
Annals of Pure and Applied Lqic 37 (1988) 111-127
North-Holland

111

ON THE PROGRA.MS-AS-FORS M!WERPRETATION
OF PARAUEL PROGRAMS IN PE ARITHMETIC

E.J. FARKAS*
Deprubnmtof MW, concxrrdio uilivmity, Monmal, cilmada

M.E. SZABO*

Communicated by D. van Dalen
Received 2 September 1985

The operational semantics for parallel programs in [1], [2], [7], [S] and
elsewhere is based on the interpretation of parallel computations as nondeter-
ministic sequential executions of parallel processes. In this context, properties of
programs are studied as properties of the resulting Gnitely branching computation
trees. In this paper we show that relative to a suitably defined type struc@e on
such trees, parallel programs have a natural interpretation as formulas of Peano
arithmetic (referred to below as PA) and that the computation trees of
deadlockfree parallel programs determine intuitionistic fans which code their
own spread laws. We also show that the choice sequences of these fans
characterize the partial correctness of such programs. Arithmetical formulas
associated with sequential programs have been studied in [3] and [4].

1. A type structure for paraRe pgrams

IA 272e language PL

The class of programs considered in this paper is similar to the class of
programs studied in [7], [8], and [1], restricted to successot and predecessor
arithmetic as in [9]. The language is slightly weaker than that in [S] because of
restrictions on the occurrences of await statements, but is stronger than that in [l]
because of the broader class of await statements allowed. Programs are
constructed inductively as certain types of ‘program statements from atomic
statements as follows:

‘The research of both authors is supported by the Natural Sciences and Engineering Research
Council of Canada and by the Fowls F.C.A.C. pour l’aide et le soutien ii la recberche du Qu&ec.

0M-OO72/88/$3.50 @ 1988, Elsevier Science Publishers B.V. (North-Hollmd)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81926302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

112 E.J. Fi, ME. Szabo

is an (atomic) program statement.

l.l.2 If x is a variable and o is x, (x + 1), or (x - l), then [x/v] is an (atomic)
program statement.

l&3. If Pl, . . . , PR are program statements, then WPl, . . . , Pn) is a
program statement.

LLdo If C(x1,. . . , xn) is a quanti6er4ree formula of PA, Pl and P2 are
program statements, and xl, . . . , xn are among the variables of Pl and P2, then

C, Pl, P2) is a program statement.

l&5. If C(x1,. . . , xn) is a quantifrerfree formula of PA, Pl is a program
statement,andxl,..., xn are among the variables of Pl,. then whk(C, Pl) is a
program statement.

I&& If Pl, . . . , PR are program statements, then paraiM(P1,. . . , h) is a
program statement.

Ll.7. If C(x1; . . . , xe) is a quarMer=free formula of PA, Pl is a program
statement constructed by means of 1.1.1-1.1.5 and xl, . . . , xn are among the
variables of Pl, then swait(C, Pl) is a program statement.

The following program statements are programs:

?alsm The statement is a program.

lL9. All assignment statements [x/v] are programs.

l&lo. ifP1 , . . . , R are newer await statements nor compose statements, then
1 ,...,At)isaprogram.

l&U. !f Pl curd P2 are not await statements, then if(C, Pl, P2) is a program.

l.l.lZ. If Pl is not nuBi and is not an await or while statement, then wbik(C, Pl)
isajwqgram.

laLl3. If Pl ,.. ., 2% are programs or await statements, then parakl(P1,. . . ,
Pn) is a program.

The condition in 1.1.10 that pi is not a compose statement amounts to
assuming that composition is associative. We also assume that the program

has the same meaning as wMe(C A C, Pl) and do not
merits. Sometimes we write (Pl//P2) as an abbreviation

(Pl, P2) and treat ((Pl//P2)/.09) and (Pl/l(P2/lP3)) as synonymous
with (Pl//P2//P3). Every program statement that enters into the inductive
construction of a program P at some stage is called a component of P.

In order to be able to describe the program components occurring in the
computation trees of parallel programs diagrammatically, we defme the type of a
program statement.

113

lm2.1.

le2.2.

L2.3.

li4.

102S.

types-

The natural numbers 1,2,. . . are atomic types.

Every atomic type is a type.

Iftisatype,then(l,t)and(2,t)aretypes.

If tl and t2 are types, then (3, (tl, t2)) is a type.

If tl , . . . , m are types, then (4, (tl, . l l , tn)) and (5, (tl, . . m s ln)) are

IA 27ie type t(P) of a program statement P .

13.r.

l&2.

13e3.

13.4.

13as.

13.6.

13.7.

t(d) = 1.

t([x/u])=2,3,....

t(wllile(C, Pl)) = (1, t), where t(P1) == t.

t(await(C, Pl)) = (2, t). where t(P1) = t.

t(iiC, Pl, P2)) = (3, (tl, t2)), where t(P1) = tl and t(P2) = t2.

t(ampose(P1, . . . , Pn)) = (4, (tl, : . . , tn)), where t(Pi) = ti.

t(paraReI(Pl, . . . , Pn)) = (5, (tl, . . . , i9t)), where t(Pi) = ti.

