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Abstract

In this paper, we establish a Huard type converse duality for a second-order dual model in nonlinear
programming using Fritz John necessary optimality conditions.
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1. Introduction

Consider the nonlinear programming problemNP

minimize f (x)

subject tog(x) ≤ 0, (1)

wherex ∈ R
n, f andg are twice differentiable functions fromRn into R andR

m, respectively.
A second-order dual for such a nonlinear programming problem was introduced by Mangasarian [1].

Later, Mond [2] proved duality theorems under a condition which is called “second-order convexity”.
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This condition is much simpler than that used by Mangasarian. Furthermore, Mond and Weir [3]
reformulated the second-order dual.

Recently, Husain et al. formulated another second-order dual:ND:

maximize f (x) − 1

2
pT∇2 f (x)p,

subject tor (∇ f (x) + ∇2 f (x)p) + ∇(yT g(x)) + ∇2(yT g(x))p = 0, (2)

yT g(x) − 1

2
pT∇2(yT g(x))p ≥ 0, (3)

(r, y) ≥ 0, (4)

(r, y) �= 0, (5)

where p ∈ R
n, r ∈ R and for any functionφ : R

n −→ R, the symbol ∇2φ(x) designates then × n
symmetric matrix of second-order partial derivatives. It is based on the Fritz John necessary optimality
condition, while the Mond and Weir dual model uses the Karush–Kuhn–Tucker necessary optimality
condition. Husain et al. [4] give a weak duality, a strong duality, a Mangasarian type strict converse
duality and a Huard type converse duality under the conditions thatf is pseudobonvex andyT g is semi-
strictly pseudobonvex, where “pseudobonvexity” was defined by Mond and Weir as an extension of the
second-order convexity. Thus, the duality relation does not require a constraint qualification. In particular,
they prove the following Huard type converse duality theorem.

Theorem 1 (Converse Duality (see Theorem 2.4 in [4]) ). Let (r ∗, x∗, y∗, p∗) be an optimal solution of
(ND) at which

(A1) the n× n Hessian matrix∇[r ∗∇2 f (x∗) + ∇2(y∗T g(x∗))]p∗ is positive or negative definite,
(A2) ∇(y∗T g(x∗)) + ∇2(y∗T g(x∗))p∗ �= 0, and
(A3) the vector{[∇2 f (x∗)] j , [∇2(y∗T g(x∗))] j , j = 1, 2, . . . , n} are linearly independent, where

[∇2 f (x∗)] j is the j th row of[∇2 f (x∗)] and[∇2(y∗T g(x∗))] j is the j th row of[∇2(y∗T g(x∗))].
If, for all feasible(r ∗, x∗, y∗, p∗), f (·) is pseudobonvex andy∗T g(·) is semi-strictly pseudobonvex,

thenx∗ is an optimal solution of (NP).
We note that the matrix∇[r ∗∇2 f (x∗) + ∇2(y∗T g(x∗))]p∗ is positive or negative definite in the

assumption (A1) ofTheorem 1, and the result ofTheorem 1implies p∗ = 0; see the proof of Theorem
2.4 in [4]. It is obvious that the assumption and the result are inconsistent. In this note, we will give an
appropriate modification for this deficiency contained inTheorem 1.

2. Huard type second-order converse duality

In the section, we will present a new Huard type second-order converse duality theorem which is a
correction ofTheorem 1.

Theorem 2 (Converse Duality). Let (r ∗, x∗, y∗, p∗) be an optimal solution of (ND) at which
(B1) either (a) the n × n Hessian matrix∇2(y∗T g(x∗)) is positive definite and p∗T∇g(x∗) ≥ 0

or (b) the n× n Hessian matrix∇2(y∗T g(x∗)) is negative definite and p∗T∇g(x∗) ≤ 0,
(A2) ∇(y∗T g(x∗)) + ∇2(y∗T g(x∗))p∗ �= 0, and
(A3) the vector{[∇2 f (x∗)] j , [∇2(y∗T g(x∗))] j , j = 1, 2, . . . , n} are linearly independent, where

[∇2 f (x∗)] j is the j th row of[∇2 f (x∗)] and[∇2(y∗T g(x∗))] j is the j th row of[∇2(y∗T g(x∗))].
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If, for all feasible(r ∗, x∗, y∗, p∗), f (·) is pseudobonvex andy∗T g(·) is semi-strictly pseudobonvex,
thenx∗ is an optimal solution of (NP).

