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Abstract

The modular vector field plays an important role in the theory of Poisson manifolds and is intimately connected with the Poisson
cohomology of the space. In this paper we investigate its significance in the theory of integrable systems. We illustrate in detail the
case of the Toda lattice both in Flaschka and natural coordinates.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The infinitesimal generator of the modular automorphism group is important in the cohomology theory of Poisson
manifolds. On the other hand, one of the main characteristics of integrable Hamiltonian systems is the formation of
hierarchies consisting of Poisson tensors. Each one of these tensors carries naturally a modular vector field. One may,
therefore, speak of a hierarchy of modular vector fields. The purpose of this paper is to begin an investigation of the
role of this sequence of vector fields in the theory of integrable systems. As an illustrative example, we choose the
famous Toda lattice, a system that is one of the most basic in the theory of finite dimensional integrable models and
closely related to the theory of simple Lie groups. There is no doubt, however, that the results of this paper hold for
other similar systems as well.

The modular vector field appears first in a paper of Koszul [17], as a special case of an operator on contravariant
differential forms of degree −1. The same vector field was later used by Dufour and Haraki in [8] to classify quadratic
Poisson brackets in R

3. It was called “curl”, which in R
3 is dual to “divergence”. In fact, the operator of Koszul

applied to a vector field, gives the usual divergence of differential calculus with respect to the standard volume form.
One can therefore speak of the divergence of a Poisson bracket; this is what the modular vector field is. The divergence
of a Poisson bracket is useful in the classification of Poisson structures in low dimensions, e.g., [13,19].
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One class of operators considered by Koszul is the following. Let Ap be the space of covariant antisymmetric
tensors on a smooth orientable manifold M of dimension n and let Ap denote the space of covariant differential
forms. Choose a volume form ω and define an operator

D :Ap → Ap−1

which satisfies

D2 = 0.

The volume form ω induces an isomorphism Φ from Ap to An−p . Define the modular operator as:

D = Φ−1 ◦ d ◦ Φ,

where d is the exterior derivative.
Weinstein [29] gives a different interpretation. Suppose one has a Poisson tensor π and a smooth positive volume

form ω. Consider the operator Xω, which sends a smooth function f to divω Xf , where Xf is the Hamiltonian vector
field generated by f with respect to π . It turns out that this operator is a derivation and hence a vector field. It coincides
with the Koszul operator, D, at the level of contravariant 2-tensors. It satisfies:

(1)LXωω = 0, LXωπ = 0.

Even though we deal with spaces that are orientable, we remark that in the non-orientable case one can either
replace volumes by densities or use the recent approach of [14].

In local coordinates (x1, . . . , xn), the modular vector field of the Poisson tensor π is given by the formula:

(2)D(π) =
n∑

j=1

(
n∑

i=1

∂πji

∂xi

)
∂

∂xj

.

Lichnerowicz [18] considers the following cohomology defined on the space of contravariant tensors of a Poisson
manifold. Let (M,π) be a Poisson manifold. Define a coboundary operator ∂π which assigns to each p-tensor A,
a (p + 1)-tensor ∂πA given by

∂πA = −[π,A],
where [·, ·] denotes the Schouten bracket. We have that ∂2

πA = [π, [π,A]] = 0 and consequently ∂π defines a coho-
mology. More details on the Schouten bracket can be found in [18,22,27]. An element A is a p-cocycle if [π,A] = 0.
An element B is a p-coboundary if B = [π,C], for some (p − 1)-tensor C. Let

Zn(M,π) = {
A: [π,A] = 0

}
and

Bn(M,π) = {
B: B = [π,C]}.

The quotient

Hn(M,π) = Zn(M,π)

Bn(M,π)

is the nth cohomology group. The elements of the first cohomology group are the infinitesimal automorphisms of the
Poisson structure modulo the Hamiltonian vector fields. It follows from (1) that the modular vector field is an element
of the first cohomology group. If one replaces ω by aω, where a is a positive smooth function, then

(3)Xaω = Xω +Xlna.

Therefore, the modular vector field is a well-defined element of the first cohomology group in the Lichnerowicz
cohomology. Since it forms an element of the cohomology group, Weinstein in [29] uses the term “modular class”. It
makes sense to consider two such vector fields as equal if in fact they differ by a Hamiltonian vector field. The reader
can also refer to [18,27,28] for more details on Poisson manifolds and cohomology.