We call two types disjoint if they ‘share’ no atomic types except possibly the
type 1. The spec& types of the different occurrences of assignment statements in
the analysis of a program P are intended to be context-dependent and are to be
chosen so that all occurrences of assignment statements have disjoint types.

13.8. Lemma. For any program P there exists a choice of atomic types for the
dktinct’occurrences of the atomic statements in P which produces disjoint types for
the distinct components of P.

proof, By an induction on programs. The result holds because a program has
only finitely many possible components and because the supply of atomic types is
infinite. q

From now on we work with programs whose distinct occurrences of atomic
components have been assigned disjoint types. We assume as given an effective
system G of Giidel numbers for finite sequences and finite sequences of finite
sequences, etc., of natural numbers and can therefore think of a type t as a
natural number G(t), whenever convenient. Types will be used to describe the
currently active component in the course of a run of a program P. We usually
write t in place of G(t).

114 E.J. Rwkas, M.E. S&o

We base the definition of the currently active component of a program on the
of an execution scheme. These schemes describe the possible program

annponents of the nodes of computation trees of parallel programs.

In ozder to describe the interactions of the different components of a program
P in the course of a run of P, we introduce the concept of the tagged and

execution schemes of the components of P. Certah subschemes of an
are %agged’ with the type of a scheme whose execution must be
subscheme in question has been completely executed. The

required tags cocfespond to while and compose statements and will always be of
theform(1,24)0r(4,@1,..., u, l)), where u = t(S). If t = t(S) and E is auother
execution scheme? t: E deuotes the fact that E has been tagged with t. Unless E is

, @):E means that E has priority over S iu the execution of P. We allow
strings of w to tag nested tagged schemes, i.e., we allow tz, tl : E, etc. These
schemes correspond to the nestiug of while and wmpose statements.

h&l. The execution scheme of nuN is aall.

1.4.2 The execution schemes of t : ati are t :nuH and, if t = (4, (tl, . . . , u, 1))
and u = t(S), the execution schemes of S.

1.4.3. The execution schemes of [X/V] are [X/U] and nuIL

1.4.4. The execution schemes of t : [X/U] are t : [x/u] and the execution schemes

24.5. The execution schemes of wmpuse(P1, P2) are compuse(P1, P2), t:P2,
where t = @~IEPo@P~, nuil)), and the execution schemes of t: P2 and of Pl.

l.4.6. The execution schemes of u :aunpuse(Pl, P2) are u :aq~@Pl, P2),
ut:P2, where P = t(wP1, nuIl), and the execution schemes of ut: P2 and
of u:Pl.

l.4.7. The execution schemes of if(C, Pl, P2) are if(C, Pl, P2) and the execu-
tion schemes of Pl and of P2.

.8. The execution schemes of t : if'(C, Pl, P2) are t : if(C, Pl, PZ), t : Pl and
t : P2, and the execution schemes of t : Pl and of t : P2.

1.4.9. The execution schemes of wimik(C, Pl) are whik(C, Pl), t:Pl, where
t = t(wHe(C, Pl)), together with the execution schemes of t : Pl, and nuU.

L&lo. The execution schemes of u :whk(C, Pl) are u :whiIe(C, Pl), ut : Pl,
where t = t(whik(C, Pl), the execution schemes of ut : Pl, and u : ndl.

The execution schemes of
n schemes of Pl.

(C, Pl) are await(C, PI), and the

1.4.n. The execution
paraUeI(Q, R), where
scheme of P2.

The pmgmms-as-fonnular interpwtin 115

schemes of paraUel(P1, P2) are all schemes of the form
Q is an execution scheme of Pl and R is an execution

1.4.13. The execution schemes of t:paraRei(Pl, P2) are all schemes of the form
t:paraIel(Q, R), where Q is an execution scheme of Pl and R is an execution
scheme of P2.

1.4.14. The execution schemes of tl ,--&z-1), tn:Pareallschemesofthe
form tl, . . . , t(n - 1): Q, where Q is an execution scheme of tn : P.

This definition extends in the obvious way to compose and parallel statements
with more than two arguments. The following obvious lemma is essential for our
programs-as-formulas interpretation:

1.5. Lemma. Each program P E PL determines only fsnirely many d&tin& execu-
tionsche~essl,..., Sn, and each Si occurs only finitely ofren in any ml&&&n
of the execution s&mes determined by P.

