nodes contain both a 
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and a data component describing the possible currently active corn- 
of P and the possible values computed up to the given point in a 

Since the program component of a node is obtained by a kind of 
imcedure f&m the execution schemes determined by P, we refer to 
a caucellation tree. The root of Tr(P, a) is the pair (P, a) and every 
is computed from an earlier node by the next node function a. 

of the tree Tr(P, a) are detied inductively from the root (P, a) as 

a([xi/ti+l], (. . . ,ti,. . .))=(nuu,(. . . ,xi+l,. . .)), 

o(t:[xi/ti+l], (. . . ,xi,. . .))=(t:nun,(. . . ,xi+l,. . .)). 

a([xi/xi - 1], (. . . , xi, . . .)) = (nun, (. . . ,xi - 1, . . .)), 

o(t:[ti/ti-11, (. . . ,ti, . . .))=(t:d, (. . . ,xi- 1,. . .)I. 

C, Pl), b) = (f : Pl, b) if C[b] is true, 
= (nd, b) if C[b] is false, 

where f = t(whiIe(C, Pl)). 
a(u : (C, Pl), b) = (ut:Pl, b) if C@D] is true, 

= (u : idi, b) if C[b] is false, 
(C, Pl)). 

, b) = (Pl, b) if Cp] is true, 
= (l-2, b) if C[~B] is fake. 

a(~ :if(C, Pl, P2), b) = (u : Pl, b) if C[b] is true, 
=(u:P2,b) ifCIh;lisfalse. 

9 d(t : (Pwq, 
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0 i 

a(t : (Pl//(P2//P3)), b) = a(t : (Pl//P2//P3), b). 
a(t : ((Pl//P2)//P3), b) = a(t: (Pl//P2//P3), b)- 
a(t : (nuU//nuU), b) = (S, b), 
where u = t(S) and t = (1, u) or (4, (u, 1)). 

al(nuIi//P, b) = undefined. 
If P = await(C, Pl), u = t(S), and t = (1, u) or (4, (u, l)), then 
al(t mull//P, b) = (S//P, b) if Cb] is false, 

= (S//Pi, b) if C[b] is true; 
if P#await(C, Pl), u = t(S), and t = (4, (u, l)), then 
al(t :d//P, b) = (S//P, b); 
ifP=nuJlort’:nuO,u=t(S), andt=(l,u), then 
al(t:nuU//P, b) = (S//P, b); 
al(t : null//P, b) is undefined otherwise. 

(j) al([x/v]//P, b) = (nd//P, b[xlv]), 
crl((t : [x/v])// P, b) = ((t : ndQ//P, b[x /VI)- 

(k) ol(~n~pse(Pl, P2)//P, b) = ((t : m)//P, b), 
where t = t(compose(P1, null)). 
al(compose(P1, nuU)//P, b) = (Pi//P, b)= 
al((u : compose(P1 j PZ))~~pD) bj = ((zit : P2)//P, b), 
where t = t(campase(P1, ndl)). 
al((u :ampose(Pl, nuR))//P, b) = ((u : Pl)//P, b)- 

(1) al(if(C, Pl, P2)//P, b) = (Pi//P, b) if C[b] is true, 
= @2//P, b) if C[b] is fake. 

al((t :if(C, Pl, P2))//P, b) = ((t : Pl)//P, b) if C[b] is true, 
= ((t : P2)//P, b) if C[b] is faIse. 

(m) al(while(C, Pl)//P, b) = ((t : Pl)//P, b) if C[b] is true, 
= (null//P, 5) if C[b] is false, 

where t = t(wnite(C, Pl)). 
al((u : whiie(C, Pl))//P, b) = ((ut : Pl)//P, b) if C[b] is true, 

= ((u :nuU)//P, b) if C[b] is false, 
where t = t(whiie(C, Pl)). 

(n) al(await(C, Pl)//P, b) = (Pi//P, b) if C[bl is true9 
= undefined if C[b] is false. 

