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A b s t r a c t - - T h e  distribution of zeros of solutions of the neutral advanced differential equations 

is(t) + P(t)~(t + ~)]' - Q(t)~(t + ~) = 0, t _> t0, 

is investigated, where P(t),  Q(t) E C([to, c~), R+), r, ~r E R +. The estimate for the distance between 
adjacent zeros of the oscillatory solution of the above equation is obtained. © 2004 Elsevier Ltd. 
All rights reserved. 

K e y w o r d s - - D i s t r i b u t i o n  of zeros, Neutral advanced equation. 

1. I N T R O D U C T I O N  

Recently, there are a lot of activities concerning the distribution of zeros of solutions of delay or 
neutral delay differential equations; for example, see [1-7]. But, for the distribution of zeros of 
solutions of advanced differential equations, compared with those of delay differential equations, 
less is known up to now. This paper is devoted to the s tudy of the distribution of zeros of 
solutions of the following neutral advanced differential equations: 

Ix(t) + P(t )x( t  + T)]' -- Q(t)x(t  + ~) = O, t >_ to, (1) 

where 
P(t) ,  Q(t) e C ([to, oc), R + ) ,  r, c re  R +. (2) 

In this paper, we first give several lemmas which will enable us to prove our main results. Next, we 
study the distribution of zeros of solutions of equation (1). The estimate for the distance between 
adjacent zeros of the oscillatory solution of equation (1) is obtained. Finally, two examples are 
given to illustrate our results. 

2.  L E M M A S  

First, we define a sequence {f~(p)}, 0 < p < 1, by [5] 

f0(p)  = 1, A + l ( p )  = ep~"(p), n ----- O, 1, 2, . . . .  (3) 
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It is easily seen, tha t  for p > 0, 

fn+l(P) > fn(P), rt = 1, 2, . . . .  

Observe by [5], tha t  when 0 < p < l/e, then there exists a function f (p)  such that  

lira f ~ ( p )  = f(p) ,  1 < f (p)  <_ e, 
7%--+00 

and 

However, when p > l / e ,  then 

f (p)  = ePI(P). 

lim f ~ ( p )  = + o o .  
?%--+00 

Next, we also define a sequence {gin(p)}, 0 < p < 1, by [5] 

g~(p) _ 2 ( i  - p) 2 ( i  - p) 
p2 , g~+~(P)  = p2 + 2/g~(p)' 

It is easily seen tha t  for 0 < p < 1, 

m = 1 , 2 , . . . .  

(4) 

(5) 

gm+l(P) < gin(P), m = 1,2, . . . .  

Observe by [5], tha t  when 0 < p <_ l /e ,  then there exists a function g(p) such tha t  

lim gin(P) = g(P) 

and 
2 1 

for 0<p<-. 
g(P) = i - p- ~i - 2p- p2' - 

To prove our main results, we need the following lemmas. 

Consider the advanced differential inequality 

(6) 

x'(t) - Q(t)x(t  + or) > O. (7) 

LEMMA 1. Suppose that Q(t) E C([t0, co), R+ ), cr E R + and let x(t)  be a solution of inequedity (7) 
on [to, co). Further, assume that there exist t i  > to and 0 < p < 1 such that  

t t+~ Q(s) ds > p, for t >__ t i ,  (8) 

and that there exist To >_ ti  and T >_ To + 3o such that x(t) is positive on [To, T]. Then, for any 
n >_ 1 such that  T - (2 + n)~ > To, 

~(t + o) 
~(t)  

> A ( p ) ,  for t e [To, T - (2 + ~ ) 4 ,  (9) 

where fn (P) is defined by (3). 

PRoof .  From (7), we obtain 

x'(t) > Q(t)x(t  + o) ~ O, for t e [To, T - cr], (io) 

which implies tha t  x(t) is nondecreasing on [To, T - a]. It  follows tha t  

x(t  + o) > 1 = fo(P), for t E [To, T - 2a]. x(t)  - (ii) 
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W h e n  To < t < T - 3o-, by dividing (7) by x(t) and integrat ing f rom t to  t ÷ c~, we get 

+ o) ft+~ z(s + ~) Q(s) x(s) ds > O. in X(tx(t) Jt (12) 

By using (8), (11), and (12), we have 

In x(t + ~) 
x(t) 

It follows t h a t  
• (t + o)  > e , fo( ,  ) = A(p) ,  

~(t)  - 

Repea t ing  the  above procedure,  we get 

for t E [To, T - 3(7]. 