M.A. Agrotis, P.A. Damianou / Differential Geometry and its Applications 25 (2007) 655–666 657
The modular operator D is a graded derivation. The following relations hold for a general 2-tensor π and vector
fields X,Y :

(4)D[π,X] = [
D(π),X

] − [
π,D(X)

]
,

(5)D[X,Y ] = XD(Y) − YD(X).

We note the minus sign in (4) that appears because we use the convention X π
f (g) = {f,g}π , in the definition of the

Hamiltonian vector field X π
f .

The purpose of this paper is to present a complete study of the modular hierarchy in the case of the Toda lattice.
In Section 2 we review the finite, classical Toda lattice and its multi-Hamiltonian nature. In Section 3 we examine the
modular hierarchy in Flaschka coordinates (a, b) ∈ R

2N−1. In particular, we establish the Hamiltonian character of the
modular vector fields associated to the well-known hierarchy of Poisson tensors for the Toda lattice, see Theorem 3,
and present some of their basic properties in Corollary 1. A new bi-Hamiltonian formulation of the Toda lattice is
provided in Theorem 2. In Section 4 we study the infinite modular sequence in natural coordinates (q,p) ∈ R

2N , and
present a formula that iteratively produces all members of this sequence. In Section 5 we comment on the results of
this paper and present them in compact form.

2. The Toda lattice

The Hamiltonian of the Toda lattice is given by

(6)H(q1, . . . , qN ,p1, . . . , pN) =
N∑

i=1

1

2
p2

i +
N−1∑
i=1

eqi−qi+1 .

This type of Hamiltonian was first considered by Morikazu Toda [26]. Eq. (6) is known as the classical, finite, non-
periodic Toda lattice to distinguish the system from the many and various other versions, e.g., the relativistic, quantum,
infinite, periodic, etc. The integrability of the system was established in 1974 independently by Flaschka [11], Henon
[15] and Manakov [21]. The original Toda lattice can be viewed as a discrete version of the Korteweg–de Vries
equation. It is called a lattice, as in atomic lattice, since interatomic interaction was studied. This system also appears in
cosmology and the work of Seiberg and Witten on supersymmetric Yang–Mills theories. It has applications in analog
computing and numerical computation of eigenvalues. However, the Toda lattice is mainly a theoretical mathematical
model which is important due to the rich mathematical structure encoded in it.

Hamilton’s equations take the form

q̇j = pj

ṗj = eqj−1−qj − eqj −qj+1, j = 1, . . . ,N.

The system is integrable. One can find a set of independent functions {H1, . . . ,HN } which are constants of motion for
Hamilton’s equations. To determine the constants of motion, one uses Flaschka’s transformation:

ai = 1

2
e

1
2 (qi−qi+1), i = 1, . . . ,N − 1,

(7)bi = −1

2
pi, i = 1, . . . ,N.

The equations of motion become

ȧi = ai(bi+1 − bi),

(8)ḃi = 2
(
a2
i − a2

i−1

)
.



658 M.A. Agrotis, P.A. Damianou / Differential Geometry and its Applications 25 (2007) 655–666
These equations can be written as a Lax pair L̇ = [B,L], where L is the Jacobi matrix

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 a1 0 . . . . . . 0

a1 b2 a2 . . .
...

0 a2 b3
. . .

...
. . .

. . .
...

...
. . .

. . . aN−1
0 . . . . . . aN−1 bN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1 0 . . . . . . 0

−a1 0 a2 . . .
...

0 −a2 0
. . .

...
. . .

. . .
. . .

...
...

. . .
. . . aN−1

0 . . . . . . −aN−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This is an example of an isospectral deformation; the entries of L vary over time but the eigenvalues remain constant,
i.e. λ̇i = 0. It follows that the functions Hj = 1

j
trLj are constants of motion. We note that

H1 = λ1 + λ2 + · · · + λN =
N∑

i=1

bi

corresponds to the total momentum and

H2 = 1

2

(
λ2

1 + λ2
2 + · · · + λ2

N

) = 1

2

N∑
i=1

b2
i +

N−1∑
i=1

a2
i

is the Hamiltonian.
Consider R

2N with coordinates (q1, . . . , qN ,p1, . . . , pN), the standard symplectic bracket

{f,g}s =
N∑

i=1

(
∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi

)
,

and the mapping F : R2N → R
2N−1 defined by

F : (q1, . . . , qN ,p1, . . . , pN) → (a1, . . . , aN−1, b1, . . . , bN).