The definition of 02 is analogous and the cases of compose and parallel 
statements with more than two variables are obtained by an obvious induction. In 
clause (h) it is understood that a(Pl//P2, b) may give rise to only a single node if 
al(Pl//P2, P) or a2(Pl//P2, b) is undefined. The ordered pair notation is 
intended to convey the idea that the next nodes of (Pl/JP2, ) are considered to 
be ordered from left to right, with al(Pl//P2, b) to the left of 02(Pl//P2, 
Similarly for more than two next nodes. The motivation behind the various steps 
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in the definition of 0 is follows: Assignment statements are indivisible 
operations, are always executable, and are carried out in a single step. Compose 

are executed fkom right to left, reflecting our interpretation of 
as fkctional application. The execution of a while statement 

requires that we separate notationally the component to be executed from the 
sta+mnt as a whole and only revert back to the while statement once the 
component has been completely executed. Moreover, parallel statements are 
executed as nondetermiistic sequential statements and we therefore require all 
pairs of execution schemes of Pl and P2 to model parallel execution. In all cases 
the definition reiiects our intention to treat only assignments and the evaluation 
of the truth of c[b] as indivisible operations. This assumption agrees with the 
operational interpretation of parallel programs in [7]. A similar motivation also 
underlies the description of the semantics for parallel programs in [2] based on 
the work of Hennessy and Plotkin. 

. LetP= (Pl, P2), where 

Pl = SUE, [x/x + 11) and 

P2= 

In order to list the execution schemes of P we must, according to 1.4.12, 
compute the execution schemes of Pl and P2. The execution schemes of Pl and 
their types are the following: 

Sl = while(TRuE, [X/X + 1]), tl = (1,2), 

sz=tl:[X/X + 11, t2 = ((6, tl), 2), 

S3=rl:nun, t3 = ((6, tl), I), 

S4=mll, t4= 1, 

and the execution schemes of P2 and their types are 

Tl = Vu& eompose([~/~ + 11, [Y/Y + l])), t4 = (1, (4, (3,4))), 

T’2 = ~4:-4=@lx + 11, [y/y + 11)s t5 = ((6, t4), (4, (394)))s 
T3 = tQ, t6: [y/y + 11, t7 = ((6, t4, (4, (3,1))), 4), 
T4= t4, t6:nd, t8 = ((6, t4, t6), 1), 

TS = t4: [x/x + 11, fl= ((6, t4), 3), 
T6=t4:naO, t10 = ((6, t4), l), 

T7=nu0, tll= 1. 

The two distinct occurrences of [x/x + l] have been assigned the distinct types 
2 and 3 and the statement b/y + l] has been assigned the type 4. Hence the 
conditions of Lemma 1.3.8 are met. 



It is clear that Tr(P, (0, 0)), for example, has only infmite branches such as 

@l//T& (0, O))+ (S2//Tl, (0, O))-, 

’ (S3//Tl, (1, O))+ (S3//T2, (1, O))+ 

(S3//T3, (ItO))+ (S3//T4, (1, l))-+ 

(S3llT5, (1, l))-*(S3//T6, (2, I))+ 

. (S3//Tl, (2, l))+(Sl/,‘Tl, (2,1))+ l . . 0 

3. programs as folmdas 

The purpose of this section is to show that the computational behaviour of a 
program P E PL can be characterized by formulas @(P) of PA in which we can 
express the idea of a sequence al EN”, . . . , an E W of values consisting of 
successive data components of a cancellation tree of P. For this purpose we 
cpresent the nodes (E, b) of all trees Tr(P, a) by (G(u), G(b)), where E is either 

a tagged or untagged execution scheme of P, and u is the type of E as defined in 
1.3 and 1.6. V!e let Paths(P) be the set of all finite sequences e = (el, . . . , en) of 
such pairs with the property that el = (G@(P)), G(a)), for some a E W, and such 
that if e(i + 1) E e, then e(i + 1) corresponds to a next node of e(i) in Tr(P, a). It 
is clear from the algorithmic nature of the next-node function that Paths(P) is a 
decidable set. We introduce three special functions r= t(Paths(P)), il= 