~(t + ~) > e~i~-~(,) = f~(;),  
• (t) - 

fo~ t e [To, T - (2 + ~)~].  

The  proof  of L e m m a  1 is complete.  

LEMMA 2. Suppose that Q(t) E C([t0, oo), R+ ), a E R + and let x(t)  be a solution of inequality (7) 
on [to, oo). Assume that there exist t l  >__ to and a positive constant p < 1 such that 

/ t+~ Q(s) ds >_ p, for t >_ t l ,  (13) 

and 

Q(u) du >_ Q(u) du, for t l  < t < s ÷ a < t ÷ (7. (14) 
Jt --o" 

Fuzther, assume that there  exist To >__ tl  + a and a positive integer N >__ 4 such that x(t) is 
positive on [To, To + Na]. Then, for any m < N - 3, 

x(t + ~) 
~(t) 

- -  < gin(P), for t e [To + mc5 To + ( N  - 3)a], (15) 

where gin(P) is de~ned by (5). 

PROOF. From (13), we know tha t  

/ ~  Q(s) d~ > ;, for t _> t i  + ~. 

Note  t h a t  F(A)  = J ~ a  Q(s) ds is a continuous function. F( t  - a)  = 0 and F(t)  > p. Thus,  there  
At exists a At such t h a t  f~_z Q(s) ds = p, where t - cr < At <__ t. W h e n  To + ~ < t < To + ( N  - 3)a,  

in tegra t ing b o t h  sides of (7) for t - a to  At, we obta in  

x(At) - x( t  - ~) > Q ( , ) ~ ( s  + ~) d, .  
CT 

(16) 

Since t - cr < s < t, we easily see t ha t  t _< s + a _< t + ~r _< To + ( N  - 2)a.  In tegra t ing  bo th  sides 
of (7) from t to  s + (r, we get 

f s-b~ x(s + ~) - x(t) >_ Q(~)=(~ + (7) d~. 
Jt 
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From (10), it is clear that  x(u + (7) is nondecreasing on To < u _< To + (N - 2)(7. By (14), we get 

f'+- x(s + (7) >_ x(t) + x(t + (7) Q(u) du >_ x(t) + x(t + (7) e(u)  du. (17) 
J t  (7 

From (16) and (17), we have 

L 
t 

x(At) >_ x(t - (7) + Q(s)x(s + (7) ds 

>__ x(t - (7) + Q(s) ~(t) + ~(t + (7) Q(~) d ds 
O" --O" 

= x(t - (7) + px(t) + x(t + (7) Q(s) ds Q(u) du 
-- (T  O" 

2 

= ~(t - (7) + px(t) + ~ ( t  + (7). 

Noting that  x(At) <_ x(t), we get 

2 
~(t) >_ ~(t - (7) + p~(t) + ~ ( t  + (7). (18) 

Again since x(t - (7) > 0 for t e [To + (7, To + (N - 3)a], by (18), we obtain 

_ _  2 ( 1  - p )  (19) x(t+(7) < _ _  -- gl(P), forte [To+c, To+(N-3) (7] .  
~(t) p~ 

When To + 2(7 < t < To + (N - 3)(7, we easily see that  To + (7 _< t - (7 _< To + (N - 4)(7. Thus, 

by (19), we have 
x(t) x(t + (7) 

x( t - (7)  > ~ > g~(p----y- 

Substituting this into (18), we have 

x(t + (7) + p~(t) + ~ ( t  + (7), ~(t) > g~(p-----X- for t e [To + 2(7, To + (N - 3)(7]. 

Therefore, 

x(t + (7) 2(1 - p) = g2(P), 
x(t------T- < p2 + 2/g~(p) 

for t e [To + 2(7, To + (N - 3)(7]. 