The Flaschka transformation F is a symplectic realization of a degenerate Lie Poisson bracket on R
2N−1, i.e. there

exists a Poisson bracket on R
2N−1 which satisfies

{f,g} ◦ F = {f ◦ F,g ◦ F }s .
This bracket (up to a constant multiple) is given by

{ai, bi} = −ai,

(9){ai, bi+1} = ai;
all other brackets are zero. We denote this bracket by π1. Its Lie algebraic interpretation can be found in [16]. In π1,
the only Casimir is H1 = b1 + b2 + · · ·+ bN , and the Hamiltonian is H2 = 1

2 trL2. The invariants Hi are in involution
with respect to π1. For a proof of these facts see [4].
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The quadratic Toda bracket appears in conjunction with isospectral deformations of Jacobi matrices. Let λ be an
eigenvalue of L with normalized eigenvector v. Using standard perturbation theory one obtains,

∇λ = (
2v1v2, . . . ,2vN−1vN, v2

1, . . . , v2
N

)t := Uλ,

where ∇λ denotes ( ∂λ
∂a1

, . . . , ∂λ
∂aN−1

, ∂λ
∂b1

, . . . , ∂λ
∂bN

). Some manipulations show that Uλ satisfies

π2U
λ = λπ1U

λ,

where π1 and π2 are skew-symmetric matrices. The defining relations for the Poisson tensor π2 are the following
quadratic functions of the ai and bi :

{ai, ai+1} = 1

2
aiai+1,

{ai, bi} = −aibi,

{ai, bi+1} = aibi+1,

{bi, bi+1} = 2a2
i ;

all other brackets are zero. The quadratic Toda bracket appeared in a paper of Adler [1] in 1979. It is a Poisson bracket
in which the Hamiltonian vector field generated by H1 is the same as the Hamiltonian vector field generated by H2
with respect to the π1 bracket. The tensor π2 has detL as Casimir and H1 = trL as the Hamiltonian. The eigenvalues
of L (and therefore the Hi as well) are still in involution. Furthermore, π2 is compatible with π1. We have

(10)π2∇Hj = π1∇Hj+1, j = 1,2, . . . .

These relations are similar to the Lenard relations for the KdV equation; they are generally called the Lenard relations.
Taking j = 1 in (10), we conclude that the Toda lattice is bi-Hamiltonian. Bi-Hamiltonian structures were introduced
by Magri in [20]. Using results from [5], ones proves that the Toda lattice is multi-Hamiltonian:

(11)π2∇H1 = π1∇H2 = π0∇H3 = π−1∇H4 = · · · .
The Hamiltonian hierarchies of the Toda lattice are well-known. The results are usually presented either in the

natural (q,p) coordinates or in the more convenient Flaschka coordinates (a, b). In the former case the hierarchy of
higher invariants are generated by the use of a recursion operator [7,10]. We remark that recursion operators were
first introduced by Olver [25]. The system is bi-Hamiltonian and one of the brackets is symplectic. Thus, one can
find a recursion operator by inverting the symplectic tensor. The recursion operator is then applied to the initial
symplectic bracket to produce an infinite sequence of Poisson tensors. However, in the case of the Toda lattice in
Flaschka variables (a, b), the first two Poisson brackets π1 and π2 are non-invertible and therefore this method fails.
The absence of a recursion operator for the finite Toda lattice is also mentioned in Morosi and Tondo [23], where a
Nijenhuis tensor for the infinite Toda lattice is calculated. The family of Poisson tensors in this case is constructed
using master symmetries. Invariant functions and Hamiltonian vector fields are preserved by master symmetries. New
Poisson brackets are generated using Lie derivatives in the direction of these vector fields, and they satisfy interesting
deformation relations. We quote the results from Refs. [3,4].

Theorem 1. There exists a sequence of vector fields Xi , for i � −1, and a sequence of contravariant 2-tensors πj ,
j � 1, satisfying:

(i) πj are all Poisson.
(ii) The functions Hi , i � 1, are in involution with respect to all of the πj .

