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Abstract

In this paper, we establish a Huard type coseeduality for a second-order dual model in nonlinear
programming using Fritz John necessary optimality conditions.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider the nonlinear programming probl&®

minimize f (x)
subject tog(x) < 0, 1)

wherex € R", f andg are twice differentiable functions frof" into R andR™, respectively.
A second-order dual for such a nonlinear programming problem was introduced by Mangadarian [
Later, Mond [2] proved duality theorems under a condition which is called “second-order convexity”.
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This condition is much simpler than that used by Mangasarian. Furthermore, Mond and 3}Veir [
reformulated the second-order dual.
Recently, Husain et al. formulated another second-order tli2d:

maximize f (x) — %pTVZ f(x)p,

subject tar (V f (x) + V2 (X)p) + V(y'g(X)) + VZ(y'g(x))p = 0, )
1

Yy gx) — EpTvz(yTgu»p > 0, ®)

(r,y) >0, 4)

(r,y) #0, (5)

wherep € R", r € R and for any functionp : R" — R, the synbol V2¢(x) designates tha x n
symmetric matrix of second-order partial derivatives. It is based on the Fritz John necessary optimality
condition, while the Mond and Weir dual model uses the Karush—Kuhn—Tucker necessary optimality
condition. Husain et al.4] give aweak duality, a strong duality, a Mangasarian type strict converse
duality and a Huard type converse duality under the conditionsfthigpseudobonvex ang' g is semi-

strictly pseudobonvex, where “pseudobonvexity” was defined by Mond and Weir as an extension of the
second-order convexity. Thus, the duality relation does not require a constraint qualification. In particular,
they prove the following Huard type converse duality theorem.

Theorem 1 (Converse Duality (see Theorem 2.4 di)). Let (r*, x*, y*, p*) be an optimal solution of
(ND) at which

(A1) the nx n Hessian matrixv[r*V2 f (x*) 4+ V2(y*Tg(x*))] p* is positive or negative definite,

(A2) V(y*Tg(x") + VA(y*Tg(x*)) p* # 0, and

(A3) the vector{[VZf (x")];, [VAZ(Y*Tg(x*)]j, ] = 1,2,...,n} are linearly independent, where
[V2f(x*)]; is the jth row of( V2 f (x*)] and[V2(y*T g(x*))]; is the jth row off VZ(y*T g(x*))].

If, for all feasible (r*, x*, y*, p*), f(-) is pseudobonvex angTg(-) is semi-strictly pseudobonvex,
thenx* is an optimal solution of (NP).

We note that the matrixV[r*V?f (x*) + V2(y*Tg(x*))]p* is positive or negative definite in the
assumption (A1) offheorem 1and the esult of Theorem limplies p* = 0; see the proof of Theorem
2.4 in [4]. It is obvious that the assumption and the result are inconsistent. In this note, we will give an
appropriate modification for this deficiency contained ireorem 1

2. Huard type second-order converse duality

In the section, we will present a new Huard type second-order converse duality theorem which is a
correction ofTheorem 1

Theorem 2 (Converse Duality. Let(r*, x*, y*, p*) be an optimal solution of (ND) at which

(B1) either (a) the n x n Hessian matrixV2(y*Tg(x*)) is positive definite and ‘pvg(x*) > 0
or (b) the nx n Hessian matrixv2(y*T g(x*)) is negative definite and*pvg(x*) < 0,

(A2) V(y*Tg(x) + V2(y*Tg(x*)) p* # 0, and

(A3) the vector{[VZf (x")];, [VA(y*Tg(x*)];, ] = 1,2,...,n} are linearly independent, where
[V2f(x*)]; is the jth row of[ V2 f (x*)] and[V2(y*T g(x*))];j is the jth row off VZ(y*T g(x*))].
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If, for all feasible (r*, x*, y*, p*), f(-) is pseudobonvex ang*Tg(-) is semi-strictly pseudobonvex,
thenx* is an optimal solution of (NP).

Proof. Since (r*, x*, y*, p*) is an optimal solution of (ND), by the generalized Fritz John necessary
condition, there exist e R, 8 € R",0 € R, £ € R, andn € R™ such that

—a { v (x*) — %p”wvzf(x*)p*)}

+BT{r (V2 £ (x*) 4+ V(VZ £ (x") p) 4+ V2(y*T g(x*)) + V(VA(y* T g(x*)) p*))

1
—0 {Wy*Tg(x*)) -3 P TV (VA(y* T g(x*)) p*)} =0, (6)
1

BT [V(9(x*)) + VZ(g(x*) p*] — 0 [g(x*) -5 p*T V2g(x*) p*] -n=0, 7

BTIV(f (X)) + VA(f (x")p*] — & =0, (8)

(ap* + BroT V2 (x)]+ @p* + B)T[VEyTg(x")] =0, )

1

0TIy Tg(x*) — > p T V2(y*Tg(x*)p*]1 = 0, (10)

n'y* =0, (11)

ETr* =0, (12)

(a, B,6,&,1m) >0, (13)

(e, B,0,E,m) #0. (14)
Because of assumption (A3R)(gives

ap*+r*g=0 and 6p*+pB8=0. (15)
Multiplying (7) by y*T and the using (L0) and (L1), we have

BTIV(YTg(x*) + VZ(y*Tg(x*)) p*] = 0. (16)

Using @) in (6), we have
(@p* +r*B)TIr* (V2 F(x*) + V(VZ f (x*) p*)]
+15OP* + )T [VAY T g(X) + V(VZYTg(x) pH] + (@ — r*O)[VY* T g(x*)
+ VY Tg(x*) pl — %r*(ap*)vaZ(f(x*))p*) - %r*(ep*fva(y*Tg(x*))p*) =0. (17)
Using (15) and (L7) gives
(@ —r*O)[VyTg(x*) + VA(y*Tg(x") p*]

1
+ é(ﬂr*)T{V(VZ( f(x*) + VA(y*Tg(x*)) p*} = 0. (18)
We claim thate # 0. Indeed, ife = 0, then (5) gives
rg=0.

In view of (A2), the equality constraint of (ND) implies = 0 and sa8 = 0. Using8 = 0 in (18), we
have

(@ — r*0)(Vy*Tg(x*) + VA(y*Tg(x*)) p*) = 0.
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In view of (A2) again, this gives

0 = % (19)
Sowe have = 0. Now from (7) and @) andg = O, it follows thaty = &€ = 0. Hence{«, 8,0, &, n) = 0,
which cortradicts (4). Thus,« > 0, and from (9), 6 > 0. Usingé > 0 and (L5) and (L6) yields

PTIVYTg(x) + V2(y* Tg(x*)p*] = 0. (20)
We now pove that p* = 0. Otherwise, assumption (B1) implies thatT[V(y*Tg(x*)) +
V2(y*Tg(x*)) p*] # 0, contradicting 20). Hence,p* = 0. This gives

f(x*) = f(x*) — :—2Lp*TV2f(x*)p*.
From (15) and p* = 0, we know thaf3 = 0. Usingd > 0, 8 = 0 andp* = 0, (7) gives

g(x*) < 0.

Thus,x* is feasible for (NP), and the objective functions of (NP) and (ND) are equal.
If, for all feasible (r, x, y, p), f(-) is pseudobonvex ang*Tg(-) is semi-strictly pseudobonvex, by
Theorem 21 in [4], x* is an optimal solution of (NP). O
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