Ptaof. By an induction on programs. The only non-trivial case is that of a while
scheme and the restriction in 1.4.2 ensures that every calculation of execution
schemes terminates after finitely many steps. _ Cl

Thus if t([x/x + 1]) =2, the execution schemes of the program Pl=
whiIe(C, [x/x + 1]), for example, are Sl = P (by 1.4.9), S2 = (1,2): [x/x + 1] (by
1.4.9), S3 = (1,2):nuU (by 1.4.4), and S4=nuU (by 1.4.9), and the execution
schexrss of P2 = compose([x/x + 11, [y/y + 11) are Sl = P2 (by 1.4.5), S2 =
(4, (2,1)): [y/y + 1] (by 1.4.5), S3 = (4, (2,l)):null (by 1.4.4), S4 = [x/x + 1] (by
1.4.5), and SS = null (by 1.4.3).

In certain calculations below, the information contained in the tags of the
execution schemes occurring inside parallel statements is explicitly required. We
therefore extend the notion of a type to execution schemes:

1.6. The type of a tagged execution scheme of the form tl, . . . , tn : Q is the pair
((6, tl, . . .p N, t(Q)>.

For a correct coding of tagged and untagged execution schemes kr Section 4 we
agree that whenever needed, an untagged execution scheme Q is represented by
the term u = ((6, O), t(Q)>, so that the number G(u) describes both types of
execution schemes.

2. The next-node construction

We structure the possible orders of execution of a parallel program P with
initial input a in the form of a rooted tree Tr(P, a) whose nodes contain both a

E.J. Fbkus, M.E. Szabo

and a data component describing the possible currently active corn-
of P and the possible values computed up to the given point in a

Since the program component of a node is obtained by a kind of
imcedure f&m the execution schemes determined by P, we refer to
a caucellation tree. The root of Tr(P, a) is the pair (P, a) and every
is computed from an earlier node by the next node function a.

of the tree Tr(P, a) are detied inductively from the root (P, a) as

a([xi/ti+l], (. . . ,ti,. . .))=(nuu,(. . . ,xi+l,. . .)),

o(t:[xi/ti+l], (. . . ,xi,. . .))=(t:nun,(. . . ,xi+l,. . .)).

a([xi/xi - 1], (. . . , xi, . . .)) = (nun, (. . . ,xi - 1, . . .)),

o(t:[ti/ti-11, (. . . ,ti, . . .))=(t:d, (. . . ,xi- 1,. . .)I.

C, Pl), b) = (f : Pl, b) if C[b] is true,
= (nd, b) if C[b] is false,

where f = t(whiIe(C, Pl)).
a(u : (C, Pl), b) = (ut:Pl, b) if C@D] is true,

= (u : idi, b) if C[b] is false,
(C, Pl)).

, b) = (Pl, b) if Cp] is true,
= (l-2, b) if C[~B] is fake.

a(~ :if(C, Pl, P2), b) = (u : Pl, b) if C[b] is true,
=(u:P2,b) ifCIh;lisfalse.

9 d(t : (Pwq,

T;le programs-as-fonnulos interpretation 117

0 i

a(t : (Pl//(P2//P3)), b) = a(t : (Pl//P2//P3), b).
a(t : ((Pl//P2)//P3), b) = a(t: (Pl//P2//P3), b)-
a(t : (nuU//nuU), b) = (S, b),
where u = t(S) and t = (1, u) or (4, (u, 1)).

al(nuIi//P, b) = undefined.
If P = await(C, Pl), u = t(S), and t = (1, u) or (4, (u, l)), then
al(t mull//P, b) = (S//P, b) if Cb] is false,

= (S//Pi, b) if C[b] is true;
if P#await(C, Pl), u = t(S), and t = (4, (u, l)), then
al(t :d//P, b) = (S//P, b);
ifP=nuJlort’:nuO,u=t(S), andt=(l,u), then
al(t:nuU//P, b) = (S//P, b);
al(t : null//P, b) is undefined otherwise.

(j) al([x/v]//P, b) = (nd//P, b[xlv]),
crl((t : [x/v])// P, b) = ((t : ndQ//P, b[x /VI)-

(k) ol(~n~pse(Pl, P2)//P, b) = ((t : m)//P, b),
where t = t(compose(P1, null)).
al(compose(P1, nuU)//P, b) = (Pi//P, b)=
al((u : compose(P1 j PZ))~~pD) bj = ((zit : P2)//P, b),
where t = t(campase(P1, ndl)).
al((u :ampose(Pl, nuR))//P, b) = ((u : Pl)//P, b)-

(1) al(if(C, Pl, P2)//P, b) = (Pi//P, b) if C[b] is true,
= @2//P, b) if C[b] is fake.

al((t :if(C, Pl, P2))//P, b) = ((t : Pl)//P, b) if C[b] is true,
= ((t : P2)//P, b) if C[b] is faIse.

(m) al(while(C, Pl)//P, b) = ((t : Pl)//P, b) if C[b] is true,
= (null//P, 5) if C[b] is false,

where t = t(wnite(C, Pl)).
al((u : whiie(C, Pl))//P, b) = ((ut : Pl)//P, b) if C[b] is true,

= ((u :nuU)//P, b) if C[b] is false,
where t = t(whiie(C, Pl)).