Repeating the above procedure, we obtain 

2(1 -- p) x(t + (7) < = gin(P), 
x(t) f12 _~_ 2/g2_1(p) 

for t e [To + m(7, To + (N - 3)(7]. (20) 

The proof of Lemma 2 is complete. 

THEOREM 1. 

3.  M A I N  R E S U L T S  

Suppose that (2) holds and that R(t) e Cl([to, co), R+), where 

Q(t)P(t + (7) 
R(t) = Q(t + ~) (21) 
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Further, assume that 
R'(t) _> 0, ~ > 7 > 0, (22) 

and that there exists tl >_ to such that 

1 + R(s + a -  7) ds > 1, for t > h .  (23) 

Then, for any T > tl, every solution of equation (1) has at bast a zero on IT, T + 3a - 7]. 

PROOF. Otherwise, without loss of generality, we may assume that  x(t) is a solution of equa- 
tion (1) satisfying x(t) > 0 for t e [T,T + 3 a -  z]. For the convenience, in the sequel, we 
denote 

z(t) = x(t) + P(t)x(t + "r). (24) 

Clearly, we have 

z(t)  > o, for t e IT, T + 3~ - 2~], (25) 

and 
z'(t) = Q(t)x(t + ~) > O, for t e IT, T + 2a - 7], (26) 

which implies that  z(t) is nondeereasing on IT, T + 2a - ~-]. By  (26) and (24), we obtain 

z'(t) = Q(t )x( t  + ~) 

= Q(t)[z(t + ~) - P(t + a)x(t + a + Q] 

= Q(t)z(t + a) Q(t)P(t + a) z'(t + ~-). 
Q(t + "r) 

That is, 
z'(t) + R(t)z'(t + 7) - Q(t)z(t + a) = 0, for t _> T, (27) 

where R(t) = Q(t)P(t + a)/Q(t + 7) > O. We set 

w(t) = z(t) + R(t)z(t + 7), for t >__ T. (28) 

Thus, we have by (25) and (28) 

w(t) > 0, for t e [T, T ÷ 3(~ - 7)], (29) 

and by (22), (25), and (27), 

w'(t) = Rt(t)z(t + 7) + Q(t)z(t + a) _> 0, for t E IT, T + 2(a - ~-)]. (30) 

Since z(t) is nondecreasing on [T, T + 2a - ~-], we have by (28) 

w(t) <_ [1 + R(t)]z(t + 7), for t E IT, T + 2(a - ~-)]. 

Thus, 
w(t) 

z(t + 7) > 1 + R(t)' for t E [T, T + 2(a - T)]. 

It follows by (22) and (30), that 

w'(t) Q(t) l + R ( t + a _ 7 ) w ( t + ~ - 7 )  >__w'(t)-Q(t)z(t+a) >_0,  f o r t e  [ T , T + a - 7 ] .  (31) 

Integrating both sides of (31) from T to T + a - T, we obtain by (23),(30) 

w(T + a - 7") > w(T) + fT+~-~- Q(s) w(s + a - ~-) ds 
-- JT 1 ÷ R(S  ÷ G -- 7)  

>_ ~ ( T )  + ~ ( T  + o - 7). 

That  is, w(T) < O, which contradicts (29) and completes the proof. 
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C O R O L L A R Y  1. Assume that  the conditions in Theorem 1 hold. Then, the distances between 
adjacent zeros of  every soIution of equation (1) on It1, oo) are less than 3a - T. 

THEOREM 2. Assume that  (2), (21), and (22) hold and that  there exist tl  >_ to and a positive 
constant p, 1/e < p < 1, such that 

f/ + ~ - ~  Q(s) (32) 
1 + R ( s + ~ - ~ ' )  ds > p. 

Farther, assume that  

f 
~+~-" Q(~) 

1 + R ( u  + ~ - ~') //_ du > Q(~)  
~+~ 1 + R ( u  + ~ . "r) du, 

t l  < t < s + ~ - - T ~ t + c r - - T .  