(iii) Xi(Hj ) = (i + j)Hi+j , i � −1, j � 1.
(iv) LXi

πj = (j − i − 2)πi+j , i � −1, j � 1.
(v) [Xi,Xj ] = (j − i)Xi+j , i � 0, j � 0.

(vi) πj∇Hi = πj−1∇Hi+1, where πj denotes the Poisson matrix of the tensor πj .

Remark 1. Theorem 3 was extended for all integer values of the index in [5].
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3. The modular class in Flaschka coordinates

We consider the modular vector field of the Poisson tensor πj , denoted by Yj = D(πj ), where D is the Koszul
operator. We begin with some preliminary results needed to prove the main theorem that establishes the Hamiltonian
character of the modular class. The vector fields of Theorem 1, denoted by Xj , are master symmetries for the Toda
lattice system. For example, X1 is given as follows:

X1 =
N−1∑
i=1

Ai

∂

∂ai

+
N∑

i=1

Bi

∂

∂bi

,

where

Ai = −iaibi + (i + 2)aibi+1,

Bi = (2i + 3)a2
i + (1 − 2i)a2

i−1 + b2
i .

If we define the function f = ln(a1 · · ·aN−1), then we have the following proposition:

Proposition 1.

D(X1) = X1(f ) + 2H1.

Proof. By definition

D(X1) =
N−1∑
i=1

∂Ai

∂ai

+
N∑

i=1

∂Bi

∂bi

=
N−1∑
i=1

[−ibi + (i + 2)bi+1
] + 2

N∑
i=1

bi

= X1(f ) + 2 Tr(L) = X1(f ) + 2H1.

A similar relation holds for the second master symmetry X2 that is defined as

X2 =
N−1∑
i=1

Ci

∂

∂ai

+
N∑

i=1

Di

∂

∂bi

,

where

Ci = (2 − i)a2
i−1ai + (1 − i)aib

2
i + aibibi+1

+ (i + 1)aia
2
i+1 + (i + 1)aib

2
i+1 + a3

i +
(

i−1∑
j=1

bj

)
ai(bi+1 − bi)

Di = 2

(
i−1∑
j=1

bj

)
a2
i − 2

(
i−2∑
j=1

bj

)
a2
i−1 + (2i + 2)a2

i bi + (2i + 1)a2
i bi+1

+ (3 − 2i)a2
i−1bi−1 + (4 − 2i)a2

i−1bi + b3
i . �

Proposition 2.

D(X2) = X2(f ) + 6H2.

Proof. Similar to the proof of Proposition 1. �
We can generalize the results of Propositions 1 and 2 as follows:
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Proposition 3.

D(Xn) = Xn(f ) + n(n + 1)Hn.

Proof. The proof is inductive. The result holds for n = 1,2. We assume that the result holds for n � 2 and prove it
for n + 1.

D(Xn+1) = 1

n − 1
D[X1,Xn]

= 1

n − 1

(
X1D(Xn) − XnD(X1)

)
= 1

n − 1

(
X1

(
Xn(f ) + n(n + 1)Hn

) − Xn

(
X1(f ) + 2H1

))
= 1

n − 1

([X1,Xn](f ) + n(n + 1)X1(Hn) − 2X1(Hn)
)

= 1

n − 1

(
(n − 1)Xn+1(f ) + (

n(n + 1) − 2
)
X1(Hn)

)
= Xn+1(f ) + (n + 2)X1(Hn) = Xn+1(f ) + (n + 1)(n + 2)Hn+1. �

Below we prove a statement that we will use in Theorem 3, but it is also important in its own right. It is a new
bi-Hamiltonian formulation of the Toda lattice.

Theorem 2.

X πj

H1
=X πj+1

g , where g = ln
(
det(L)

)
, and j � 1.

Proof. We use the Lenard relations for the eigenvalues [4,6], πj∇λi = λiπj−1∇λi .

X πj

H1
=X πj

(λ1+···+λN ) = πj∇(λ1 + · · · + λN) =
N∑

i=1

πj∇λi.

On the other hand

X πj+1
g =X πj+1

lnλ1...λN
= πj+1∇ lnλ1 . . . λN =

N∑
i=1

πj+1
1

λi

∇λi =
N∑

i=1

πj∇λi = X πj

H1
. �

The following theorem investigates the Hamiltonian character of the divergence of the infinite sequence of Poisson
tensors πj . In particular, it states that the divergence of the Poisson tensor πj is the Hamiltonian vector field given by
the function h := ln(a1 · · ·aN−1) + (j − 1) ln(det(L)).