(n) al(await(C, Pl)//P, b) = (Pi//P, b) if C[bl is true9
= undefined if C[b] is false.

The definition of 02 is analogous and the cases of compose and parallel
statements with more than two variables are obtained by an obvious induction. In
clause (h) it is understood that a(Pl//P2, b) may give rise to only a single node if
al(Pl//P2, P) or a2(Pl//P2, b) is undefined. The ordered pair notation is
intended to convey the idea that the next nodes of (Pl/JP2,) are considered to
be ordered from left to right, with al(Pl//P2, b) to the left of 02(Pl//P2,
Similarly for more than two next nodes. The motivation behind the various steps

118 E.J. R&as, ME. Szu6o

in the definition of 0 is follows: Assignment statements are indivisible
operations, are always executable, and are carried out in a single step. Compose

are executed fkom right to left, reflecting our interpretation of
as fkctional application. The execution of a while statement

requires that we separate notationally the component to be executed from the
sta+mnt as a whole and only revert back to the while statement once the
component has been completely executed. Moreover, parallel statements are
executed as nondetermiistic sequential statements and we therefore require all
pairs of execution schemes of Pl and P2 to model parallel execution. In all cases
the definition reiiects our intention to treat only assignments and the evaluation
of the truth of c[b] as indivisible operations. This assumption agrees with the
operational interpretation of parallel programs in [7]. A similar motivation also
underlies the description of the semantics for parallel programs in [2] based on
the work of Hennessy and Plotkin.

. LetP= (Pl, P2), where

Pl = SUE, [x/x + 11) and

P2=

In order to list the execution schemes of P we must, according to 1.4.12,
compute the execution schemes of Pl and P2. The execution schemes of Pl and
their types are the following:

Sl = while(TRuE, [X/X + 1]), tl = (1,2),

sz=tl:[X/X + 11, t2 = ((6, tl), 2),

S3=rl:nun, t3 = ((6, tl), I),

S4=mll, t4= 1,

and the execution schemes of P2 and their types are

Tl = Vu& eompose([~/~ + 11, [Y/Y + l])), t4 = (1, (4, (3,4))),

T’2 = ~4:-4=@lx + 11, [y/y + 11)s t5 = ((6, t4), (4, (394)))s
T3 = tQ, t6: [y/y + 11, t7 = ((6, t4, (4, (3,1))), 4),
T4= t4, t6:nd, t8 = ((6, t4, t6), 1),

TS = t4: [x/x + 11, fl= ((6, t4), 3),
T6=t4:naO, t10 = ((6, t4), l),

T7=nu0, tll= 1.

The two distinct occurrences of [x/x + l] have been assigned the distinct types
2 and 3 and the statement b/y + l] has been assigned the type 4. Hence the
conditions of Lemma 1.3.8 are met.

It is clear that Tr(P, (0, 0)), for example, has only infmite branches such as

@l//T& (0, O))+ (S2//Tl, (0, O))-,

’ (S3//Tl, (1, O))+ (S3//T2, (1, O))+

(S3//T3, (ItO))+ (S3//T4, (1, l))-+

(S3llT5, (1, l))-*(S3//T6, (2, I))+

. (S3//Tl, (2, l))+(Sl/,‘Tl, (2,1))+ l . . 0

3. programs as folmdas

The purpose of this section is to show that the computational behaviour of a
program P E PL can be characterized by formulas @(P) of PA in which we can
express the idea of a sequence al EN”, . . . , an E W of values consisting of
successive data components of a cancellation tree of P. For this purpose we
cpresent the nodes (E, b) of all trees Tr(P, a) by (G(u), G(b)), where E is either

a tagged or untagged execution scheme of P, and u is the type of E as defined in
1.3 and 1.6. V!e let Paths(P) be the set of all finite sequences e = (el, . . . , en) of
such pairs with the property that el = (G@(P)), G(a)), for some a E W, and such
that if e(i + 1) E e, then e(i + 1) corresponds to a next node of e(i) in Tr(P, a). It
is clear from the algorithmic nature of the next-node function that Paths(P) is a
decidable set. We introduce three special functions r= t(Paths(P)), il=

A(Paths(P)), and p = &Paths(P)), defined on finite sequences e = (el, . . . , en),
bY

(a) t(e) = en if e E Paths(P),

= (0,O) if e $ Paths(P),

(b) n(e) = A(en) if e E Paths(P),

=0 if e $ Paths(P),

(c) p(e) = p(en) if e EPaths(P),

=0 if e $ Paths(P),

.