A(Paths(P)), and p = &Paths(P)), defined on finite sequences e = (el, . . . , en), 
bY 

(a) t(e) = en if e E Paths(P), 

= (0,O) if e $ Paths(P), 

(b) n(e) = A(en) if e E Paths(P), 

=0 if e $ Paths(P), 

(c) p(e) = p(en) if e EPaths(P), 

=0 if e $ Paths(P), 

. 

an3 let (A(i), p(i)) = ei. The functions r(Paths(P)), A(Paths(P)) and p(Paths(P)) 
are clearly effectke and, relative to the coding of the finite sequences e as natural 
numbers G(e), yield three calculable functions t : A?-, (N x N), A : IV+ IV, and 
p :N+ N. By Church’s thesis these functions are recursive and are therefore 
representable in PA. We call the elements of Paths(P) the finite paths determined 
by P, so that r(e) represents the last node en of the path e, and A(e) = A(n) codes 
the program component and p(e) = p(n) the data component of en. We let z be a 
new variable ranging over all finite sequences of the kind described. In addition, 
we introduce two new (control) variables z and z’, with z ranging over the 
numerical codes of the types of the execution schemes of P and z’ ranging over 
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the numerical codes of the types of the obvious ‘next execution schemes’ 
determined by a given scheme. We omit the definition of next execution schemes 
since it is clear from 1.4. For each variable vi in P we introduce a new (input) 
variable ti and a new (output) variable si ranging over the current and next V&MS 
ofthevariablesofPinthecourseofarunofPreMivetoaninitialstatea.The 
variabkz, t’,riandsiareassumedtobedistinct. Weputr=(rl,...,m)and 
s=@l,..., sn) and simpliQ the notation by writing (S =r) in place of 
(sl=rln l nsn=m) and (sl=rln l m l hS(i-l)=r(i-l)hS(i+l)=t(i+ 

1) A l . l A sn = m) if the intended conjunction is ckar from the context. 
The formula @(P) characterizes the different possible kinds of changes of the 

control variables z and t’ determined by P and describes, at the same time, the 
aumnpanying chauges in the dues of the input variables rl, . . . , m and output 
variablessl,..., a The construction of @(P) involves four steps: 

(a) The listing of the occurrences Sl, . . . , Sn of the execution schemes of the 
given~rogram. 

(b) Thedeterminationofthetypestl,..., tnofsl,..., Sn. 
(c) The specikation of the ‘diagram’ Diag(P) of P determined by tl, . . . , br. 

(d) The de6nition of @(P) from the data accumulated in (a)-(c). 
We illustrate @J(P) by several examples which, at the same time, form the 

induction basis for the construction. We usually write finite paths as e= 
((A(l~* #ms l l l p (A(n), p(n))), with A(i) = p(i) = 0 if the finite sequence e is 
notafinitepathofp. 

3.1. Let P = null. Then the only execution scheme of P is P itself, i.e., 
Sl = P and rl”= t(S1) = 1. Hence Diag(P) consists of the single node tl. We let 
@(P) = #(tl) = (zl rl A zl’ = tl A t = p(1) = a A s = r). The same formula is 
us& for auy other trivial program whose only atomic component is null. El 

3.2. Example. Let P = [n/x + 1] and t(P) = 2. Then 

Sl=P, tl = t(S1) = 2, 

S2=IBuB, t2 = t(S2) = 1, Diag( P) = tl + t2. 

The presence of an arrow from ti to tj indicates that Sj is a possible program 
component of a next node, as determined in 2.1, of the node with program 
component Si. 