Proof. Since(r ∗, x∗, y∗, p∗) is an optimal solution of (ND), by the generalized Fritz John necessary
condition, there existα ∈ R, β ∈ R

n, θ ∈ R, ξ ∈ R, andη ∈ R
m such that

−α

{
∇ f (x∗) − 1

2
p∗T∇(∇2 f (x∗)p∗)

}

+βT {r ∗(∇2 f (x∗) + ∇(∇2 f (x∗)p∗)) + ∇2(y∗T g(x∗)) + ∇(∇2(y∗T g(x∗))p∗)}
−θ

{
∇(y∗T g(x∗)) − 1

2
p∗T∇(∇2(y∗T g(x∗))p∗)

}
= 0, (6)

βT
[∇(g(x∗)) + ∇2(g(x∗))p∗] − θ

[
g(x∗) − 1

2
p∗T∇2g(x∗)p∗

]
− η = 0, (7)

βT [∇( f (x∗)) + ∇2( f (x∗))p∗] − ξ = 0, (8)

(αp∗ + βr ∗)T [∇2 f (x∗)] + (θp∗ + β)T [∇2y∗T g(x∗)] = 0, (9)

θT [y∗T g(x∗) − 1

2
p∗T∇2(y∗T g(x∗))p∗] = 0, (10)

ηT y∗ = 0, (11)

ξTr ∗ = 0, (12)

(α, β, θ, ξ, η) ≥ 0, (13)

(α, β, θ, ξ, η) �= 0. (14)

Because of assumption (A3), (9) gives

αp∗ + r ∗β = 0 and θp∗ + β = 0. (15)

Multiplying (7) by y∗T and then using (10) and (11), we have

βT [∇(y∗T g(x∗)) + ∇2(y∗T g(x∗))p∗] = 0. (16)

Using (2) in (6), we have

(αp∗ + r ∗β)T [r ∗(∇2 f (x∗)) + ∇(∇2 f (x∗)p∗)]
+ r ∗(θp∗ + β)T [∇2y∗T g(x∗) + ∇(∇2y∗T g(x∗)p∗)] + (α − r ∗θ)[∇y∗T g(x∗)

+∇2y∗T g(x∗)p∗] − 1

2
r ∗(αp∗)T∇(∇2( f (x∗))p∗) − 1

2
r ∗(θp∗)T∇(∇2(y∗T g(x∗))p∗) = 0. (17)

Using (15) and (17) gives

(α − r ∗θ)[∇y∗T g(x∗) + ∇2(y∗T g(x∗))p∗]
+ 1

2
(βr ∗)T {∇(∇2( f (x∗))) + ∇2(y∗T g(x∗))p∗} = 0. (18)

We claim thatα �= 0. Indeed, ifα = 0, then (15) gives

r ∗β = 0.

In view of (A2), the equality constraint of (ND) impliesr ∗ �= 0 and soβ = 0. Usingβ = 0 in (18), we
have

(α − r ∗θ)(∇y∗T g(x∗) + ∇2(y∗T g(x∗))p∗) = 0.
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In view of (A2) again, this gives

θ = α

r ∗ . (19)

So we haveθ = 0. Now from (7) and (8) andβ = 0, it follows thatη = ξ = 0. Hence,(α, β, θ, ξ, η) = 0,
which contradicts (14). Thus,α > 0, and from (19), θ > 0. Usingθ > 0 and (15) and (16) yields

p∗T [∇(y∗T g(x∗)) + ∇2(y∗T g(x∗))p∗] = 0. (20)

We now prove that p∗ = 0. Otherwise, assumption (B1) implies thatp∗T [∇(y∗T g(x∗)) +
∇2(y∗T g(x∗))p∗] �= 0, contradicting (20). Hence,p∗ = 0. This gives

f (x∗) = f (x∗) − 1

2
p∗T∇2 f (x∗)p∗.

From (15) and p∗ = 0, we know thatβ = 0. Usingθ > 0, β = 0 andp∗ = 0, (7) gives

g(x∗) ≤ 0.

Thus,x∗ is feasible for (NP), and the objective functions of (NP) and (ND) are equal.
If, for all feasible (r, x, y, p), f (·) is pseudobonvex andy∗T g(·) is semi-strictly pseudobonvex, by

Theorem 2.1 in [4], x∗ is an optimal solution of (NP). �
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