an3 let (A(i), p(i)) = ei. The functions r(Paths(P)), A(Paths(P)) and p(Paths(P))
are clearly effectke and, relative to the coding of the finite sequences e as natural
numbers G(e), yield three calculable functions t : A?-, (N x N), A : IV+ IV, and
p :N+ N. By Church’s thesis these functions are recursive and are therefore
representable in PA. We call the elements of Paths(P) the finite paths determined
by P, so that r(e) represents the last node en of the path e, and A(e) = A(n) codes
the program component and p(e) = p(n) the data component of en. We let z be a
new variable ranging over all finite sequences of the kind described. In addition,
we introduce two new (control) variables z and z’, with z ranging over the
numerical codes of the types of the execution schemes of P and z’ ranging over

la0 E.J. FM, ME. Szabo

the numerical codes of the types of the obvious ‘next execution schemes’
determined by a given scheme. We omit the definition of next execution schemes
since it is clear from 1.4. For each variable vi in P we introduce a new (input)
variable ti and a new (output) variable si ranging over the current and next V&MS
ofthevariablesofPinthecourseofarunofPreMivetoaninitialstatea.The
variabkz, t’,riandsiareassumedtobedistinct. Weputr=(rl,...,m)and
s=@l,..., sn) and simpliQ the notation by writing (S =r) in place of
(sl=rln l nsn=m) and (sl=rln l m l hS(i-l)=r(i-l)hS(i+l)=t(i+

1) A l . l A sn = m) if the intended conjunction is ckar from the context.
The formula @(P) characterizes the different possible kinds of changes of the

control variables z and t’ determined by P and describes, at the same time, the
aumnpanying chauges in the dues of the input variables rl, . . . , m and output
variablessl,..., a The construction of @(P) involves four steps:

(a) The listing of the occurrences Sl, . . . , Sn of the execution schemes of the
given~rogram.

(b) Thedeterminationofthetypestl,..., tnofsl,..., Sn.
(c) The specikation of the ‘diagram’ Diag(P) of P determined by tl, . . . , br.

(d) The de6nition of @(P) from the data accumulated in (a)-(c).
We illustrate @J(P) by several examples which, at the same time, form the

induction basis for the construction. We usually write finite paths as e=
((A(l~* #ms l l l p (A(n), p(n))), with A(i) = p(i) = 0 if the finite sequence e is
notafinitepathofp.

3.1. Let P = null. Then the only execution scheme of P is P itself, i.e.,
Sl = P and rl”= t(S1) = 1. Hence Diag(P) consists of the single node tl. We let
@(P) = #(tl) = (zl rl A zl’ = tl A t = p(1) = a A s = r). The same formula is
us& for auy other trivial program whose only atomic component is null. El

3.2. Example. Let P = [n/x + 1] and t(P) = 2. Then

Sl=P, tl = t(S1) = 2,

S2=IBuB, t2 = t(S2) = 1, Diag(P) = tl + t2.

The presence of an arrow from ti to tj indicates that Sj is a possible program
component of a next node, as determined in 2.1, of the node with program
component Si.

*p)=#(tl, t2)=tp(1,2)=(2=tl nz’=t2nr=p(l)=ahs=r+l). 0

3.3. Exam@. Let P = compae([x/x + 11, ly/y + 11). Then the execution
schemes determined by P and their respective types are the following, with
20 = (4, (2,1)):

Sl=P, tl = (4, (2,3)),
s2=tO:[y/y + 11, t2 = ((6, a), 3),

121

s3=to:nun, t3 = ((6 to)., l),

s4 = [x/x + 11, t4=2,

s5 = nun, t5 = 1,

Diag(P) = tl+ t2+ t3+ t4+ t5.

For each arrow (ti+tj) in Diag(P), we specify a formula q/#, j) which
describes the current and next values of z, z’, r, and S, and let @(P) be the
disjunction of the #b(i, j):

~(1,2)=(z=tlhZ’ =t2hr=p(l)=ahs=r),

#(2,3)=(z=t2hE’= t3h~(2)=t2hr=p(2)Asl=rlAS2=r2+1),

#(3,4)=(%W3AZ’= tdAh@)=t3Ar=p@AS=r),

$(4,5)=(Z=t4AZ’= t5A~(4)=t4Ar=p(4)ASl=rl+lAS2=r2).

B(P) = #(I, 2) v $(Z 3) v $(3,4) v #(4,5). 0

3.4. Example. Let P = wbik(C, [x/x + 11). Then the execution schemes of P and
their types are the following:

Sl=P, tl = (1,2),

s2 = tl : [x/x + 11, t2 = ((6, tl), 2),

S3=tl:l&a, t3 = ((6, tl), l),

s4 = RuBH, t4 = 1,

Diag(P) = t4’C tlC-t2

#(l, 2) = (2 = tl A 2’ = t2 A t(R) = (A(Z), p(X))

A ii(Z) = tl A p(Z) = t A C[X/t] A S = I),

#(I, 4) = (2 = tl A 2’ = t4 A t(Z) = (n(Z), p(Z))

A h(x) = tl n p(n) = r A %[x/r] A s = r),

$(2, 3) = (2 = t2 A 2’ = t3 A Z(Z) = (A(Z), p(Z))

A~(lt)=t2AP(ld)=rhS=P’+l),

tp(3,l) = (2 = t3 A 2’ = tl A z(n) = (A(n), p(n))

Aa(~)=t3AP(ld)=rAS=t).