*p)=#(tl, t2)=tp(1,2)=(2=tl nz’=t2nr=p(l)=ahs=r+l). 0 

3.3. Exam@. Let P = compae([x/x + 11, ly/y + 11). Then the execution 
schemes determined by P and their respective types are the following, with 
20 = (4, (2,1)): 

Sl=P, tl = (4, (2,3)), 
s2=tO:[y/y + 11, t2 = ((6, a), 3), 
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s3=to:nun, t3 = ((6 to)., l), 

s4 = [x/x + 11, t4=2, 

s5 = nun, t5 = 1, 

Diag(P) = tl+ t2+ t3+ t4+ t5. 

For each arrow (ti+tj) in Diag(P), we specify a formula q/#, j) which 
describes the current and next values of z, z’, r, and S, and let @(P) be the 
disjunction of the #b(i, j): 

~(1,2)=(z=tlhZ’ =t2hr=p(l)=ahs=r), 

#(2,3)=(z=t2hE’= t3h~(2)=t2hr=p(2)Asl=rlAS2=r2+1), 

#(3,4)=(%W3AZ’= tdAh@)=t3Ar=p@AS=r), 

$(4,5)=(Z=t4AZ’= t5A~(4)=t4Ar=p(4)ASl=rl+lAS2=r2). 

B(P) = #(I, 2) v $(Z 3) v $(3,4) v #(4,5). 0 

3.4. Example. Let P = wbik(C, [x/x + 11). Then the execution schemes of P and 
their types are the following: 

Sl=P, tl = (1,2), 

s2 = tl : [x/x + 11, t2 = ((6, tl), 2), 

S3=tl:l&a, t3 = ((6, tl), l), 

s4 = RuBH, t4 = 1, 

Diag(P) = t4’C tlC-t2 

#(l, 2) = (2 = tl A 2’ = t2 A t(R) = (A(Z), p(X)) 

A ii(Z) = tl A p(Z) = t A C[X/t] A S = I), 

#(I, 4) = (2 = tl A 2’ = t4 A t(Z) = (n(Z), p(Z)) 

A h(x) = tl n p(n) = r A %[x/r] A s = r), 

$(2, 3) = (2 = t2 A 2’ = t3 A Z(Z) = (A(Z), p(Z)) 

A~(lt)=t2AP(ld)=rhS=P’+l), 

tp(3,l) = (2 = t3 A 2’ = tl A z(n) = (A(n), p(n)) 

Aa(~)=t3AP(ld)=rAS=t). 

G(P) = @(I, 2) v #(l, 4) L’ #(2,3) v #(3,1). 0 

3.5. Example. Ld P = if(C, [x/x + 11, [y/y + 11). Then the execution schemes of 
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P and their Q_ x rdative is t([x/x + I]) = 2 and t([y/y + 11) = 3 are 

Sl=P, ti = t(S1) = (3, (2,3)), 

Is2 = [x/x + I], t2 = t(S2) = 2, 

t3 = t(S3) = 1, 

S4 = [y/y + 11, t4 = t(S4) = 3, 

t5 = t(S) = 1, 

Dial&P) = t5_-t4Gtl-G t2- t3. 

$(1,2) = (2 = tl A 2’ =t2hA(l)=thf@)=rAC[X/T]AS=r), 

#(2,3) = (z = t2 A t’ = t3 A A(2) = t2 A p(2) =rASl=d+lAS2=d), 

+(1,4) = (2 = tl A 2’ = t4 A n(n) = tl. A p(l) = r A lC[X/t] A S = r), 

@(4,5)=(Z=t4AZ’ = ts A A(2) = t4 A p(2) =rASl=dAS2=r2+1). 

a(P) = (Qi(l, 2) v @(2,3) v qq, 4) v #(4,5)- 0 

[x/x + 1]), nmlI), then the execution 

Sl= tl = t(S1) = (5, ((2,3), l)), 

S2= ([XIX + 11, mm, t2 = t(S2) = (5, (3, l)), 

s3= t3 = t(S3) = (5, (1, 1)), 

D&(P) = tl& t2- t3. 

t,+(l,2)=(2=tl AZ’ =t2A~(f)=tfAP(l)=rA@[X/r]AS=r), 

Qi(2,3)=(2=?2AZ’ =t3Aii(2)=t2AP(2)=rAS=r+l). 