(33) 

Then, for any T > t l  + a - T, every solution of equation (1) has at least a zero on IT, T + 2~ + 
k(a - ~-)], where 

k : rain {nWm I fn(P) >- gin(P)}. (34) 
n>__l,rn>_l 

PROOF. Otherwise, without loss of generality, we assume tha t  x(t)  is a solution of equation (1) 

satisfying re(t) > 0 for t 6 [T, T + 2a + k(a - T)]. By the proof of Theorem 1, we obtain 

Q(t) w(t  + ~ - ~) >__ o, 
w'( t)  - 1 + R( t  + a - T) for t C [T, T + k(a - T)], 

and 

~( t )  > 0, for t e [T, T + (~ + 2)(~ - ~)]. 

Let k = n* + m* satisfy 

fn* (P) >__ gin" (P). (35) 

By Lemma 1, we have 

~( t )  " ___ fn . (p) ,  for t 6 [T,T + (k - n*)(cr - T)]. (36) 

On the other hand, by Lemma 2, we obtain 

~ ( t  + ~ - ~) 
< g,~. (p), f o r t e  [ T + m * ( ~ - T ) , T + ( k - 1 ) ( a - T ) ] .  (37) 

Setting t* = T + (k - n*)(g - T) = T + m*(a  - z) in (36) and (37), we have 

A*(p)  < ~(t*  + G - ~) 
~(t*)  < g=* (p)' 

which contradicts (35) and completes the proof. 

COROLLARY 2. Assume that  the conditions in Theorem 2 hold. Then, the distances between the 
adjacent zeros of  every solution of equation (1) on [tl + cr - % oo) are less than 2~ + k(a - r),  
where k is defined by (34). 
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THEOREM 3. Assume tha t  (2), (21), (22), and (33) hold and t ha t  there exist h >__ to a~d a 
constant  p, 0 < p < 1/e, such t ha t  (32) holds. Further,  assume tha t  there exJsts a sequence 
{T~} : Ti ~ oo as i --+ oo such t ha t  

IT?  +a-'r Q(s) 1 + In f (p)  I - p - X/~ - 2 p - - p  2 (38) 
i + R ( s  + cr - "r) ds >_ L > f ( p )  2 ' 

where f(p) satisfies equation (4) on [i, e]. Then, every solution o f  e q u a t i o n  (I) has at least a zero 

o~ [T~ - m*(~ - ~-), T, + 2~ + n*(~ - ~-)], where ,~* a~d n* sat~fy T, >_ tl + (-~* + i)(o - ~-) and 

I + Inf~_1(p) I } 
n * + m * :  min n + m l L >  . (39) 

._>~,~_>1 A - I ( p )  g~(p)  

PROOF. Otherwise, wi thout  loss of generality, we assume tha t  x(t) is a solution of equation (1) 
satisfying x(t) > 0 for t E [Ti - rn* ((r - T), Ti + 2a + n*(a  - "r)]. By  the  proof of Theorem 1, we 
have 

w'(t) - Q(t) 
i + R ( t  + cr - ~-) w(t  + cr - ~-) > O, for t e [T~ - . ¢ ( ~  - ~-), T~ + n*(~ - ~-)], (40) 

and w(t) > 0, for t e [Ti - m*(o- - T),Ti + (n* + 2)(o" -- T)]. By  Lemmas  1 and 2, we have 

w ( t  + ~ - "r) 
_ fn* (P), for t E [T~ - m* ((7 - ~-), TJ ,  (41) 

~(t )  
w ( t  + ~ - ~) 

>- fn - - l (P ) ,  f o r t E [ T i - m * ( t r - ~ ' ) , T i + a - T ] ,  (42) 
~(t )  

and 

~(t )  i 
> - -  forte [Ti,Ti+(n* - 1 ) ( a -  T)]. (43) 

~( t  + ~ -  ~-) g~.(p)' 

Clearly, from (30) we have 

~'(t)  > 0, for t e IT, - ~ n * ( ~ -  ~-),T, + (n* + t ) ( o  - ~-)]. 