G(P) = @(I, 2) v #(l, 4) L’ #(2,3) v #(3,1). 0

3.5. Example. Ld P = if(C, [x/x + 11, [y/y + 11). Then the execution schemes of

I22 E.3. FmRcr, M.E. S&o

P and their Q_ x rdative is t([x/x + I]) = 2 and t([y/y + 11) = 3 are

Sl=P, ti = t(S1) = (3, (2,3)),

Is2 = [x/x + I], t2 = t(S2) = 2,

t3 = t(S3) = 1,

S4 = [y/y + 11, t4 = t(S4) = 3,

t5 = t(S) = 1,

Dial&P) = t5_-t4Gtl-G t2- t3.

$(1,2) = (2 = tl A 2’ =t2hA(l)=thf@)=rAC[X/T]AS=r),

#(2,3) = (z = t2 A t’ = t3 A A(2) = t2 A p(2) =rASl=d+lAS2=d),

+(1,4) = (2 = tl A 2’ = t4 A n(n) = tl. A p(l) = r A lC[X/t] A S = r),

@(4,5)=(Z=t4AZ’ = ts A A(2) = t4 A p(2) =rASl=dAS2=r2+1).

a(P) = (Qi(l, 2) v @(2,3) v qq, 4) v #(4,5)- 0

[x/x + 1]), nmlI), then the execution

Sl= tl = t(S1) = (5, ((2,3), l)),

S2= ([XIX + 11, mm, t2 = t(S2) = (5, (3, l)),

s3= t3 = t(S3) = (5, (1, 1)),

D&(P) = tl& t2- t3.

t,+(l,2)=(2=tl AZ’ =t2A~(f)=tfAP(l)=rA@[X/r]AS=r),

Qi(2,3)=(2=?2AZ’ =t3Aii(2)=t2AP(2)=rAS=r+l).

@(P) = #(l, 2) v #(2,3). 13

(await(C, [x/x + 1]), [y/y + l]), then the execution

Sl=P, tl = Wl) = (5, ((2,3), 4)),

s2 = [a + l]ll[yly + 11, t2 = t(S2) = (5, (3,4))1

t3 = t(S3) = (5, (1,4)),

T 123

S6 _ - yx + l]l”/nun, t6 = t(S6) = (5, (3, l)),

s7 = nuB~~lliufl6, t7 = t(S7) = (5, (1, l)),

Diag(P) = t7-t6Ats-tlC-t2-t3-t4.

4#(1,2) = (2 = tl A 2’ = t2 A A(1) = tl A p(1) = t A C[xlr] A s = r),

$(2,3)=(z=t2I\z’= thh(2)=t2Ap(2)=tASl=rl+lAS2=r2),

#(3,4) = (2 = t3 A 2’ = t4Ai1(3)=t3Aj@)=rASl=rlA d=d+l),

~(1,~)=(t=t~AZ’=t~Ajl(l)=t~AP(1)=~AS~=~lA S2=r2+1),

#($6)=(z=t5Az’=t6Ai2(2)=t5Ap(2)=rAC[X/r]AS=t),

~(6,7)=(z=t6Az’=t7AA(3)=t6Ap(3)-rAsl=rl+1AS2=r2).

@(P) = qb(l,2) v #(2,3) v #(3,4) v !p(l, 5) v #(5,6) v 4J(6# 7). q

3.8. Esample. If P = paraUeI([~/,x + 11, [y/y + l]), then the execution schemes
ofpandtheirtypesare

Sl=P, tl = t(S1) = (5, (3,4)),

S2 = =w..[y/,y + 11, 02 = t(S2) = (5, (1,4)),

s3 = nuaI//nuIl, t3 = t(S3) = (5, (1, 1)),

s4 = [x/x + l]//nuu, t4 = t(S4) = (5, (3, l)),

SS = naU//nuU, t5 = t(S) = (5, (1, l)),

Diag(P) = t5-t4-tl-t2-t3.

#(l, 2) = (Z = tl A 2’ =t2Ah(P)=tlAp(l)=tAs?=rl+lAS2=r2),

9(2,3) = (2 = t2 A Z’ = t3 A A(2) = t2 A p(2) =rhsl=rlhs2=r2+1),

#(l, 4) = (2 = tl A 2’ = t4 A h(l) = tl A p(l) =r~sl=rlhs2=r2+1),

#(4,5) = (2 = t4 A 2’ = t5 A h(2) = t4 A p(2) =rhsl=rl+lhs2=r2),

@(P) = #(l, 2) v #(2,3) v #(19 4) v #(4,5). 17

The general construction is obtained by applying the induction hypothesis to
component programs and modifying the above examples in the obvious way. We
describe the case of a program of the form P = if(C, Pl, P2) in relation to our
Example 3.5. The modifkations required in the remaining cases are similar.