Theorem 3.

Yj =X πj

f +(j−1)g, where f = ln(a1 · · ·aN−1), and g = ln
(
det(L)

)
.

Proof. We will prove the theorem inductively in two steps. First we will show that it holds for j = 1 and then for
2 � j � 3. Consequently, we will show that it holds for j = 4 and then for j � 5.

We have that Y1 = D(π1), where π1 is given by

{ai, bi} = −ai,

{ai, bi+1} = −ai.

Thus, using (2) we obtain

Yj = ∂ − ∂ = (0, . . . ,0,1,0, . . . ,0,−1)t .

∂b1 ∂bn
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On the other hand, it is not hard to show that the Hamiltonian vector field induced by f = ln(a1 · · ·aN−1) with respect
to the bracket π1 has the form:

ȧi = 0, i = 1, . . . ,N − 1,

ḃ1 = 1, ḃN = −1,

ḃi = 0, i = 2, . . . ,N − 1.

Hence Y1 =X π1
f .

Now, let us assume that the theorem holds for j � 4. We will then show that it holds for j + 1. By definition
LX1πj = [X1,πj ] = [πj ,X1] and using (iv) of Theorem 1, we have that πj+1 = 1

(j−3)
[πj ,X1]. Thus,

Yj+1 = D(πj+1) = 1

(j − 3)
D

([πj ,X1]
)

= 1

(j − 3)

([
D(πj ),X1

] − [
πj ,D(X1)

])
= 1

(j − 3)

([Yj ,X1] − [
πj ,D(X1)

])
= 1

(j − 3)

([
X πj

f ,X1
] + (j − 1)

[
X πj

g ,X1
] − [

πj ,D(X1)
])

= 1

(j − 3)

([[f,πj ],X1
] + (j − 1)

[
X πj−1

H1
,X1

] − [
πj ,D(X1)

])
= 1

(j − 3)

([
πj , [X1, f ]] + [

f, [πj ,X1]
] + (j − 1)(j − 2)X πj

H1
− [

πj ,D(X1)
])

= 1

(j − 3)

([
πj ,X1(f )

] + (j − 3)[f,πj+1] + (j − 1)(j − 2)X πj

H1
− [

πj ,D(X1)
])

= 1

(j − 3)

([
πj ,D(X1)

] − 2[πj ,H1] + (j − 3)X πj+1
f + (j − 1)(j − 2)X πj

H1
− [

πj ,D(X1)
])

=X πj+1
f + (j − 1)(j − 2) − 2

(j − 3)
X πj

H1
=X πj+1

f + jX πj+1
g .

In an identical manner one proves that the theorem holds for 2 � j � 3. To show that the theorem holds for j = 4
we use a similar argument as the one used above, however, we employ the relation π4 = − 1

2LX2π2 = − 1
2 [X2,π2], to

avoid division by zero. �
Corollary 1.

(a) Yi(Hj ) = Yj (Hi),
(b) LYi

πj = −LYj
πi .

Proof. For part (a) we have:

Yi(Hj ) = (
X

πi

f + (i − 1)X πi−1
H1

)
(Hj ) =X πi

f (Hj ) = {f,Hj }πi

= ∇f πi∇Hj = ∇f πj∇Hi = {f,Hi}πj
= Yj (Hi).

For part (b),

[[h,πj ],πi

] + [[πj ,πi], h
] + [[πi,h],πj

] = 0.

Since [πi,πj ] = 0 the result follows. �
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4. The modular hierarchy in (q,p)-coordinates

The bi-Hamiltonian structure of the Toda lattice appears in a paper of Das and Okubo in 1989 [7]. The generation
of master symmetries and Poisson tensors using Oevel’s theorem and the connection with the results in Flaschka
coordinates are due to Fernandes [10]. In principle, the method is general and works for other finite dimensional
systems as well. For example, this approach was used by Nunes da Costa and Marle [2] in the case of the relativistic
Toda lattice. The procedure goes as follows. One defines a second Poisson bracket in the space of canonical variables
(q1, . . . , qN ,p1, . . . , pN). This gives rise to a recursion operator, call it R. The presence of a conformal symmetry, as
defined by Oevel, allows one to use the recursion operator and generate an infinite sequence of master symmetries.
These, in turn, project to the space of the new variables (a, b) to produce a sequence of master symmetries in the
reduced space. We quote the relevant theorem of Oevel that appears in [24].