@(P) = #(l, 2) v #(2,3). 13 

(await(C, [x/x + 1]), [y/y + l]), then the execution 

Sl=P, tl = Wl) = (5, ((2,3), 4)), 

s2 = [a + l]ll[yly + 11, t2 = t(S2) = (5, (3,4))1 

t3 = t(S3) = (5, (1,4)), 
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S6 _ - yx + l]l”/nun, t6 = t(S6) = (5, (3, l)), 

s7 = nuB~~lliufl6, t7 = t(S7) = (5, (1, l)), 

Diag(P) = t7-t6Ats-tlC-t2-t3-t4. 

4#(1,2) = (2 = tl A 2’ = t2 A A(1) = tl A p(1) = t A C[xlr] A s = r), 

$(2,3)=(z=t2I\z’= thh(2)=t2Ap(2)=tASl=rl+lAS2=r2), 

#(3,4) = (2 = t3 A 2’ = t4Ai1(3)=t3Aj@)=rASl=rlA d=d+l), 

~(1,~)=(t=t~AZ’=t~Ajl(l)=t~AP(1)=~AS~=~lA S2=r2+1), 

#($6)=(z=t5Az’=t6Ai2(2)=t5Ap(2)=rAC[X/r]AS=t), 

~(6,7)=(z=t6Az’=t7AA(3)=t6Ap(3)-rAsl=rl+1AS2=r2). 

@(P) = qb(l,2) v #(2,3) v #(3,4) v !p(l, 5) v #(5,6) v 4J(6# 7). q 

3.8. Esample. If P = paraUeI([~/,x + 11, [y/y + l]), then the execution schemes 
ofpandtheirtypesare 

Sl=P, tl = t(S1) = (5, (3,4)), 

S2 = =w..[y/,y + 11, 02 = t(S2) = (5, (1,4)), 

s3 = nuaI//nuIl, t3 = t(S3) = (5, (1, 1)), 

s4 = [x/x + l]//nuu, t4 = t(S4) = (5, (3, l)), 

SS = naU//nuU, t5 = t(S) = (5, (1, l)), 

Diag(P) = t5-t4-tl-t2-t3. 

#(l, 2) = (Z = tl A 2’ =t2Ah(P)=tlAp(l)=tAs?=rl+lAS2=r2), 

9(2,3) = (2 = t2 A Z’ = t3 A A(2) = t2 A p(2) =rhsl=rlhs2=r2+1), 

#(l, 4) = (2 = tl A 2’ = t4 A h(l) = tl A p(l) =r~sl=rlhs2=r2+1), 

#(4,5) = (2 = t4 A 2’ = t5 A h(2) = t4 A p(2) =rhsl=rl+lhs2=r2), 

@(P) = #(l, 2) v #(2,3) v #(19 4) v #(4,5). 17 

The general construction is obtained by applying the induction hypothesis to 
component programs and modifying the above examples in the obvious way. We 
describe the case of a program of the form P = if(C, Pl, P2) in relation to our 
Example 3.5. The modifkations required in the remaining cases are similar. 

Suppose that the execution schemes of Pl are S2,. . . , S’, with respective 
types t2,. . . , tp, that the execution schemes of P2 are S(p + l), . . . , S(p + q), 
with respective types t(p + 1), . . . , t(p + q), and that Diag(P1) and Diag(P2) are 
the diagrams of Pl and P2 and that @(Plj and @(P2) are given. Then we let 
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Sl = P, tl = t(P), and let D&(P) be the diagram 

obtained by grafthg the rest of Diag(P2) to t(p + 1) and the resf of DiagPl) to 
t2 

@(P) = @(L 2) v !#(l, p + 1) v @(Pl) v @@2), 

#(1,2)=(z=tl AZ’ =r2AA(1)=tlAp(l)=tAC[X/r]As=r), 

#(1,p+l)=(Z=tlAt’ =ti~A(l)=tl~p(l)=r~-C[&r]~s=r). 