Suppose that the execution schemes of Pl are S2,. . . , S’, with respective
types t2,. . . , tp, that the execution schemes of P2 are S(p + l), . . . , S(p + q),
with respective types t(p + 1), . . . , t(p + q), and that Diag(P1) and Diag(P2) are
the diagrams of Pl and P2 and that @(Plj and @(P2) are given. Then we let

124 E.J. Fbhls, h&E. szdb

Sl = P, tl = t(P), and let D&(P) be the diagram

obtained by grafthg the rest of Diag(P2) to t(p + 1) and the resf of DiagPl) to
t2

@(P) = @(L 2) v !#(l, p + 1) v @(Pl) v @@2),

#(1,2)=(z=tl AZ’ =r2AA(1)=tlAp(l)=tAC[X/r]As=r),

#(1,p+l)=(Z=tlAt’ =ti~A(l)=tl~p(l)=r~-C[&r]~s=r).

This completes the definition of e(P). ahe desired properties of the formulas
@(P) are mmmaked ia the following lemma which guarantees the soundness of
the dehition of #j(P) f& non-trivial padgrams and is clear from the construction
of @(P):

33. If P con&ins at kast one assignment sWement, then Nk @(P)[a] if
~onty~Ptrcrs4t~to~~ns~~~emesSicprtdSjwithtypesriand~s~
that Nk@(i, j)[a]-

N k+(i, j)[a] if and only if them exists a cancel&ion We
jinik pth e=(el , . . . , en, e(n + 1)) in Tr(P, a) such that

en = (Si,_ bi) and e(n + 1) = (Sj, bj), and such that the valuation [a] of the
wad&s z, t’, n; r, and s in the formula $(i, j) is [zfti, t’/tj, x/e, tlbi, slbj].

Since a program has only finitely many execution schemes, there are only
finitely many possible assignments of values to the control variables z and z’ that
satis@ @(P) in N. Let [al] = [cl, dl], . . . , [ap] = [cp, a] be these assignments.
Then we can construct the formulas @(P)[z/cl, z’ldl], . . . , @(P)[z/cp, z’ldp]
in which the variables z and z’ are replaced by the terms S”(O) and S”(O) of PA
mrresponding to the numbers ci and di. These formulas contain only the f&e
variables n, r, and s. By the previous lemma, the disjunction of these formulas,
which we denote by D@(P)), is satisfied only by an assignment e to the path
variable z and an assignment b to the input variable r and b’ to the output
variable s for which b’ is the next value of b determined by the tite path e in
some cancellation tree Tr(P, a) of P. Let NW%(a) be the set of all (b, b’) EN” x
IF with the property that (Q, b), (Q’, b’) belong to Tr(P, a) and (Q’, b’) is
o(Q, b), and define NVR (which we call the ‘next-value relation’ of P) as &e
union of the NVR(a), taken over IV. We wish to show that the next-value
relation of P is definable in PA. Since the functions z, A, and p are representable
and hence definable in PA, we can replace the equations involving r, A, and p in

The pmgmms-as-form&a interpwution 125

the formula D(@(P)) by w_uivalent formulas not involving these symbols and
obtain a formula D’(@(P)) E IV4 with the property that

N k D(@(P))[u] if and only if N i= D’(@(P))[a].

The desired result therefore follows from 3.10:

3.11. D Theorem. For any program P E PL, the next value rekatio
NVRc$P&&jkMeinPA.

4. Charac&&lngcomH!tne?Js

We now use the cancellation trees and formulas associated with pardId
programs to define their partial correctness relative to given input and output
conditions. For this purpose we call a leaf of a cancellation tree real if its program
component is nuU. We use the program @I as the generic example of all
programs of the form nuIl//mrU, nuW/null//nrrll, etc. If P EPL is a parallel
program with an associated formula @(P) E PA and Tr(P, a) is the cancellation
tree generated by P and the initial input ZIE N”, we say that P terminates at a if
Tr(P, a) is fmite and all leaves of Tr(P, a) are real. We further say that P is
partially correct in N with respect to an input condition A E PA and output
condition B E PA if A is quantifier-free and its variables are among the input
variables r of @(P) and B is quantifier-free and its variables are among the output
varibles s of e(P), and if N kA[r/a] implies that N k B[s/b] for all a EN” for
which P terminates and for all data components b of the real leaves of Tr(P, a).

We use the usual notation and write N l=A{P}B to express the fact that P is
partially co;;cecf with respect to A and B. It is an exercise to verify that
N :r Qjk)B if and only if it is partially correct in the traditional sense, as defined
in 111 and [2], for example. The proof is by an induction on programs. It requires
3 translation of tagged execution schemes into sequences of programs.