Theorem 4. Suppose that Z0 is a conformal symmetry for both Poisson tensors J1, J2 and function h1, i.e. for some
scalars λ, μ, and ν we have

LZ0J1 = λJ1, LZ0J2 = μJ2, LZ0h1 = νh1.

Then the vector fields Zi =RiZ0 are master symmetries and we have,

(a) LZi
hk = (ν + (k − 1 + i)(μ − λ))hi+k ,

(b) LZi
Jk = (μ + (k − i − 2)(μ − λ))Ji+k ,

(c) [Zi,Zk] = (μ − λ)(k − i)Zi+k .

We note that master symmetries were introduced in [12].
We proceed with the computation of the modular vector fields that are associated to the family of Poisson tensors

given in (q,p)-coordinates. The first Poisson tensor in the hierarchy is the standard canonical symplectic tensor:

Ĵ1 =
(

0 IN

−IN 0

)
,

where IN denotes the N × N identity matrix. The second Poisson tensor has the form,

Ĵ2 =
(

AN BN

−BN CN

)
,

where AN is the N × N skew-symmetric matrix defined by aij = 1 = −aji , for i < j , BN = diag(−p1,−p2, . . . ,

−pN), and CN is the N × N skew-symmetric matrix whose non-zero terms are given by ci,i+1 = −ci+1,1 = eqi−qi+1 ,
for i = 1,2, . . . ,N − 1. If we let J1 = 4Ĵ1 and J2 = 2Ĵ2 then J1 and J2 are mapped precisely onto the brackets π1
and π2 under the Flaschka transformation.

It is easy to see that we have a bi-Hamiltonian pair. We define

h1 = −2(p1 + p2 + · · · + pN),

and h2 to be the Hamiltonian

h2 =
N∑

i=1

1

2
p2

i +
N−1∑
i=1

eqi−qi+1 .

Under Flaschka’s transformation (7), h1 is mapped onto 4(b1 + b2 + · · · + bN) = 4 trL = 4H1 and h2 is mapped onto
2 trL2 = 4H2. Using the relationship

π2∇H1 = π1∇H2,

which follows from part (iv) of Theorem 1, we obtain, after multiplication by 4, the following pair:

J1∇h2 = J2∇h1.
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The Lenard relations for the eigenvalues translate into

(12)πj∇λi = λiπj−1∇λi.

We define the recursion operator as follows:

R = J2J
−1
1 .

This operator raises degrees and we therefore call it the positive Toda operator. In (q,p) coordinates, we use the
symbol Xi as a shorthand for X J1

hi
, the Hamiltonian vector field of hi with respect to the symplectic bracket J1. It is

generated, as usual, by

Xi =Ri−1X1.

In a similar fashion we obtain the higher order Poisson tensors

Ji =Ri−1J1.

We then define the conformal symmetry

Z0 =
N∑

i=1

(N − 2i + 1)
∂

∂qi

+
N∑

i=1

pi

∂

∂pi

.

It is straightforward to verify that

LZ0J1 = −J1,

LZ0J2 = 0.

In addition,

Z0(h1) = h1,

Z0(h2) = 2h2.

Consequently, Z0 is a conformal symmetry for J1, J2 and h1. The constants appearing in Theorem 4 are λ = −1,
μ = 0 and ν = 1. Therefore, we end-up with the following deformation relations:

[Zi,hk] = (i + k)hi+k

LZi
Jk = (k − i − 2)Ji+k

[Zi,Zk] = (k − i)Zi+k.

We compute the divergence of the master symmetry Z1, as we will use it in the proof of Theorem 5. It was proved
in [3] that Z1 = ∑N

i=1 λ2
i

∂
∂λi

, where λi are the eigenvalues of the Jacobi matrix L. Using the definition of divergence

we have that D(Z1) = 2
∑N

i=1 λi = 2
∑N

i=1 bi = −∑N
i=1 pi = 1

2h1. Therefore,

D(Z1) = 1

2
h1.

The following proposition will also come to use in the proof of Theorem 5.

Proposition 4.