This completes the definition of e(P). ahe desired properties of the formulas 
@(P) are mmmaked ia the following lemma which guarantees the soundness of 
the dehition of #j(P) f& non-trivial padgrams and is clear from the construction 
of @(P): 

33. If P con&ins at kast one assignment sWement, then Nk @(P)[a] if 
~onty~Ptrcrs4t~to~~ns~~~emesSicprtdSjwithtypesriand~s~ 
that Nk@(i, j)[a]- 

N k+(i, j)[a] if and only if them exists a cancel&ion We 
jinik pth e=(el , . . . , en, e(n + 1)) in Tr(P, a) such that 

en = (Si,_ bi) and e(n + 1) = (Sj, bj), and such that the valuation [a] of the 
wad&s z, t’, n; r, and s in the formula $(i, j) is [zfti, t’/tj, x/e, tlbi, slbj]. 

Since a program has only finitely many execution schemes, there are only 
finitely many possible assignments of values to the control variables z and z’ that 
satis@ @(P) in N. Let [al] = [cl, dl], . . . , [ap] = [cp, a] be these assignments. 
Then we can construct the formulas @(P)[z/cl, z’ldl], . . . , @(P)[z/cp, z’ldp] 
in which the variables z and z’ are replaced by the terms S”(O) and S”(O) of PA 
mrresponding to the numbers ci and di. These formulas contain only the f&e 
variables n, r, and s. By the previous lemma, the disjunction of these formulas, 
which we denote by D@(P)), is satisfied only by an assignment e to the path 
variable z and an assignment b to the input variable r and b’ to the output 
variable s for which b’ is the next value of b determined by the tite path e in 
some cancellation tree Tr(P, a) of P. Let NW%(a) be the set of all (b, b’) EN” x 
IF with the property that (Q, b), (Q’, b’) belong to Tr(P, a) and (Q’, b’) is 
o(Q, b), and define NVR (which we call the ‘next-value relation’ of P) as &e 
union of the NVR(a), taken over IV. We wish to show that the next-value 
relation of P is definable in PA. Since the functions z, A, and p are representable 
and hence definable in PA, we can replace the equations involving r, A, and p in 
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the formula D(@(P)) by w_uivalent formulas not involving these symbols and 
obtain a formula D’(@(P)) E IV4 with the property that 

N k D(@(P))[u] if and only if N i= D’(@(P))[a]. 

The desired result therefore follows from 3.10: 

3.11. D Theorem. For any program P E PL, the next value rekatio 
NVRc$P&&jkMeinPA. 

4. Charac&&lngcomH!tne?Js 

We now use the cancellation trees and formulas associated with pardId 
programs to define their partial correctness relative to given input and output 
conditions. For this purpose we call a leaf of a cancellation tree real if its program 
component is nuU. We use the program @I as the generic example of all 
programs of the form nuIl//mrU, nuW/null//nrrll, etc. If P EPL is a parallel 
program with an associated formula @(P) E PA and Tr(P, a) is the cancellation 
tree generated by P and the initial input ZIE N”, we say that P terminates at a if 
Tr(P, a) is fmite and all leaves of Tr(P, a) are real. We further say that P is 
partially correct in N with respect to an input condition A E PA and output 
condition B E PA if A is quantifier-free and its variables are among the input 
variables r of @(P) and B is quantifier-free and its variables are among the output 
varibles s of e(P), and if N kA[r/a] implies that N k B[s/b] for all a EN” for 
which P terminates and for all data components b of the real leaves of Tr(P, a). 

We use the usual notation and write N l=A{P}B to express the fact that P is 
partially co;;cecf with respect to A and B. It is an exercise to verify that 
N :r Qjk)B if and only if it is partially correct in the traditional sense, as defined 
in 111 and [2], for example. The proof is by an induction on programs. It requires 
3 translation of tagged execution schemes into sequences of programs. 