The main result of this section is the fact that if P is a parallel program in which
no comuInent is permanently prevented from executing in Tr(P, a), because of
the nature of P or because of the specific arithmetical conditions induced by the
initial input a, then the cancellation trees of P determine intuitionistic fans whose
choice sequences characterize the partial correctness of P. We recall from [5] that
a fan can be thought of as a decidable rooted tree of sequences of natural
numbers having only infinite branches and having the further property that every
node has only finitely many next nodes. Relative to our stipulated recursive
coding G of n-tuples of natural numbers, the nodes of a fan are n-tuples of
natural numbers. The fans constructed below will be of *&is form. We call a fan
terminating if all of its branches are eventually constant. By abuse of language we
think of a terminating fan as finite. In this sense Brouwer’s fan theorem asserts
that every terminating fan is kite. We denote the fan associated with a

l26 EJ. Fd, M.E. Szabo

canceIlation tree Tr(P, a) by Fan(P, a). The nodes of Fan(P, a) describe the
vaIues of the control and input and output variables at the various stages in the
computation of P.

4.1. l%e cons-n of Fan(P, a)

4.l.l. The root of Fan(P, a) is (0, wl, a), where wl = t(P), i.e., the Giidel
number of the type of P. The value wl is the initial value of the control variable
zl and 0 the value of the ConfroIl variable 22.

4.1.2 We repIace every node (Q, b) #(P, a) of Tr(P, a) by (0, wl, b), where
wl = t(Q). Here wl represents the current value of the control variable zl, with
22=0.

4.1.3. We replaoe every node of the form (tl, . . . , tn: Q, b) by (~2, wl, b),
where wl =f(Q) and where w2 is the G&iel number of the sequence of tags

(1 t n...,bt)ofQ.

4.l.4. To every node (~2, wl, b) of Fan(P, a) corresponding to a real leaf of
Tr(P, a) we append an infinite number of copies of (~2, wl, b).

If P is a sequential program, then Fan(P, a) is a run of P in the sense of [3] and
[4], in which axles of sequences of tags correspond to numerical labels of
programming instructions. It is clear from Lemma 3.10 and Corollary 3.11 and
from the construction of Fan(P, a) that c’ = (w2’, wl’, b’) is a next node of a
node c = (~2, wl, b) of Fan(P, a) if and only if there exists a path e =
(1 en, e(n + 1)) E Tr(P, a) with the property that en = (n(n), p(n)) =
&&lI b) and e(n + 1) = (1(n + l), p(n + 1)) = (w2’, wl’, b’) such that

N b @(P)[zl& z’f Q, rile, rib, sfi!],

where ti = ((6, w2), wl) and q = ((6, ~27, wl’), as defined in 1.6. Since P is a
program and therefore determines an ai~orithm for deciding the next nodes of a
node in Tr(P, a), this result shows that a(P) defines the spread law of Fan(P, a)
in PA.

By coustruction, Fan(P, a) is a fan in the real sense only if every finite
branch of Tr(P, a) ends in a node of the form (nuII, b), i.e., is a real leaf. A
progmnP~PLiscalleddeadlocked t a an initial input a if Tr(P, a) has a non-real
leaf. P is deadIock&ee at a if every path of Tr(P, a) is either infinite or has a
real leaf. Thus Fan(P, a) is a fan if and only if P is deadlock-free at a. By
suppressing the values of the control variables in the choice sequences, i.e., in the
maximal paths of Fm(P, a)_ ce can paraphrase our description of partially
correct parallel programs as follows:

a2. Theorem. A dhdlock-free parallbl program P is partially correct
in N with respect to input condition A and output condition B if and only if

The programs-as-formulas interprWation 127

N kA[r/bl] implies that N k B[sfbn] for all finite choice sequences (bl, . . . , bn)
determined by P.

References

K.R. Apt, Recursive assertions and parallel programs, Acta Informatica 15 (1981) 219432.
K.R. Apt, Ten years of Hoare’s logic: A survey -Part II: Nondeterminism, Theoret. Comput.
Sci. 28 (1984) 83-109.
L. Csirmaz, Programs and program verification in a general setting, Theoret. Comput. Sci. 16
(1981) W-210.
L. Csirmaz, Nonstandard semantics in program verification, Preprint, Hungarian Academy of
Sciences (1984).
M.A.E. Dummett, Elements of Intuitionism (Oxford University Press, oxford, 1977).
E. 3. Farkas, A type structure for paraliel programs, Ph.D. Thesis, Concordia University,
Montreai, 1985.
S. Owicki, Axiomatic proof techniques for paraliel programs, Ph.D. Thesis, Cornell University,
Ithaca, NY, 1975.
S. Owicki and D. Gries, An axiomatic proof technique for paraliel programs I, Acta Informatica 6
(1976) 319-340.
M.M. Richter and M.E. S&o, Towards a nonstandard analysis of programs, in: A. E. Hurd, ed.,
bcture Notes in Computer Science 983 (Springer, New York, 1983) 186-203.