(13)X Jj

h1
= 4X Jj+1

f , where f = ln(
√

detR) for j � 1.

Proof. Similar to the proof of Theorem 2. We note that one uses the fact that the eigenvalues of R are the squares of
the eigenvalues of L, see [6,9]. �
Theorem 5. For j � 1, Yj is a Hamiltonian vector field given as

(14)Yj = (j − 1)X Jj

f , where f = ln(
√

detR).
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We will prove the theorem for j = 1, . . . ,4, and then we will use induction for j � 5. First we observe that Y1 = �0,
since J1 is standard symplectic. Using the general form of the tensor J2 we obtain the following: Y2 = −2

∑N
i=1

∂
∂qi

.

A simple calculation gives that X J1
h1

= −8
∑N

i=1
∂

∂qi
. Thus Y2 = 1

4X
J1
h1

=X J2
f , using Proposition 4.

We have that J3 = −[Z1, J2] and D(Z1) = 1
2h1. Therefore,

Y3 = D(J3) = −D[J2,Z1] = −([
D(J2),Z1

] − [
J2,D(Z1)

])
= −[Y2,Z1] + 1

2
[J2, h1] = −[

X J2
f ,Z1

] + 1

2
X J2

h1
.

Using the super-Jacobi identity for the Schouten bracket, the first term equals

−[
J2, [Z1, f ] − [

f, [J2,Z1]
]]

.

Therefore

Y3 = −1

4
X J2

h1
+ [f,J3] + 1

2
X J2

h1
= 1

4
X J2

h1
+X J3

f = 2X J3
f .

In the last step of the argument we have used that X J2
h1

= 4X J3
f . The proof of the formula Y4 = 3X J4

f is identical
to the one for Y3 except that we employ the relation [Z2, J2] = −2J4. An inductive argument based on the same
technique that we have used for Y3, can also be used to show that the result of the theorem holds for j � 5. We omit
the details.

In the theorem that follows, we present an iterative formula that produces all members of the modular class in terms
of the recursion operator R and the modular vector field Y2 = −2

∑N
i=1

∂
∂qi

= (−2, . . . ,−2,0, . . . ,0)t .

Theorem 6. For j � 2,

Yj+1 = jRj−1Y2.

Proof.

Yj+1 = jX Jj+1
f = j

4
X Jj

h1
= j

4
X J1

hj
= j

4
Xj = j

4
Rj−1X1

= j

4
Rj−1X J1

h1
= j

4
Rj−14X J2

f = jRj−1Y2. �
5. Summary

In this paper we study the hierarchy of modular vector fields associated to the infinite family of Poisson tensors for
the classical Toda lattice equations. We present analytical expressions of the modular vector fields both in Flaschka
coordinates (a, b) ∈ R

2N−1, as well as in natural coordinates (q,p) ∈ R
2N . In both cases, all the members of the

infinite modular family, denoted by Yj , j � 1, are Hamiltonian. In (a, b)-variables we have that

Yj =X πj

ln(a1···aN−1)+(j−1) ln(det(L))

where L is the Jacobi matrix of the Lax pair. In natural coordinates (q,p), the modular vector field takes the form

Yj = (j − 1)X Jj

ln(
√

detR)

where R is the recursion operator. It is not difficult to show that the term X πj

ln(det(L)) is the projection of the vector field

X Jj

ln(
√

detR)
under the Flaschka map. The term X πj

ln(a1···aN−1)
makes its appearance due to the change of coordinates.

The following properties are proved regarding the behavior of modular vector fields when they are applied on the
constants of motion Hj , and the Lie derivative of the Poisson tensor πj in the direction of the modular vector field Yi :

(i) Yi(Hj ) = Yj (Hi)

(ii) LYi
πj = −LYj

πi .
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In (q,p)-variables, we presented a formula that iteratively produces all members of the infinite family of modular
vector fields, in terms of the recursion operator. Namely,

Y1 = �0,

Y2 = −2
N∑

i=1

∂

∂qj

= (−2, . . . ,−2,0, . . . ,0)t ,

Yj+1 = jRj−1Y2 for j � 2.

We conclude with an alternate bi-Hamiltonian formulation of the Toda lattice given by the relation X πj

H1
= X πj+1

ln(det(L)),

in addition to the existing one X πj+1
H1

= X πj

H2
.
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