The main result of this section is the fact that if P is a parallel program in which 
no comuInent is permanently prevented from executing in Tr(P, a), because of 
the nature of P or because of the specific arithmetical conditions induced by the 
initial input a, then the cancellation trees of P determine intuitionistic fans whose 
choice sequences characterize the partial correctness of P. We recall from [5] that 
a fan can be thought of as a decidable rooted tree of sequences of natural 
numbers having only infinite branches and having the further property that every 
node has only finitely many next nodes. Relative to our stipulated recursive 
coding G of n-tuples of natural numbers, the nodes of a fan are n-tuples of 
natural numbers. The fans constructed below will be of *&is form. We call a fan 
terminating if all of its branches are eventually constant. By abuse of language we 
think of a terminating fan as finite. In this sense Brouwer’s fan theorem asserts 
that every terminating fan is kite. We denote the fan associated with a 
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canceIlation tree Tr(P, a) by Fan(P, a). The nodes of Fan(P, a) describe the 
vaIues of the control and input and output variables at the various stages in the 
computation of P. 

4.1. l%e cons-n of Fan(P, a) 

4.l.l. The root of Fan(P, a) is (0, wl, a), where wl = t(P), i.e., the Giidel 
number of the type of P. The value wl is the initial value of the control variable 
zl and 0 the value of the ConfroIl variable 22. 

4.1.2 We repIace every node (Q, b) #(P, a) of Tr(P, a) by (0, wl, b), where 
wl = t(Q). Here wl represents the current value of the control variable zl, with 
22=0. 

4.1.3. We replaoe every node of the form (tl, . . . , tn: Q, b) by (~2, wl, b), 
where wl =f(Q) and where w2 is the G&iel number of the sequence of tags 

(1 t n...,bt)ofQ. 

4.l.4. To every node (~2, wl, b) of Fan(P, a) corresponding to a real leaf of 
Tr(P, a) we append an infinite number of copies of (~2, wl, b). 

If P is a sequential program, then Fan(P, a) is a run of P in the sense of [3] and 
[4], in which axles of sequences of tags correspond to numerical labels of 
programming instructions. It is clear from Lemma 3.10 and Corollary 3.11 and 
from the construction of Fan(P, a) that c’ = (w2’, wl’, b’) is a next node of a 
node c = (~2, wl, b) of Fan(P, a) if and only if there exists a path e = 
(1 en, e(n + 1)) E Tr(P, a) with the property that en = (n(n), p(n)) = 
&&lI b) and e(n + 1) = (1(n + l), p(n + 1)) = (w2’, wl’, b’) such that 

N b @(P)[zl& z’f Q, rile, rib, sfi!], 

where ti = ((6, w2), wl) and q = ((6, ~27, wl’), as defined in 1.6. Since P is a 
program and therefore determines an ai~orithm for deciding the next nodes of a 
node in Tr(P, a), this result shows that a(P) defines the spread law of Fan(P, a) 
in PA. 

By coustruction, Fan(P, a) is a fan in the real sense only if every finite 
branch of Tr(P, a) ends in a node of the form (nuII, b), i.e., is a real leaf. A 
progmnP~PLiscalleddeadlocked t a an initial input a if Tr(P, a) has a non-real 
leaf. P is deadIock&ee at a if every path of Tr(P, a) is either infinite or has a 
real leaf. Thus Fan(P, a) is a fan if and only if P is deadlock-free at a. By 
suppressing the values of the control variables in the choice sequences, i.e., in the 
maximal paths of Fm(P, a)_ ce can paraphrase our description of partially 
correct parallel programs as follows: 

a2. Theorem. A dhdlock-free parallbl program P is partially correct 
in N with respect to input condition A and output condition B if and only if 
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N kA[r/bl] implies that N k B[sfbn] for all finite choice sequences (bl, . . . , bn) 
determined by P. 
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