T h a t  is, w(t) is nondecreasing on t e [T~ - m * ( a  - T),T~ + (n* + 1)(~z --~-)]. From (39), n* and m* 
satisfy 

i + l n A . - l ( p )  i 

L > fn'--l(P) g,~* (p). (44) 

Since {fn(p)} is increasing, by (41) we have 

w(T~ + ~ - ~-) 
>_ A - - I ( p ) .  (45) w(T0 

Since w(t) is nondecreasing, there exists a t* E (T~, T~ + cr - ~-) such tha t  

w(T~ + ~ - ~) 
w(t~) = fi~'-i(P). (46) 

Integrat ing (40) from Ti to t~ and noting tha t  w(t) is nondecreasing, we obtain 

f l ;  w(s + cr - T) ds 
Q ( s )  

~( t ; )  - ~(T~) > i + R(s + ~ - ~-) 

i ;  Q(s) 
> w(T{ + ~ - J l + R(s  + a _ v) ds, 
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which implies 

~ Q(s) 
l+R(s+~-7) 

From (43), (46), and (47), we obtain 

ds <_ 
~(q)  ~(T,) 

- -  . 

w(T, + a - 7) w(T, + a - 7) 
(47) 

/TI ~ Q(s) 1 1 
1 + R ( s + a  - 7 )  ds <_ fn*-i(p) gm*(P)" (as) 

Dividing (40) by w(t) and integrating from t* to Ti + a - 7 and noting (42), we have 

j T,+~-~ ~,(~) f r ,+~-~ Q(s) ~(s  + o - 7) 
w(s) ds > I ds ~z i + R(s + o - 7) ~(s) 

fr,+o-, Q(s) 
>_ A , -~ ( ; )  Jt~ 1 + R(s + a - 7) ds, 

which implies 

fT,+~-~ Q(s) i fT,+¢-T W'(S) in f~._i(p) 
Jr* 1 + R(s + a - 7) ds <_ fn*-i(P) Jr7 w(s) ds = fn*-i(P) 

(49) 

From (44), (48), and (49), we have 

IT? +~-'~ Q(s) I + in f~._~(p) I 
l + R ( s + c r - 7 )  ds<- fn . - l (p)  gm*(P) <L ,  

which contradicts (38) and completes the proof. 

COROLLARY 3. Assume that (2), (21), (22), and (33) hold and that there exist tl >_ to and a 
constant p, 0 < p <_ l/e,  such that (32) holds. Further, assume that 

f~+~-T Q(s) i + In f (p)  
lim sup I ds > L > 

i - p- ~/i - 2p- p~ 

Then, every solution of equation (1) oscillates. 

Finally, we give two examples. 

EXAMPLE 1. Consider the neutral advanced differential equation 

[~(t) + ~(t + 1)]' - 4=(t + 1.5) = o, t > o, (50) 

where P(t) = 1, Q(t) = 4, 7 = 1, a ---- 1.5. We have R(t) -- 1 and 

f t  t+~-~ ds = 1, t > O. 
Q(s) 

1 + R(s + a - r) 

Applying Theorem 1, we obtain for any T >_ 0 every solution of equation (50) has at least a zero 
on IT, T +  3.5]. Therefore, the distances between adjacent zeros of every solution of equation (50) 
on [0, c~) are less than 3.5. 

EXAMPLE 2. Consider the advanced differential equation 

x'(t) - ~-(1 + cos 2~t)x(t + 1) = 0, t > o, (51) 
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where P ( t )  = O, Q( t )  = (2/5)(1 + cos2zrt), ~- = 0, a = 1. We have R ( t )  = 0, 

f t  t+~-~ Q(s) ds = 2 1 l+R(s+~-v) ~=;>~ ,  ~>0, 

and  

ff 
+ ~ - ~  Q(~) 

l + R(u + ~ -  r) //_ du = Q(u)  
~+~ 1 + R(u + ~ - ~) 

O < t < s + a < t + a .  

I t  is easy to see t h a t  

fn(P) < 5 < gm(P), 1 < n < 10, 

f n (P )  > gm(P), m_>3; 

fl2(P) > gm(P), m ~  1. 

m > l ;  

Hence, we have k = 12 + 1 = 13 and  2or + k(cr - v) = 15. By Corol lary  2, the  dis tances between 

adjacent  zeros of every solut ion of equa t ion  (51) on [1, oo) are less t h a n  15. 
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